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Abstract 
 

The interplay between superconductivity and other broken symmetry phases has 

emerged as a central theme in cuprate physics with increasing reports of charge order 

in several materials. The relationship between the superconducting state, stripe order, 

and the so-called low-temperature tetragonal (LTT) structural distortion is one of the 

great mysteries in high-TC superconductivity. It has long been believed that stripes are 

pinned by the LTT distortion and compete with superconductivity to result in an 

incoherent state with non-superconducting transport. Furthermore, there is evidence 

that stripes are compatible with in-plane Cooper pairing, creating phases that may 

involve 2D superconducting CuO2 planes decoupled as a result of the periodic charge 

modulation, which, it is speculated, may prevent interlayer Josephson tunneling. In 

this thesis we combine photoexcitation, time-resolved resonant soft x-ray diffraction 

and THz time-domain spectroscopy to demonstrate that ultrafast disruption of the 

stripe ordered phase promptly enhances interlayer Josephson coupling in 

La1.885Ba0.115CuO4.  

Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting 

occurs immediately after near-infrared photoexcitation whereas the crystal structure 

remains intact, at least for moderate excitation fluences. THz time-domain spectroscopy 

reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma 

resonance edge, at higher frequency with respect to the equilibrium edge, is induced 

indicating enhanced superconducting interlayer coupling. Furthermore, we show that 

the fluence dependence of the enhanced interlayer Josephson coupling follows closely 

that of the stripe order melting and not that of lattice rearrangement. 

In the concluding part of the thesis, I also discuss a different excitation geometry (out-

of-plane optical pumping), which compared to conventional in-plane excitation 

promotes a transient superconducting state characterized by both an enhanced 

transient superfluid density and a longer lifetime. 
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All in all, this work demonstrates how high-energy charge excitation constitutes, within 

certain conditions, an alternative method to phonon pumping to promote 

nonequilibrium superconducting states in high-TC cuprates, opening new perspectives 

for the ultrafast optical control of complex solids. 
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“I leave Sisyphus at the foot of the mountain! One always 

finds one’s burden again. But Sisyphus teaches the higher 

fidelity that negates the gods and raises rocks. He too 

concludes that all is well. This universe henceforth without a 

master seems to him neither sterile nor futile. Each atom of 

that stone, each mineral flake of that night-filled mountain, 

in itself forms a world. The struggle itself toward the heights 

is enough to fill a man’s heart. One must imagine Sisyphus 

happy.” 

- Albert Camus from The Myth of Sisyphus 
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M otivation 
 

The genesis of the work carried out in this thesis comes from the question, can a 

transient optical field induce superconductivity at temperatures higher than the 

equilibrium transition temperature, with the goal to achieve room-temperature 

superconductivity? In recent times, a milestone demonstration of nonequilibrium 

superconductivity being triggered directly by a light field was reported by Fausti et al. 

[2] in the cuprate, La1.675Eu0.2Sr0.125CuO4 (LESCO1/8). Superconductivity in layered 

systems like cuprates is established by Josephson tunneling (tunneling of Cooper-pairs) 

between capacitively coupled stacks of quasi-two-dimensional superconducting Cu-O 

layers. Superconductivity in each layer and coupling of the layers happens 

concomitantly, resulting in a three-dimensional superconductor. In LESCO1/8 however 

there are evidences of superconducting fluctuations/precursors up to 40 K, but bulk 

superconductivity does not arise down to temperatures lower than 5 K. Tranquada et 

al. [3] have shown that the simultaneous presence of one-dimensional (1D) modulations 

of charge and spin running along the Cu-O bonds, called stripes, frustrate the interlayer 

Josephson coupling. The onset of 2D in-plane superconducting correlations and stripes 

is preceded by a structural phase transition to a low-temperature tetragonal (LTT) 

phase, which stabilizes the stripes.  

Fausti excited LESCO1/8 at 10 K, a temperature at which it is non-superconducting, 

with intense femtosecond optical pulses tuned to 15 𝜇𝑚 wavelength (mid-IR). This 

wavelength is resonant to an in-plane Cu-O vibrational modes and was hypothesized 

to perturb the LTT structural phase and possibly weaken the stripes and ease the 

interlayer frustration. The photoinduced state of LESCO1/8 was shown to be 

superconducting-like with the appearance of the Josephson plasmon which is indicative 

of, Josephson tunneling between planes and, establishment of long-range coherence 

along the c-axis. As we can see in Fig. M.1, the Josephson plasma edge measured in 
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light induced LESCO1/8 is at terahertz frequencies, similar to that observed in optimally 

doped La1.84Sr0.16CuO4 below TC (= 38 K). 

Furthermore, the timescale of the recoupling was shown to be within the 1-2 ps 

resolution of the THz pulse. Such a short time scale for recoupling may suggest that 

superconducting correlations are already present in the system before excitation, a 

scenario which is compatible with the one depicted by Tranquada et al. [3] that the 

stripe order suppresses bulk superconductivity by frustrating interlayer coupling 

between Cu-O layers that already retain some superconducting fluctuations above TC.  

The above study threw up some important questions. What is the fate of the stripes 

and LTT phase post the mid-IR excitation? Does superconductivity emerge in response 

to stripe melting or do stripes and superconductivity coexist out of equilibrium? 

Figuring out a cause and effect among the multiple phases in LESCO1/8 would help us 

understand which order needs to be destabilized for superconductivity to appear.  

 

Figure M.1. A: Equilibrium c-axis reflectivity of La1.84Sr0.16CuO4 (Tc = 35 K) above and below Tc. 

Below Tc the appearance of a JPR reflects coherent interlayer transport. Above Tc, incoherent ohmic 

transport is reflected by a flat and featureless spectrum. B: Equilibrium c-axis reflectivity of 

La1.675Eu0.2Sr0.125CuO4 at 10 K. This shows the response of a non-superconducting compound. C: 

Reflectivity changes in La1.675Eu0.2Sr0.125CuO4 induced by midinfrared excitation at 10 K, showing a 

light-induced JPR. Figures from [4]. 
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The work presented here is in response to the above questions and extend the study to 

other stripe-ordered cuprates to help elucidate the microscopic mechanisms of photo-

induced superconductivity in these materials.   

For our study we chose La1.885Ba0.115CuO4 (LBCO11.5%) and La1.875Ba0.125CuO4 

(LBCO1/8) over LESCO1/8 as the stripe order peak intensity is approximately ten times 

weaker in the latter, making it impossible to do time resolved x-ray measurements at 

current synchrotrons and free electron lasers. However, both cuprate families are 

equilibrium superconductors with a maximum Tc~20-30 K. They also have similar 

phase diagrams, with the low temperature ground state characterized by an LTT 

distortion, and charge and spin stripe order, coinciding with an almost complete 

suppression of bulk superconductivity at 1/8th doping. Furthermore, LBCO at 11.5% 

doping has a superconducting transition ~ 13 K, allowing us to simultaneously study 

the interplay between superconductivity, electronic and lattice order in the 

superconducting state below TC.  

The work detailed in this thesis was done primarily on LBCO11.5 and divided between 

two complementary experimental techniques. In both experiments, LBCO11.5 was 

photoexcited at identical wavelength of ~800 nm (1.55 eV) and fluences. In the first 

experiment, conducted at the Diamond LightSource synchrotron (UK), we studied the 

temporal dynamics of stripes and LTT phase to photoexcitation using time-resolved 

resonant soft X-ray diffraction (TR-RSXD) [5]. In addition TR-RSXD results on the 

excitation of the in-plane Cu-O stretching phonon with mid-infrared pulses in the non-

superconducting, stripe ordered La1.875Ba0.125CuO4 (LBCO1/8) performed at the SXR 

beamline of the Linac Coherent Light Souce (LCLS) are also reported [6].  In the second 

experiment, carried out in the laser facilities of the Max Planck Institute for Structure 

and Dynamics of Matter, Hamburg, we used terahertz time-domain spectroscopy to 

study the response of the Josephson Plasma resonance to photoexcitation [5,7].  

Therefore, by using a combination of x-ray and optical spectroscopies, we were able to 

establish fluence dependence of the photoexcitation and a hierarchy of timescales, 
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between enhanced superconductivity, melting of charge order, and rearrangement of 

the crystal structure.   

The thesis is organized as follows. In chapter 1, I present an introduction to 

superconductivity outlining some of the key concepts and models which will be essential 

in understanding the phenomena. In chapter 2, I focus on the material used for our 

study, namely La2-xBaxCuO4 with an emphasis on the physics of the underdoped 

regime. Thereafter, I proceed to the experiment side of the thesis, beginning with an 

introduction to ultrafast pump-probe spectroscopy in Chapter 3. In chapters 4 and 5, 

I detail the experimental techniques namely, time-resolved resonant soft X-ray 

diffraction and time domain THz spectroscopy used to investigate the photoinduced 

properties of La1.885Ba0.115CuO4. In Chapters 6 and 7, I present our results from each 

technique and conclude with summarizing our results.   
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1 Introduction to Superconductivity 
 

1.1 Emergent Phenomena 

 

An emergent behavior of a physical system is a qualitative property that can only occur 

in the limit that the number of microscopic constituents tends to infinity. 

-Steven Kivelson [8] 

In 1972 P.W Anderson authored an influential paper titled “More is different” [9], where 

he argued that understanding nature cannot be reduced to reductionism, that is we 

cannot understand natural phenomena by simply reducing matter to its tiniest 

constituents or deriving a fundamental equation.  

A reductionist hypothesis does not imply a constructionist one: 

1. The ability to reduce everything to simple fundamental laws does not imply the 

ability to start from those laws and reconstruct the universe.  

2. The constructionist hypothesis breaks down when confronted by the twin 

difficulties of scale and complexity.  

3. The behaviour of elementary particles, it turns out is not to be understood in 

terms of a simple extrapolation of a few particles. Instead, at each level of 

complexity and/or scale entirely new properties appear…” 

Very large number of atoms lead to fundamentally new types of behaviour which are 

not simply the properties of an individual atom multiplied by number of atoms.  

Superconductivity is one such aggregate emergent phenomena which is observed in a 

large assembly of atoms under the right thermodynamic conditions.  The discovery of 

superconductivity dates back to a little over 100 years and though it has been a long 

and rewarding scientific journey with many important results and applications, with 
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close to a dozen Nobel Prizes awarded to the field, however a comprehensive theory 

explaining superconducting behaviour observed in a range of materials is still missing. 

Certainly, there doesn’t exist a reductionist theory, where given a material we can know 

beforehand if the material will show superconducting behaviour.  

In this chapter I give a brief overview of the concepts, and theories/models used to 

describe the phenomena of superconductivity in conventional and high-temperature 

superconductors.  

1.2 The Discovery  
 

Scientific discoveries often start with trying to answer a question. At the beginning of 

the twentieth century, one such question namely, what happens to the resistance of 

metals as you approach 0 K, lead to a remarkable discovery.  

In 1908, Heike Kamerlingh Onnes became the first person to liquefy Helium and reach 

temperatures of 1 K. This technological breakthrough in low-temperature research 

allowed him to investigate the resistance of metals as you cooled them to absolute zero. 

It was known that the resistance of metals decreases as you cool them, though it was 

not known what would happen to their resistance as you cooled them to absolute zero. 

There were three possibilities as shown in Fig 1.1(a):  

1. Electrons would freeze as one approached 0 K, restricting the flow of current 

and resistance would rise.  

2. A non-zero residual resistance. 

3. Lastly, resistance would fall to absolute zero.  

Onnes, conducted his experiments on Mercury (Hg) since it could be repeatedly distilled 

to get extremely high purity samples, which was thought to be critical for the 

experiment. In 1911, his lab measured that the resistance of Hg went to zero just below 

the boiling point of Liquid-He (4.2 K). This was initially dismissed as an experimental 

error but on raising the temperature the resistance reappeared. This was the first 

observation of Superconductivity, Fig. 1.1(b) [10]. 
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Soon after in 1912, he measured superconductivity in Tin (Tc ~ 3.7 K) and Lead (Tc ~ 

6 K) heralding a century of discovery of superconductivity in new materials. For his 

work on low temperature properties of materials he was awarded the Nobel Prize for 

Physics in 1913, with the citation stating [12] 

For his investigation on the properties of matter at low temperature which led, inter 

alia, to the production of Liquid He 

1.3 Meissner-Ochsenfeld effect: Superconductor vs Perfect Conductors 

 

Superconductivity, as the name suggests, may appear synonymous with a material 

showing perfect conductivity (resistivity, 𝜌 → 0), but there is a fundamental difference 

between a perfect conductor and superconductor. In 1933, Walter Meissner and Robert 

Ochsenfeld [13] observed that in the presence of magnetic field, if a superconductor is 

cooled below its transition temperature the magnetic field from within the 

superconductor is expelled (𝐵 = 0 inside), thus showing a perfect diamagnetic response 

(magnetic susceptibility, 𝜒 → −1):  

 

 

Figure 1.1 (a) Low-temperature resistance of metals according to three popular theories at the turn 

of the 20th century. Figure adapted from [11]. (b) Discovery of superconductivity: Onnes’ experiment 

of resistance on Mercury (Hg)[10]. 

? 

1 

2 

3 

(a) (b) 
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𝐵 = 𝜇0(𝑀 + 𝐻) = 0 ⇒ 𝑀 = −𝐻 ⇒ 𝜒 =
𝑑𝑀

𝑑𝐻
= −1 (1. 1) 

The expulsion of a magnetic field from a superconductor, is known as the Meissner-

Ochsenfeld effect2. This occurs due to currents appearing on the surface of the 

superconductor which screen the inside of a superconductor from an external field and 

creates an external field opposite to the one applied.  

The response of a perfect conductor to a magnetic field is quite different. As shown in 

Fig. 1.2, even though the final state is characterized by the same thermodynamic 

variables, namely temperature (T) and magnetic field (H), the final state of a perfect 

conductor is defined by the history of the sample. However, in the case of a 

superconductor, irrespective of the sequence of events, the sample would end up in a 

state where there is complete expulsion of the magnetic flux and the final state is y 

defined only by T and H. Therefore, superconductivity is a stable thermodynamic state 

defined by 𝜌 → 0 and 𝜒 →  −1, not just 𝜌 → 0. There exists a critical field (𝐻𝑐(𝑇)) 

above which a superconductor is unable to expel an external magnetic field. 

Empirically, 𝐻𝑐(𝑇) shows a parabolic dependence on temperature:  

 
2 Magnetic levitation, where a magnet hovers mid-air above a cooled superconductor, is a popular 

science demonstration of the Meissner-Ochsenfeld effect. 

 

 

Figure 1.2 (a) Superconductor vs Perfect conductor. A perfect conductor can be thought of as a flux 

conserving medium, whereas a superconductor is a flux expelling medium [14]. (b) Demonstration of 

Meissner-Ochsenfeld effect: Magnet levitating above a superconductor cooled by liquid nitrogen [15].  

(a) (b) 
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𝐻𝑐(𝑇) = 𝐻𝑐(0) (1 −
𝑇

𝑇𝑐
)
2

(1. 2) 

Where 𝐻𝑐(0) is the value of the field at T = 0 K. 

1.4 Entropy 
 

The Meissner-Ochsenfeld effect suggests that the superconducting state has lower 

energy than the normal state, as work must be done to expel or keep out the magnetic 

flux. At 𝐻𝑐(𝑇), it is no longer energetically favourable for the superconducting state to 

expel the magnetic flux and superconductivity is destroyed. The difference in the Gibbs 

free energy (𝐺𝑛,𝑠) of the normal and superconducting state in zero field is3  

𝐺𝑛(𝑇, 0) − 𝐺𝑠(𝑇, 0) =
𝐻𝑐
2

8π
(1. 3) 

⟹ 𝐺𝑛(𝑇, 0) > 𝐺𝑠(𝑇, 0) (1. 4) 

The energy difference 
𝐻𝑐
2

8𝜋
 is called the condensation energy and gives a sense of the 

stability of the Meissner state vis-à-vis the normal state.  

Furthermore, using the relation 𝑆 = (
𝜕𝐺

𝜕𝑇
)
𝐻
 we can find the difference in entropy (𝑆) of 

the two states,  

𝑆𝑛(𝑇, 0) − 𝑆𝑠(𝑇, 0) = −
𝐻𝑐
4π

𝑑𝐻𝑐
𝑑𝑇

. (1. 5) 

Since 
𝑑𝐻𝑐

𝑑𝑇
 is always negative, the right-hand side of the equation is always positive. 

⟹ 𝑆𝑛(𝑇, 0) > 𝑆𝑠(𝑇, 0) (1. 6) 

Thus, the entropy of the superconducting state is less than the normal state. Or in 

other words, the superconducting state is described by more order than the normal 

state.  

 
3 Using the relations, (

𝜕𝐺

𝜕𝐻
)
𝑇
= 𝜇0𝑀 and 𝑀 = −𝐻 
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The normal-superconducting phase transition is of second-order in zero field, as at 𝑇𝑐, 

𝐻𝑐 = 0 ⟹ 𝑆𝑛(𝑇, 0) = 𝑆𝑠(𝑇, 0). However, in the presence of a field, the entropy change 

is discontinuous, and the phase transition is of first-order4.   

1.5 Phenomenological Theories 
 

In 1934, Henrik Casimir and Cornelius Jacobus Gorter formulated a ‘two-fluid’ model 

[16] suggesting that the total current density in a superconductor is a superposition of, 

the normal current density (j
n
) comprising of normal electrons with concentration (𝑛𝑛), 

having properties of the normal state, and a supercurrent density (j
s
) with 

concentration of superelectrons (𝑛𝑠) which are responsible for the superconducting 

properties and only observed below Tc. Thus, we have 

j
n
+ j

s
= j , (1. 7) 

𝑛𝑛 + 𝑛𝑠 = 𝑛 =
𝑁

𝑉
(1. 8) 

Though this phenomenological model had limited success in explaining some of the 

observed properties in superconductors, the basic premise of the two-fluid model, two 

co-existing electron fluids, has been extended to other theories.  

In 1935, the London brothers, Fritz and Heinz London, developed a theory to 

encapsulate the lossless diamagnetic response of a superconductor5 [17]. An intuitive 

explanation for the London theory follows. 

  

 
4 There is latent heat associated with the phase transition as it takes place at a temperature 

lower than 𝑇𝑐. 
5 Developed during their stay in Oxford, where the brothers were visiting as part of a fellowship put 

together by Frederick Lindeman to accommodate scientists fleeing Nazi Germany [11]. 
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To account for perfect conductivity, we can consider that the superconducting electrons 

are insensitive to scattering. Using the relation for canonical momentum p 

(= 𝑚𝐯 + 𝑒𝐀/𝑐) and assuming that the superelectrons retain their ground-state property 

of 〈𝐩〉 = 0,  the supercurrent density can be expressed in terms of the vector potential   

j
s
= −

𝑞2𝑛𝑠
𝑚∗𝑐

𝐀 (1. 9) 

Where, q and m* are the charge and mass of the superelectrons. The above expression 

is analogous to Ohm’s law (j
n
= 𝜎𝑛𝐄). Instead of the electric field, it is the magnetic 

vector potential 𝐀 driving a supercurrent j
s
, and these supercurrents shield the bulk of 

a superconductor from an external magnetic field. As 𝐀 is not a gauge-invariant 

quantity and charge conservation requires ∇. j
s
= 0, the London gauge ∇. 𝐀 = 0 is used 

above. Taking the time derivative of eq. 1.9, yields,  

𝜕j
s

𝜕𝑡
=
𝑞2𝑛𝑠
𝑚∗𝑐

𝐄 (1. 10) 

This is the first London equation, and it describes perfect conductivity since any electric 

field accelerates the superconducting electrons. This contrasts with a normal conductor, 

where an electric field maintains the velocity of the electrons against resistance (Ohm’s 

law).  

Further, if we take the curl of the first London equation and integrate in time, we get  

∇ × j
s
= −

𝑞2𝑛𝑠
𝑚∗𝑐

B + C(𝐫) (1. 11) 

C(r) can be determined from initial conditions. However, to account for the Meissner-

Ochsenfeld effect, Londons postulated that C(𝐫) ≡ 0 irrespective of the history of the 

sample, resulting in the second London equation 

∇ × j
s
= −

𝑞2𝑛𝑠
𝑚∗𝑐

B (1. 12) 
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Using Ampere’s law, ∇ × B =
4𝜋

𝑐
j
s
, the above equation reduces to  

∇2B =
1

𝜆𝐿
2B (1. 13) 

Where, 𝜆𝐿 = √
𝑚∗𝑐2

4𝜋𝑞2𝑛𝑠
 has dimensions of length and is known as the London penetration 

depth. For a 1D case we get the solution: B(𝑥) = B 0𝑒
−𝑥 𝜆𝐿⁄ . Therefore, the London 

penetration depth defines the screening length over which the applied field is reduced 

to 1 𝑒⁄  and for 𝑥 ≫ 𝜆𝐿, 𝐵(𝑥) → 0 in accordance with the observed Meissner-Ochsenfeld 

effect6. Using Maxwell’s equations, we can obtain a similar relation for the attenuation 

of the electric field.   

The London theory was further developed by Brian Pippard [18]. While conducting 

surface impedance measurements in superconductors he observed that the 

superconducting state is destroyed at depths much greater than the London penetration 

depth. Furthermore, he noted that even a slight addition of impurities changed 

𝜆𝐿 significantly, while leaving 𝑇𝑐 and 𝐻𝑐 unchanged. This led him to develop a non-local 

generalization of the second London equation, implying that the current density j
s
 at 

 
6 For a perfect conductor as discussed in the previous section, the magnetic flux does not change in 

time i.e  �̇� = 0. 

 

 

Figure 1.3 Illustration of the London penetration depth. B0 is the magnetic field at the surface and 

decays exponentially inside the superconductor. The London penetration depth λL defines the distance 

over which applied field is reduced to 1 exp⁄ . 
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a point in space is not simply a function of A at that point but on the value of A 

averaged over a volume surrounding that point7. Pippard defined the radius of this 

volume as the coherence length, 𝜉(𝑙), which is independent of temperature and since it 

accounts for impurities, is related to the mean free path 𝑙 of an electron in metals – 

1

𝜉(𝑙)
=
1

𝜉0
+
1

𝑙
(1. 14) 

Where, 𝜉0 is the value of 𝜉(𝑙) in the limit of large 𝑙.  𝜉0 can be approximated using the 

Heisenberg uncertainty principle and is in the range of 103 − 104 Å.8  

1.6 Optical Conductivity in a two-fluid model 

 

In the previous sections we have not considered the time-dependence of the external 

electromagnetic field. To model the response of a superconductor to a time-dependent 

electric field, we must treat conductivity as a frequency dependent complex quantity9 

and consider the parallel ohmic response of the normal electrons. For an electric field, 

𝐸(𝑡) = 𝐸𝑜𝑒
𝑖𝜔𝑡, the first London equation gives a 1/𝜔 dependence to the imaginary part 

of the conductivity [19] 

𝜎2𝑠(𝜔) =
𝑛𝑠𝑞

2

𝑚∗𝜔𝑐
(1. 15) 

Using Kramers-Kronig relations10, the corresponding real part of the conductivity is,  

𝜎1𝑠(𝜔) =
𝑛𝑠𝜋𝑞

2

2𝑚∗𝑐
𝛿{𝜔 = 0} (1. 16) 

 
7 This is analogous to the non-local response of an electric field in a metal. 
8 Only electrons within ~𝑘𝐵𝑇𝑐 of the Fermi surface play a role for phenomena that sets in at 𝑇𝑐 . These 

electrons have a momentum range ∆𝑝 ≈ 𝑘𝐵𝑇𝑐 𝑣𝐹⁄  , where 𝑣𝐹 is the Fermi velocity. Therefore, the 

uncertainty in position is given as:  

∆𝑥 ≳ ℏ/∆𝑝 ≈ ℏ𝑣𝐹/𝑘𝐵𝑇𝑐 

⇒ 𝜉0 = 𝑎
ℏ𝑣𝐹

𝑘𝐵𝑇𝑐
~103 − 104 Å  

Where 𝑎 is numerical constant of the order of unity. 
9 𝜎(𝜔) = 𝜎1(𝜔) + 𝑖𝜎2(𝜔) 
10 The Kramers-Kronig relations are simple integral formulas relating a dispersive process to an 

absorption process, and vice versa [82].  
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The response of the normal electrons can be estimated using the Drude model. In this 

model, electrons under the influence of an applied field execute a diffusive motion, with 

a relaxation time 𝜏𝑛 which defines the time for the system to relax back to equilibrium 

once the electric field is removed. The equation of their motion is 

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸(𝑡) −

𝑚𝑣

𝜏
(1. 17) 

Giving a complex optical conductivity,  

�̂�𝑛(𝜔) =
𝑛𝑛𝑒

2𝜏𝑛
𝑚

1

1 − 𝑖𝜔𝜏𝑛
(1. 18) 

The efficacy of this two-fluid model is limited to frequencies below the superconducting 

energy-gap frequency, since additional loss mechanisms set in above that frequency, 

and dissipation approaches that of the normal state. In this regime the relaxation time 

of the normal electrons is short, such that 𝜔𝜏𝑛 ≪ 1. Therefore, the combined 

conductivity of the two fluids reduces to -  

�̂�(𝜔) =
𝑛𝑠𝜋𝑞

2

2𝑚∗𝑐
𝛿{𝜔 = 0} +

𝑛𝑛𝑒
2𝜏𝑛
𝑚

+ 𝑖
𝑛𝑠𝑞

2

𝑚∗𝜔𝑐
(1. 19) 

Thus, superconductors always show finite dissipation at nonzero frequencies, with the 

ohmic channel providing dissipation, which is reflected in the real part of the 

conductivity. In contrast, the imaginary part shows 1/𝜔 frequency dependence and is 

proportional to the superfluid density, 𝑛𝑠.  

1.7 The Ginzburg Landau Theory  

 

In the London theory the superfluid density ns is assumed to be homogenous (constant 

in space) therefore it cannot describe variations in ns due to change, in temperature, 

applied magnetic field or at the interface of a superconductor. In 1950, Ginzburg11 and 

Landau proposed a phenomenological theory which accounted for spatial variations of 

 
11 Vitaly L. Ginzburg was awarded the Physics Nobel prize in 2003 “for pioneering contributions to the 

theory of superconductors and superfluids” [100].    
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ns. Their work extended Landau’s theory of second-order (continuous) phase transitions 

to charged superfluids. Phase transitions can be characterized by a change in the 

underlying symmetry of a physical system. This change can be quantified by an order 

parameter12, a concept introduced by Landau. The basic premise of Landau’s theory is 

that the free energy F of a system is a function of the order parameter and other 

thermodynamic variables, and the equilibrium state is the one that minimizes the free 

energy. Since the order parameter is small close to the transition temperature, the free 

energy can be expanded as a Taylor’s series as a function of the order parameter, 

including only those terms that are allowed by symmetry.  

Ginzburg and Landau proposed a complex pseudowavefunction 𝜓(𝑟, 𝑡) as an order 

parameter associated with the superconducting transition, with |𝜓(𝑟, 𝑡)|2 proportional 

to density of superconducting electrons, ns [20,21]. To account for spatial 

inhomogeneities of ns, they incorporated the gradient of the order parameter into the 

expansion for free energy.  

Therefore, for a superconductor the free energy Landau functional is   

𝐹𝑠(𝜓, 𝐀) ≅ ∫𝑑
3𝑟 [𝛼|𝜓|2 +

1

2
𝛽|𝜓|4 +

1

2𝑚∗
|(
ℏ

𝑖
∇ −

𝑞

𝑐
𝐀)𝜓|

2

+
𝐵2

8𝜋
] (1. 20) 

The above equation describes the free energy of a superfluid condensate of particles 

with charge q and effective mass m* in a magnetic field (A is the vector potential). 

The phenomenological coefficients 𝛼 and 𝛽 are chosen to minimize the energy.   

On minimizing the free energy functional with respect to 𝜓 and A, we get the following 

two Ginzburg-Landau (GL) equations,  

1

2𝑚∗
(
ℏ

𝑖
∇ −

𝑞

𝑐
𝐀)

2

𝜓 + 𝛽(𝑇)|𝜓|2𝜓 + 𝛼(𝑇)𝜓 = 0 (1. 21) 

 
12 The order parameter is taken to be zero in the high temperature disordered phase and has a finite 

value in the low temperature ordered phase. 
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𝑖
𝑞ℏ

2𝑚∗
(𝜓∗∇𝜓 − 𝜓∇𝜓∗) −

𝑞2

𝑚∗𝑐
|𝜓|2𝐀 = j

s
(1. 22) 

The 1st GL equation is analogous to a nonlinear Schrödinger equation for a free particle 

and describes the dependence of the order parameter on the magnetic vector potential 

A. The 2nd GL equation gives the superconducting current density, and its form is 

similar to the probability current of a wavefunction.    

The GL theory encapsulates two length scales which play a fundamental role in 

characterizing superconductors. The length scale over which the magnetic field 

penetrates a superconductor (or in other words destroys superconductivity), is the 

effective penetration depth:  

𝜆 = √
𝑚𝑐2

4𝜋|𝜓|2𝑒2
(1. 23) 

And the length scale over which ns can spatially vary without appreciable change to 

the superconducting state is known as the coherence length13 and given by  

𝜉 =
ℏ

√2𝑚|𝛼(𝑇)|
=

Φ0

2√2𝜋𝐻𝑐𝜆
(1. 24) 

where Φ0 =
ℎ𝑐

2𝑒
 is the quantum of magnetic flux. The ratio of these two length scales is 

the dimensionless Ginzburg-Landau parameter, 𝜅 = 𝜆/𝜉. In elemental superconductors 

the penetration depth is much smaller than the coherence length, and 𝜅 ≪ 1. These are 

called Type I superconductors and the superconducting state is characterized by an 

almost perfect Meissner-Ochsenfeld state until the critical field Hc.  

In 1957, Abrikosov published an important result where he explored 𝜉 < 𝜆 [22]. 

Specifically, for 𝜅 > 1/√2, he showed that instead of a discontinuous breakdown of 

superconductivity at Hc, there is a continuous penetration of flux starting at a lower 

 
13 The coherence length introduced by Pippard and that by Ginzburg-Landau are distinct but related 

quantities. For pure superconductors, and 𝑇 ≪ 𝑇𝑐, 𝜉(𝑇) ≈ 𝜉0. Henceforth, 𝜉 will refer to the GL coherence 

length.   
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critical field Hc1 and only reaching a higher critical field Hc2 is superconductivity 

destroyed. Since there is partial penetration of the field, the energy cost of holding the 

field out is less, therefore Hc2>Hc1. Between the two critical fields, Hc1 and Hc2, the 

superconductor is in the mixed state or Schubnikov phase, where the flux penetrates 

in a triangular array of flux tubes, each carrying a quantum of flux Φ0 [19]. These types 

of materials are called Type II superconductors and is the most common class of 

superconductors. High-Tc cuprates which will be introduced in the next chapter are 

type II superconductors.  

1.8 BCS Theory 
 

The discovery of the isotope effect in 1950 independently by Maxwell and Reynolds et 

al. [25,26] played a pivotal role in broadening our understanding of superconductivity. 

They observed that the 𝑇𝑐 of Hg isotopes is proportional to the inverse square root of 

their isotopic mass M - 𝑇𝑐 ∝ 𝑀
−0.5. The isotope effect was observed in other 

superconductors as well. The universality of the isotope effect suggested that lattice 

 

 

 

Figure 1.4 (Top panel) Interface between superconducting and normal domains with corresponding 

length scales (𝜉, 𝜆). Scanning tunneling microscope images of (a) Domains and (b) vortices formation 

in Type I and type II superconductors respectively [23,24].  

(a) (b) 
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vibrations (phonons) play a crucial role in determining 𝑇𝑐. Thus, to develop a 

microscopic theory for superconductivity one has to look beyond electrons.  

It was shown by Herbert Fröhlich and subsequently more comprehensively by John 

Bardeen and David Pines [27,28] that an attractive interaction between electrons can 

be mediated through phonons. Conceptually this mechanism depicted in fig. 1.5 can be 

seen as follows. As ions are heavier than electrons, lattice distortions caused by electron-

ion collisions persist long after the electron that caused them has passed. Locally this 

gives rise to a small dipole moment which can attract other electrons in the vicinity, 

with the Coulomb repulsion between electrons being largely screened by the positive 

ions.  

This attractive Fröhlich interaction is represented in fig1.5, shows an electron of wave 

vector �⃗� 1 scattered into state �⃗� 1
′  and emitting a phonon of wave vector 𝑞 ; �⃗� 1 = �⃗� 1

′ + 𝑞 . 

A second electron with wave vector �⃗� 1 absorbs the phonon and scatters into state �⃗� 2
′ ; 

�⃗� 2 + 𝑞 = �⃗� 2
′ . Conservation of crystal momentum between the initial and final electron 

states, gives [29] 

�⃗� 1 + �⃗� 2 = �⃗� 1
′ + �⃗� 2

′ = �⃗� (1. 25) 

Where the vector �⃗�  denotes the sum of the crystal momenta of this electron pair. It 

follows that the energy change of the first electron before and after scattering is less 

than the phonon energy. If 𝐸1 and 𝐸1
′ denote the energy of the first electron before and 

after scattering, respectively, it follows that ∆𝐸1 = |𝐸1 − 𝐸1
′| < ℏ𝜔𝑞 where ℏ𝜔𝑞 is the 

phonon energy. Since the Debye frequency 𝜔𝐷 > 𝜔𝑞 and (ℏ𝜔𝐷/𝐸𝐹)~10
−3, the energy 

scale of this attractive interaction is small.  

Leon Cooper, observed that the energy change associated with the pairing mechanism  

∆𝐸 =
ℏ2

𝑚
𝑘𝐹∆𝑘 ≃ ℏ𝜔𝐷 (1. 26) 
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implies

∆𝑘 ≃
𝑚𝜔𝐷

ℏ𝑘𝐹
(1. 27) 

The maximum number of electron pairs satisfying eqs (1.26-1.27) occurs when �⃗� = 0 or 

�⃗� 1 = −�⃗� 2. Therefore, an arbitrary weak attractive electron-electron interaction, makes 

the Fermi liquid unstable towards pairing of electrons with equal and opposite 

momentum and spin14. This bound electron pair is called a Cooper pair and has a 

spatial extent15 determined by the coherence length 𝜉. Subsequently, Schrieffer 

described the superconducting ground state by a single macroscopic wavefunction 

constructed from a coherent many-body wavefunction of Cooper pairs. In 1957, John 

Bardeen16, Leon Neil Cooper and John Robert Schrieffer published their seminal paper 

outlining a microscopic theory for superconductivity, known as the BCS theory [30]. 

For their work they were jointly awarded the Nobel prize in Physics in 1972 [31].   

One of the key predictions of the BCS theory is the energy of the ensemble of Cooper 

pairs is lowered by 2∆ ~ 3.5𝑘𝐵𝑇𝑐. This energy gap observed experimentally is a measure 

of the binding energy of Cooper pairs and gives the minimum energy required to break 

 
14 To maximize the probability of the electrons being in proximity. 
15 Considering the relaxation frequency of phonons, 𝜏𝐷 = 2𝜋 𝜔𝐷⁄ = 10−13𝑠 and Fermi velocity of 

electrons, 𝜈𝐹 ~10
8 𝑐𝑚/𝑠. As a result, electrons within a range ~ 103Å are affected.    

16 To date John Bardeen is the only double recipient of the Nobel Prize in Physics. He was jointly 

awarded the 1956 Physics Nobel Prize, with William Shockley and Walter Brattain, for the invention of 

the transistor.   

   

Figure 1.5 (a) A schematic diagram of an electron polarizing positive ions in its vicinity to create an 

attractive potential for a second electron following in the wake of the first electron. (b)Feynman 

diagram depicting the electron-phonon interaction. (c) Schematic diagram showing two shells in �⃗⃗� -

space of radius 𝒌𝑭 and thickness ∆𝒌 corresponding to the two electrons forming a Cooper pair [29]. 

(a) (c) (b) 
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a pair and create two quasiparticle excitations. Since 2∆ ≤ ℏ𝜔𝐷, the upper limit of Tc 

for a superconductor with pairing mechanism driven by electron-phonon interaction17 

corresponds to ~ 30 K. Therefore, the discovery in 1987 of superconductors with Tc 

~ 100 K was so surprising. It was evident that the BCS theory is insufficient in 

describing superconductors with such high transition temperatures. Pairing interactions 

in such superconductors is unconventional and involves exchange of bosons other than 

phonons. The quest to find the ‘glue’ that leads to pairing of electrons at temperatures 

pushing towards room-temperatures has been one of the outstanding/pressing 

fundamental problems in physics with game-changing technological applications.   

1.9 Josephson Effect 
 

As described in the previous section the superconducting state is defined as a coherent 

superposition of Cooper pairs, that is it describes a state with a fixed/rigid phase. This 

arises from the spontaneous symmetry breaking of U(1) rotational symmetry with 

respect to the phase of the macroscopic wavefunction, as depicted in Fig. 1.6.  

What is the physical significance of a superconductor having a fixed phase and can this 

phase be observed? This was the question pondered by a young graduate student Brian 

D. Josephson in 1961 [32]. The absolute phase 𝜑 of an isolated superconductor is 

unobservable, however the phase difference ∆𝜑 between two superconductors can in 

principle be measured. The number-phase uncertainty relation, 

∆𝑁∆𝜑 ≥
1

2
(1. 28) 

suggests that to observe ∆𝜑 the two superconductors would have to exchange 

electrons18. This led Josephson to study the tunneling rate of Cooper pairs across a thin 

 
17 MgB2 with a of Tc of 39 K has the highest transition temperature for a conventional superconductor.  
18 The superconducting state is characterized by a definite phase, 𝜑 and a corresponding uncertainty in 

the number of Cooper pairs, 𝑁. However, in the thermodynamic limit 𝑁 → ∞, the uncertainty in 𝜑 is 

negligible. 
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insulating barrier separating two identical superconducting electrodes—a Josephson 

junction. 

However, Josephson predicted tunneling of Cooper pairs to be a coherent process, 

implying that the probability of a Cooper pair to tunnel through a barrier is the same 

as that for a single electron. He showed that the phase difference between two 

condensates drives a tunneling current across the junction even in the absence of an 

external potential. This is known as the DC Josephson effect. Furthermore, he predicted 

that application of a potential difference (V) across the junction would lead to a 

periodically varying current at a frequency 2𝑒𝑉/ℏ. This is known as the AC Josephson 

effect. The Josephson effects were subsequently confirmed experimentally [34,35] and 

in 1973 Josephson was jointly19 awarded the Nobel prize in Physics “for his theoretical 

predictions of the properties of a supercurrent through a tunnel barrier, in particular 

those phenomena which are generally known as the Josephson effects“. [36] 

The physics of the Josephson effects can be deduced from the 2nd Ginzburg-Landau 

equation which relates the order parameter to the supercurrent density. On substituting 

the macroscopic wavefunction 𝜓(𝑟, 𝑡) =  √𝑛𝑠(𝑟, 𝑡) 𝑒
𝑖𝜑(𝑟,𝑡), describing the entire 

 
19 Together with Leo Esaki and Ivar Giaever. 

. 

Figure 1.6  Illustration of spontaneous symmetry breaking for a system having U(1) rotational 

symmetry. The Mexican-hat free energy potential is function of the complex order parameter Ψ. In 

the ground state fluctuations of the phase (Nambu-Goldstone mode) and amplitude (Higgs mode) of 

the order parameter lead to emergence of two types of collectives modes [33]. 
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ensemble of Cooper pairs in a superconductor, and replacing charge 𝑞 and mass 𝑚∗ 

with that of a Cooper pair, −2𝑒 and 2𝑚 respectively, eq. 1.22 reduces to 

j
s
=
ℏ𝑒𝑛𝑠
𝑚

[∇𝜑(𝑟, 𝑡) −
2𝜋

Φ𝑜
𝐀(r, t)] (1. 29) 

If we consider current across a SIS Josephson junction—two bulk superconductors 

separated by an insulator—the supercurrent across the junction, 𝐼𝑠, is proportional to 

a gauge invariant phase difference 𝛾(𝑟, 𝑡), defined as  

𝛾(𝑟, 𝑡) ≡ ∫ (∇𝜑 −
2𝜋

Φ𝑜
𝐀) ∙

2

1

𝑑𝑠 (1. 30) 

= 𝜑2(𝑟, 𝑡) − 𝜑1(𝑟, 𝑡) −
2𝜋

Φ𝑜
∫ 𝐀 ∙ 𝑑𝑠
2

1

(1. 31) 

In the absence of a magnetic field (𝐀 ≡ 0) the current across the Josephson junction is 

proportional to the phase difference (∆𝜑) of the two condensates. As the wavefunctions 

of the junction electrodes have a 2𝜋 periodicity and time-invariance of Josephson 

current requires that  𝐼𝑠(∆𝜑) = −𝐼𝑠(−∆𝜑). Thus, the supercurrent across a SIS junction 

should have the form  

𝐼𝑠 = 𝐼𝑐 sin ∆𝜑 + ∑ 𝐼𝑚 sin(𝑚∆𝜑)

∞

𝑚=2

(1. 32) 

 Figure 1.7 (a) Josephson junction and (b) equivalent RCSJ circuit.  

 

(a) (b) 



1 Introduction to Superconductivity 

 

23 

 

𝐼𝑐 is the critical or maximum Josephson current, which is determined by the coupling 

strength between the two electrodes. In the weak coupling limit, we can ignore the 

second term, thus simplifying the expression to 

𝐼𝑠 = 𝐼𝑐 sin ∆𝜑 (1. 33) 

This is known as the DC Josephson effect as it implies that even in the absence of an 

external potential, a supercurrent across the Josephson junction would continue to flow 

till the phase difference ∆𝜑 is maintained.   

In the presence of a constant bias voltage V, the phase difference would evolve 

according to  

𝑑

𝑑𝑡
∆𝜑 =

2𝑒

ℏ
𝑉 (1. 34) 

leading to an alternating supercurrent 

𝐼𝑠(𝑡) = 𝐼𝑐 sin (∆𝜑0 +
2𝑒

ℏ
𝑉𝑡) (1. 35) 

 

Figure 1.8  The first published observation of tunnelling between two evaporated-film super-

conductors [34]. A zero-voltage supercurrent is clearly visible [37]. 
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oscillating at the frequency of  𝜔J = 2𝑒𝑉/ℏ, whereby the net current across the junction 

remains zero. This is known as the AC Josephson effect20.  

The DC and AC Josephson effect imply a nonlinear inductance, as a small change in 

phase difference (small enough to preserve the zero-voltage state) gives rise to a current 

change,  

𝑑𝐼𝑠
𝑑𝑡
= 𝐼𝑐 cos ∆𝜑

𝑑

𝑑𝑡
∆𝜑 (1. 36) 

which in turn induces a voltage 

𝑉 =
ℏ

2𝑒𝐼𝑐 cos ∆𝜑

⏞      
L

𝑑𝐼𝑠
𝑑𝑡

(1. 37)
 

The above expression describes a nonlinear inductance 𝐿 = ℏ (2𝑒𝐼𝑐 cos ∆𝜑)⁄  that 

depends on the equilibrium phase difference between the two condensates. The phase 

difference can be adjusted by an external current or voltage source, and in its absence 

takes the minimum value 𝐿0 = ℏ (2𝑒𝐼𝑐)⁄ . The Josephson inductance is kinetic 

inductance as it arises from the kinetic energy of the Cooper pairs.   

In the finite voltage regime, a Josephson junction allows single particle tunneling which 

can be modeled by an ohmic resistivity R in parallel to the junction and due to the 

geometry of the junction a parallel capacitor is added to include charging effects. 

Therefore, the total current flowing through a Josephson junction can be described by 

a resistively and capacitively shunted junction (RCSJ), with the total current through 

the junction equal to the contribution from the three branches, and given by,  

𝐼 = 𝐼𝑐 sin ∆𝜑 +
𝑉

𝑅
+ 𝐶�̇� (1. 38) 

 
20 Important for metrology as it relates frequencies (or time) to voltages.  



1 Introduction to Superconductivity 

 

25 

 

Using the Josephson’s equations and introducing a dimensionless time variable 𝑡 →

𝜔JP𝑡, the above expression reduces to a second-order differential equation of the phase 

difference,  

Δ�̈� + 𝛽𝑐Δ�̇� + sin ∆𝜑 =
𝐼

𝐼𝑐
(1. 39) 

Where the parameter 𝛽𝑐 = 𝜔JP𝑅𝐶 determines the damping. In the limiting case of small 

amplitudes, sin ∆𝜑 ≈ ∆𝜑, the characteristic frequency is defined as 𝜔JP = √2𝑒𝐼𝑐 (ℏ𝐶)⁄ =

1 √𝐿0𝐶⁄ , and corresponds to the resonance frequency of an undamped oscillator circuit. 

The plane wave solutions of eq.(1.39) are a plasma oscillations (longitudinal waves), 

with the electric current and field oriented normal to the barrier. The oscillatory 

behaviour can be understood in terms of an exchange between the inductive and 

capacitive energy terms.  

The frequency of the Josephson plasma modes is related to the superfluid density, 𝜌𝑠 

as 𝜔JP
2 ∝ 𝜌𝑠. In conventional superconductors both uncondensed normal carriers and 

the superconducting fluid participate in the plasma response, therefore signatures of 

the low-density superconducting plasma are difficult to detect. However, in layered 

superconductors, like high-Tc cuprates, since the normal-state transport along the c-

axis is insulating, no metallic plasmon is visible in that direction. Therefore, at T < Tc 

when superconducting tunnelling sets in, distinctive features appear, reflecting the 

superconducting plasma alone, see Fig. (1.9). For most cuprates an interlayer 

 

Figure 1.9  Infrared reflectivity spectra of La2−xBaxCuO4 for x = 0.145 (Tc = 24 K) with polarization 

perpendicular to the CuO2 planes (E||c) for different temperatures above and below Tc [38]. 
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superconducting plasma mode is observed at GHz–THz frequencies [39]. This makes 

THz spectroscopy an ideal tool to observe the superconducting state. In the following 

chapter I give a qualitative overview of high-Tc cuprates, followed by a discussion on 

La2-xBaxCuO4 and its phase diagram.  
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2 The Cuprate La2-xBaxCuO4 
 

2.1 Discovery and Background  
 

Till the mid-1980s the highest attained transition temperature for superconductors, 

observed in Nb3Ge, had been languishing at 23 K.  The discovery of superconductivity 

in La2-xBaxCuO4 (LBCO) by Bednorz and Müller in 1986, revitalized the field of 

superconductivity [40]. It was the first observation of a material having a Tc above 30 

K and led to a new classification of superconductors—materials with Tc above 30 K 

are classified as high-Tc superconductors. Their discovery was motivated by research 

in mixed valent complex oxides showing a Jahn-Teller (JT) polaron formation which 

could account for strong electron-phonon coupling and consequently a higher Tc. 

Complex metal oxides show a strong JT effect—where a molecular complex exhibiting 

an electronic degeneracy will spontaneously structurally distort to remove or reduce 

the degeneracy. If the stabilization energy associated with a JT distortion is comparable 

to the bandwidth of the material it will lead to electron localization and the formation 

of JT polarons.  Therefore, they hoped that by doping JT active sites into a cubic 

perovskite (ABX3) lattice, these polaronic centers might pair and superconductivity 

may emerge.  

In late 1985, Müller became aware of the compound Ba-La-Cu oxide, which had all the 

prerequisites that they were looking for—perovskite-type structure with Cu showing 

two different valencies21. By varying the La/Ba ratio in different samples they were 

able to measure the onset of resistivity drop at 35 K. Bednorz and Müller cautiously 

 
21 Cu3+ is a non-JT ion as it has one hole in each of its two 3d orbitals with eg symmetry, on the other 

hand Cu2+ has one hole which could go to either of the two eg orbitals. In this case the degeneracy is 

broken through a structural distortion (JT-effect).  
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published their results under the heading “Possible High Tc Superconductivity in the 

Ba-La-Cu-O System” [40]. Through subsequent X-ray analysis, resistivity, and 

susceptibility measurements they could identify the Ba doped La2CuO4 as the 

superconducting compound which had a layered perovskite-like structure of K2NiF4 

type. 

The discovery of superconductivity in LBCO was a shot in the arm for 

superconductivity as it paved the way for discovery of related layered copper oxide 

superconductors (cuprates) with Tc’s above liquid N2, see fig. 2.2. In 1987, Bednorz and 

Müller were awarded the Nobel prize in Physics "for their important break-through in 

the discovery of superconductivity in ceramic materials."[42] 

Since the discovery of superconductivity in cuprates, other families of superconducting 

materials have also been discovered, but as is visible in fig. 2.2 their maximum Tc is 

still far below that of cuprates. It is ironical to find cuprates superconducting as they 

are very poor conductors at room temperature and as we will see later, the parent 

(undoped) materials are insulating antiferromagnets. As superconductivity arises out 

of mediated attractive interaction between electrons, while magnetism arises from 

strong repulsive interactions between electrons, it would appear that these two forms 

of order are antithetical to each other.  

 

 
Figure 2.1 First reported (a) Resistivity and (b) Suspectibility of La2-xBaxCuO4 samples [41]. 

(a) (b) 
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Unfortunately, BCS theory has proved inadequate to explain the mechanism for 

superconductivity observed in cuprates, as solely electron-phonon coupling cannot 

account for such high Tc. Till date high temperature superconductivity remains as one 

of the most consequential open problems in physics. However, I will outline some salient 

universal features of cuprates which stem from the high transition temperatures and 

strongly layered crystal structure.  

Cuprates share a common layered structure comprising of atoms sandwiched between 

CuO2 layers. This results in highly anisotropic transport and magnetic properties, that 

approach the 2D behaviour expected from a stack of decoupled superconducting film 

planes. Using the Lawrence and Doniach (LD) formalism, cuprates can be viewed as 

two-dimensional layered materials with superconducting CuO2 planes which are weakly 

coupled via Josephson tunneling through insulating barriers, see fig. The 

superconducting order parameter, 𝜓𝑛 = |𝜓𝑛|𝑒
𝑖𝜑𝑛 is suitably described if we consider a 

constant order parameter amplitude throughout the material and a set of phases 

{𝜑𝑛(𝑥, 𝑦, 𝑡)}𝑛=1,…,𝑁 in which each phase 𝜑𝑛(𝑥, 𝑦, 𝑡) describes the phase difference of the 

Josephson junction made of two neighboring superconducting layers.  

 

Fig 2.2 Transition temperature versus year of discovery for different families of superconductors  [43]. 

Liquid N2 
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Current–voltage (I–V) measurements along the c-axis of Bi2Sr2CaCu2O8+δ (BSCCO) 

and other high-Tc cuprates have detected signatures of Josephson tunneling. Crucially, 

the observation of multiple branches in the I–V curves, as shown in fig. 2.3, is 

characteristic of the response of a stack of Josephson junctions connected in series [39]. 

The superfluid density 𝜌𝑠 parametrizes the rigidity of the superconducting order 

parameter. Cuprates have anomalously low superfluid density are thus characterized 

by small phase stiffness and poor screening. This implies that phase fluctuations play 

a significant role in cuprates. We can identify two temperatures, one associated with 

the fluctuations of the phase 𝑇𝜃 ≈ 𝜌𝑠/𝑚
∗ where 𝑚∗ is the effective mass and the other 

𝑇𝑐 ≈ 0.5Δ0/𝑘B is associated with the Cooper pair binding energy, where Δ0 is the 

average superconducting gap and 𝑘B is the Boltzman constant. In a BCS 

superconductor, 𝑇𝜃 ≫ 𝑇𝑐 therefore fluctuations of the phase of the superconducting 

condensate are unimportant, once Cooper pairs form they immediately condense. On 

the other hand in cuprates, since 𝑇𝜃 ≈ 𝑇𝑐 thermal fluctuations of the phase play a 

crucial in determining the actual superconducting transition temperature. In cuprates, 

it is postulated that pairing and coherence are decoupled. Pairing happens at a 

temperature much higher than 𝑇𝑐. At 𝑇𝑐 the phase locks to form a long-range ordered 

superconducting state [43,46]. In the sections ahead we will see the physics of the of 

the phase fluctuations is intertwined with that of the competing order. 

 

 

Figure 2.3 Cuprates can be modelled as stacks of 2D superconducting films. Experimental I–V 

characteristics of a bulk BSCCO sample below Tc [39,44]. 

(b) (a) 
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2.2 Parent Compound: La2CuO4 

 

In the copper-oxygen (Cu-O) layer, Cu2+ ion is doubly ionized and in a d9 configuration 

with each Cu having six O neighbours. The Cu2+ ion has one hole which can go into 

either of the two eg orbitals, however due to the Jahn-Teller distortion which results in 

the CuO6 octahedra being elongated along the c axis, this degeneracy is removed with 

the dx
2
-y

2 orbital being the highest partially filled orbital. As a result, the electronic 

structure of Cu-O planes involves hybridization of the Cu dx
2
-y

2 orbitals with planar-

coordinated 2px and 2py O orbitals22. From tight-binding model we would expect 

La2CuO4 to be metallic which contrasts with the undoped compounds observed to being 

insulators. The physics of the system can instead be understood in terms of the 

Hubbard model which takes into account not only the kinetic energy of the electrons, 

as done by conventional band theory, but also the Coulomb interaction U between two 

electrons on the same site. An electron can reduce its energy by an amount t by hopping 

from one site to the next23. When the on-site Coulomb repulsion, U, dominates over 

the hopping energy, t, the electrons are localized, and the ground state is a Mott 

 
22 This will help explain the polarization dependence of the XAS measurements in the following sections 

as X-rays with the electric field parallel to the Cu-O plane (ab plane) are more sensitive to the doped-

holes, as they probe states in the in the Cu-O plane. 
23 The hopping term, t, is proportional to the band width, W. 

 

Figure 2.4 (a) Phase diagram for electron and hole doped cuprates as a function of doping (b) The 

left-hand side depicts the electronic structure of CuO2 plane - magnetic moments of the Cu ions (blue) 

surrounded by Oxygen ions (red). Right-hand side shows the dominant interactions for a doped Mott 

insulator [45]. 

(a) (b) 
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insulator. The half-filled band split into two, separated by the energy U with the lower 

lying band (lower Hubbard band, LHB) being completely filled while the higher lying 

one, the upper Hubbard band (UHB) is empty. 

However, an electron can still lower its kinetic energy by making a virtual hop to a 

nearest-neighbor site and back again, though due to the Pauli exclusions principle, it 

can only hop if its spin is antiparallel to that of an electron already on the neighboring 

site. The effective Heisenberg exchange energy between neighboring antiparallel spins 

corresponds to the superexchange energy J = 4t2/U.  

Therefore, the fundamental problem of high-temperature superconductivity in hole-

doped copper-oxide compounds is to understand the competition between 

antiferromagnetic spin correlations, arising out of strong Coulomb interactions and 

kinetic energy of doped carriers which favour delocalization.  

The superexchange interaction is mediated via the oxygen atom which we have 

excluded in the above picture. Zaanen, Sawatsky and Allen provided a more accurate 

description of the parent cuprate compounds and categorized them as charge-transfer 

insulators [47]. If 𝑑𝑖
𝑛 indicates n electrons in the d states of the site i, then the Coulomb 

energy U associated with a Mott excitation can be denoted as a 𝑑𝑖
𝑛𝑑𝑗

𝑛↔𝑑𝑖
𝑛−1𝑑𝑗

𝑛+1. In 

addition, we need to consider a charge transfer between a metal atom and a ligand site 

L (the ligands are oxygen in our case). The charge transfer excitation, with energy Δ, 

can be written as 𝑑𝑖
𝑛↔𝑑𝑖

𝑛−1𝐿, where 𝐿 is a ligand hole. When 𝛥 < 𝑈, the gap 

corresponds to Δ rather than U, as depicted above in the figure, and the material is 

charge-transfer insulator.  

Uchida et al. reported optical conductivity measurements on single crystals of LSCO 

at various dopings at room temperature [48]. From fig we can see that La2CuO4 is an 

insulator with a gap of ~ 2 eV. With increase in doping, we introduce states in the 

charge transfer gap and eventually at higher dopings the conductivity evolves into a 

Drude peak.   
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In cuprates superconductivity emerges on chemically doping the parent compounds. In 

the case of La2CuO4 on substituting trivalent La by divalent Ba leads to holes being 

added to the Cu-O plane and is known as hole doping24. On the other hand, doping 

Nd2CuO4 with Ce4+ leads to electrons being added to the Cu-O plane and is thus called 

electron doping. In Fig. 2.4 (a) the phase diagram, as a function of doping, for both 

hole-doped and electron-doped cuprates is shown. Though the phase diagrams for the 

two kinds of dopings are similar, there is an apparent asymmetry. However, as the 

subject of our investigation is a hole-doped cuprate I will refrain from elaborating on 

the electron-doped phase diagram.  

On the hole-doping side as seen in Fig. 2.4(a), Cu2+ spins in undoped La2CuO4 order 

antiferromagnetically with a Neel temperature TN of approximately 300 K. However, 

antiferromagnetic order is rapidly suppressed and destroyed by 2-4% hole 

concentration. After the suppression of the antiferromagnetic order, superconductivity 

appears, ranging from 6-25% doping. In the superconducting regime Tc shows a dome 

 
24 We can resort to ionic valence counting to get a sense of charge distribution in cuprates.  

(La3+)2(Cu2+)(O2-)4 the parent compound is neutral. However, CuO2 has a charge of 2–, which implies 

that the CuO2 planes pull charge away from the La2O2 layers. Substituting La3+ with Sr2+ or Ba2+ we 

are reducing the charge in the system and effectively removing electrons from (or adding holes to) the 

CuO2 planes. 

 

 

 Figure 2.5 (a) Effective densities of states for undoped (1,2) and doped (3-5) CuO2 planes. (1) Expected 

Fermi liquid band picture. (2) Charge-Transfer (CT) insulating state with split Cu 3d bands due to 

onsite coulomb repulsion U. The O 2p band is separated by a charge transfer energy Δ from the upper 

Cu 3d band. Rigid CT energy bands (3) and (4) for hole and electron doping. (5) mid-gap states 

inferred from experiments. (b) In-plane optical conductivity for La2-xSrxCuO4. Figures from [49]. 

(a) (b) 

1 2 3 4 5 



2 The Cuprate La2-xBaxCuO4 

 

34 

 

shaped variation with respect to doping and the doping concentration x=xm 

which shows the maximum Tc is referred to as optimal doping while the region 

x<xm and x>xm is the underdoped and overdoped region, respectively. The region 

above Tc on the underdoped side is called pseudogap and though thoroughly 

investigated is not very well understood. Pseudogap represents a region where there is 

depletion of density of states near the Fermi surface and the Fermi surface is partially 

gapped to both spin and charge excitations. In the overdoped regime the material 

crosses over to conventional Fermi liquid behaviour. In the following sections I will be 

discussing the incipient orders that arise in the pseudogap regime.  

 

2.3 The 1/8 Anomaly in LBCO 
 

Soon after the discovery of high-temperature superconductivity in La2-xBaxCuO4 

studies showed a strong suppression of the Tc centered around 1/8th (12.5%) doping 

[50,51]. This is surprising as its sister compound LSCO which is also doped with 

divalent Sr ions, shows only a slight kink in Tc at this doping, see Fig. 2.6(a). The 

suppression of superconductivity in LBCO is referred to as the 1/8th anomaly and 

suggests the existence of a competing order.  

X-ray diffraction studies by Axe et al. revealed a distinction between LBCO and LSCO 

[51]. The CuO6 octahedra that make up the CuO2 planes show no average tilting at 

high temperatures. On cooling down there is a second-order phase transition to a low-

temperature-orthorhombic (LTO) phase, where the octahedra rotate around [110] axes, 

which is diagonal to both the CuO2 square lattice and the Cu-O-Cu bonds. As 

illustrated in Fig. 2.6 (c) in this tilt pattern there is no distinction between orthogonal 

Cu-O bonds. At even lower temperatures, LBCO undergoes a second transition to the 

low-temperature-tetragonal (LTT) phase, which is absent in LSCO. In the LTT phase, 

the tilt axis runs parallel to the square lattice and the Cu-O-Cu bonds. As a result, 

orthogonal Cu-O bonds are no longer equivalent. For a given CuO2 layer, Cu-O-Cu 

bonds along one direction are perfectly straight, while those perpendicular to them are  

(c) 
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bent. Furthermore, the tilt axis of the octahedra is orthogonal in adjacent layers, 

alternating between [010] and [100] along the c axis. As we will see from the following 

section, the electronic order that emerges around 1/8th doping of LBCO mirrors the 

symmetry of the LTT phase. Therefore, the LTT phase plays a pivotal to 

pinning/stabilizing the order that competes with bulk superconductivity.  

2.4 Stripes 
 

The physics of the underdoped regime in hole-doped cuprates can be understood within 

the framework of the stripe model [47,53,54]. It was proposed that with the breakdown 

of antiferromagnetic order due to doping, phase separation takes place, with doped 

carriers spatially segregating into linear chains that separate antiphase 

antiferromagnetic domains, Fig. 2.7(b).  

The mechanism is somewhat as follows. As opposed to a semiconductor, where doped 

charge distribution remains homogenous, in an antiferromagnet, doped holes form self-

organized local inhomogeneities. The shape of this clustering is decided by the 

dimensionality of the system involved and for a D dimensional system you get (D-1) 

dimensional ordering. Consequently, in the case of 2D CuO2 planes one expects the 

doped holes to have a 1D distribution. This inhomogeneous distribution arises because,  

 

Figure 2.6 (a) Comparison of superconducting Tc vs doping in LBCO and LSCO. (b) Unit cell of La2-

xBaxCuO4 in the HTT phase. (c) Tilt directions of CuO6 octahedra in LTO and LTT phase [50,52]. 

(a) (b) 
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antiferromagnetic interactions among magnetic ions and Coulomb interactions between 

electrons favour localization of electrons, whereas the zero-point kinetic energy of the 

doped holes favours itinerant behaviour. Therefore, the best comprise between these 

competing interactions is achieved by having doped holes delocalized along linear 

stripes, while the region in-between them remains in the undoped antiferromagnetic 

insulating state, fig. 2.7. Thus, in the stripe phase we see the appearance of a spin and 

charge ordering, which can be observed by neutron and x-ray diffraction measurements.  

In cuprates striped phase was first identified by neutron scattering25 and x-ray 

measurements in La1.6-xNd0.4SrxCuO4 [3] and later confirmed in La2-xBaxCuO4 [56] and 

La1.8-xEu0.2SrxCuO4 [57], for doping x=12.5%. Figure 2.7 succinctly captures the 

relationship between spin/charge order, crystal structure and superconductivity for 

different dopings. Significantly, as shown in Fig. 2.7 spin and charge order in LBCO 

were shown to exist only after the transition to the LTT phase. While charge stripe 

order develops soon after transition to the LTT phase, spin order develops at a slightly 

lower temperature. Furthermore, it was also shown that the stripes lie along the 

direction of nearest neighbour bonds, implying that they are oriented along the Cu-O-

 
25 Since neutrons have no charge, they do not scatter directly from the from the modulated charge 

distribution, but are instead scattered by the ionic displacements induced by charge modulation. 

   

Figure 2.7. (a) Temperature vs doping phase diagram of La2-xBaxCuO4. (b) Assumed stripe pattern 

in a hole-doped CuO2 plane. Only Cu ions with their magnetic moments is represented. The spin 

rotates 180o on crossing a domain wall which is represented by the circles. A filled circle denotes the 

presence of a hole on metal site [23] (c) The stripe ordering in adjacent CuO2
 planes [3,52,55]. 

(a) (b) (c) 
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Cu bonds and the anisotropy of orthogonal Cu-O-Cu bonds in the LTT phase helps 

stabilize the stripes.  

Since stripes mirror the symmetry of the LTT phase, stripes in adjacent planes are 

orthogonal to each other. Furthermore, in order to minimize Coulomb repulsion, the 

phase of the stripes is shifted by 𝜋 as compared to their next-to-nearest neighbour 

layers, giving rise to two-fold periodicity along the c axis. The stacking arrangement of 

stripes consistent with the X-ray measurements is illustrated in Fig. 2.7.  

On comparing the peak widths of charge order in- and out- of plane we can see there 

is a large anisotropy in correlations lengths. The correlation length of stripes in the 

CuO2 plane is in the range of 200-250 Å and is isotropic. However, stripes are only 

weakly coupled perpendicular to the CuO2 plane, with a correlation length of about 20-

25 Å. To put this in perspective, the lattice parameters in the HTT phase are: at = 

3.78 Å and c = 13.2 Å. Though there is big difference between the in- and out- of plane 

correlations lengths, charge order disappears isotropically with increase in temperature.   

While neutron scattering measurements firmly established the existence of static spin 

order, charge order was on less sure footing, as the observed CO peaks can also arise 

from magnetoelastic coupling between the spins and the lattice. Another widely used 

technique, non-resonant x-ray scattering is mainly sensitive to the core electrons and 

it too measures the associated lattice distortion due to charge ordering. Therefore, both 

techniques are inadequate to address the question of whether stripe order involves 

ordering of the doped holes. 

This question has been successfully addressed using resonant soft x-ray scattering 

(RSXS) where the incident x-ray photon energy is tuned to resonantly excite core 

electrons into the valence band. By tuning the x-ray energy to an absorption edge, the 

atomic scattering form factor is enhanced, therefore giving scattering measurements 

that are sensitive to specific atomic orbitals. 
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Figure 2.8 Normalized fluorescence yield at the (a) O K-edge and (b) Cu L3 edge of La2-xSrxCuO4 (c) 

XAS spectrum of La2-xBaxCuO4 at the O K-edge highlighting the mobile carrier peak (MCP) and the 

‘upper Hubbard band’ (UHB). |𝒇𝑫
𝒙𝒙|2 is the scattering length of the doped holes [58–60]. 

La1.875Ba0.125CuO4 
(c) 

(a) 

(b) 
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In cuprates, Cu 3d and O 2p orbitals dominate the density of states near the Fermi 

surface. The nominal electronic configuration of Cu-O for the parent compound is Cu 

3d9 (one hole in dx
2
-y

2 band) O 2p6 (full p-band). However, the Cu-O bond is covalent 

and there is hybridization of the p-d orbitals, leading to a partial delocalization of the 

hole onto O.  Since the energy required to add another hole on the Cu site is very large, 

U ~ 9 eV, on doping the holes go primarily to the oxygen site but are strongly coupled 

antiferromagnetically via the superexchange interaction to holes on the Cu site. 

Therefore, by studying the absorption edges which correspond to the valence electron 

ordering, the participation of doped holes in charge order can be ascertained. These 

edges correspond to the dipole-allowed, Oxygen K-edge (1s → 2p) and Copper L3,2 edge 

(L3: 2p3/2 → 3dx2-y2 ; L2: 2p1/2 → 3dx2-y2). Oxygen K edge is at 543.1 eV and Cu L3 and 

L2 edge are at 932.7 eV and 952.3 eV, respectively, falling in the soft X-ray regime. 

The states corresponding to the L2 edge are unaffected by doping and will not be 

discussed further.   

X-ray absorption spectroscopy (XAS) on La2-xSrxCuO4 at O K edge is shown in Fig. 

2.8(a). The spectrum shows two distinct pre-peaks (labeled A and B) observed at 

photon energies 528.8 and 530.3 eV. Both peaks show considerable doping dependence. 

Peak A results from doping induced holes and thus also referred to as “Mobile carrier 

peak” and the contribution is mainly from 3d9L → 1s3d9 transition. Peak B is associated 

with the “upper Hubbard band” and stems from 3d9 → 1s3d10 transition of the undoped 

material, which is allowed due to the hybridization of 3d10L and 3d9 in the ground 

state. Here L and 1s denote the O 2px,y ligand hole and O 1s core hole, respectively. 

XAS on Cu L3 edge reveals a slight reduction in intensity of the absorption edge on 

doping and a doping induced satellite peak (shoulder indicated as L3’) appears ~ 1 eV 

above the main edge, Fig. 2.8(b). The contribution to the absorption edge comes from 

the transition mentioned above and the satellite peak is associated with 3d9L → 

2p3/23d10L transition. Here 2p corresponds to a hole being created in the p orbital of 

the Cu atom. Importantly as the valence states are polarized in the Cu-O plane, both 
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the Oxygen pre-peak and Cu L features seen in XAS are only observed for horizontal 

polarization of the X-rays, E||ab.  

XAS on LBCO1/8 shows identical features and from the above analysis it becomes 

apparent that the feature most sensitive to doped holes, is the mobile carrier peak. 

Indeed, RSXS studies on LBCO1/8 by Abbamonte et al. found a strong resonance at 

both the mobile carrier peak and upper Hubbard band, Fig. 2.8 [60]. Thus, indicating 

that doped-holes are ordered in the striped phase.  

Since stripe order is observed in the LTT phase, where the rotational symmetry of the 

CuO2 planes is reduced from fourfold to twofold. How essential is the reduced lattice 

symmetry to existence of stripe order? High pressure x-ray diffraction measurements 

by Hücker et al. demonstrated that even on restoring the fourfold symmetry of LBCO, 

charge-stripe order still exists [61]. Thus, stripe correlations are electronically driven 

and do not depend on reduced lattice symmetry.  

From the above observations we can conclude that the stripe phase is a spontaneous 

breaking of the translational and rotational symmetry of the system in the form of 

quasi-long-ranged, coexisting spin and charge order, which is driven by an instability 

in a strongly correlated system. In the next section we discuss the coexistence of the 

stripes and superconductivity and the emergence of a novel broken symmetry.  

2.5 Superconductivity and Stripes 
 

At first glance of Fig. 2.7(a) it may appear that superconductivity and stripes are 

competing orders. However, their relationship is quite nuanced. Resistivity and 

susceptibility measurements of LBCO1/8 show highly anisotropic behaviour with the 

onset of the spin-stripe order. As illustrated in Fig. 2.9 (a) we see that the in-plane 

resistivity 𝜌𝑎𝑏 shows a large drop at 40 K, while the c-axis resistivity 𝜌𝑐 remains 

unchanged. Also, the drop in 𝜌𝑎𝑏 coincides with a weak onset of 2D diamagnetism. 

Furthermore, as we approach 16 K, 𝜌𝑎𝑏 goes to zero although 𝜌𝑐 remains comparatively 

large. These measurements suggest a 2D superconducting transition in the CuO2 planes. 
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The in-plane transport goes from linear to nonlinear regime, suggesting that the 2D 

superconducting order develops through a Berezinskii-Kosterlitz-Thouless transition. 

The appearance of 2D superconductivity without the observation of bulk 3D 

superconductivity is quite surprising, because, as soon as the in-plane superconducting 

correlations become large, Josephson coupling of the CuO2 layers should lead to the 

emergence of 3D superconductivity. The absence of 3D order implies a frustration of 

Josephson coupling. 

The decoupling of CuO2 layers can be observed in the c-axis reflectance of LBCO1/8. 

In Fig. 2.9 (b) for comparison reflectance along c-axis optical for three dopings is 

depicted. On relating these doping concentrations to Fig. 2.8 we see that LBCO for x 

= 0.095 and 0.145 is superconducting and below Tc we see the appearance of a 

Josephson Plasmon resonance. LBCO1/8 on the other hand does not undergo a 

superconducting transition down to 5K and thus we do not observe Josephson plasmon 

resonance in the material.  

  
Figure 2.9 (a) (top) Resistivity and (bottom) magnetic susceptibility, in-plane and perpendicular to 

the planes [62]. (b) C-axis infrared reflectance measured in La2-xBaxCuO4 for different dopings [38]. 

(a) (b) 



2 The Cuprate La2-xBaxCuO4 

 

42 

 

The above results suggest that stripe order is compatible with 2D superconducting 

correlations, however it leads to decoupling of the CuO2 planes and therefore bulk 

superconductivity in the system is suppressed. Consequently, below the spin-ordering 

temperature, the phase is also described as a striped superconductor, where 

superconducting, charge and spin order parameters are closely intertwined with each 

other, rather than merely coexisting or competing. 

Berg et al. proposed pair-density-wave (PDW) superconducting order to describe the 

physics of the striped superconductor [55,65]. As illustrated in Fig 2.10, a striped 

superconductor can be thought of as an array of superconducting regions (SC) 

 

 

 
Figure 2.10. (A) Pair density Wave (PDW) superconductor can be modeled as a superconductor (SC) 

separated by insulating regions (I) forming a Josephson junction. (B) Schematic of charge density 

wave (CDW), spin density wave (SDW) and PDW orders, indicating the relationships among the 

phases of the modulations [63]. (C)Nonlinear frequency-dependent reflectivity measured in the striped 

La1.885Ba0.115CuO4. (D) Temperature dependence of the third-harmonic signal (normalized to the 

highest field measurements at T =5 K) [64]. 

A 

B

A 

C 
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separated by insulating antiferromagnetic order (I), therefore forming extended 

superconductor-insulator-superconductor junctions. If the Josephson coupling across 

the insulating barrier is negative, favouring a 𝜋 junction, then a striped 

superconducting phase is found. This leads to a spatially modulating SC order which 

changes sign between neighbouring stripes and goes to zero in the insulating region. 

The period of the PDW is same as that of the spin-order and twice that of the charge 

order. Furthermore, as stripes in neigbhouring CuO2 layers are orthogonal to each 

other, the oscillations of the PDW superconducting order leads to the Josephson 

coupling between CuO2 layers to be zero and thus we do not observe the emergence of 

bulk superconductivity in a striped superconductor. 

This makes the PDW invisible to linear c-axis optical measurements as the stripe 

alignment causes the interlayer superconducting tunneling to vanish on average. 

However, the nonlinear optical response of the PDW is non-zero. Rajasekaran et. al. 

observed a giant terahertz third harmonic, characteristic of nonlinear Josephson 

tunneling, in La1.885Ba0.115CuO4 above the transition temperature Tc = 13 K and up to 

the charge-ordering temperature Tco = 55 K, see Figs. 2.10(C) and Fig. 2.10 (D). These 

results are indicative of a pair density wave condensate in underdoped cuprates [64]. 

From the above discussion we can see that superconductivity emerges as a compromise 

between competing interactions in a Mott insulator. The underdoped regime is the 

battleground between various phases and interactions. The question as to exactly how 

and why superconductivity emerges from this cauldron has been one of the longstanding 

problems in physics for the past 30 years. In our effort to understand this puzzle we 

have endeavoured to study the underdoped cuprate La1.885Ba0.115CuO4. In the following 

chapters I will describe the experimental techniques used in our investigations.  
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3  Introduction to U ltrafast 

Spectroscopy  
 

3.1 Overview 

 

The key to understanding the dynamics of a system is to be able to observe it motion, 

that is effectively see how it transforms from one state to another. With a digital 

camera if we want to capture a sharp image of a moving subject, we will typically need 

to play with shutter speed, aperture, and ISO26 settings, in a way that the subject is 

effectively stationary for the duration of exposure tie. However, as the dynamics gets 

faster, simply changing the camera settings is insufficient to get a clear still frame. For 

example, if we would like to take the picture of a hummingbird hovering mid-air, and 

wish to ‘freeze’ its wings, reducing the shutter speed down to one thousandth of a 

second (10−3𝑠) won’t help. As shown in Fig. 3.1(a) we will end up with a dark picture, 

since there isn’t enough light entering the sensor, and it will still be blurry as there is 

some movement of the wings during the exposure time. To overcome this problem, we 

will need to use a flash, as it provides high intensity light over a very short duration, 

much shorter than any mechanical shutter can function. This will allow us to increase 

the exposure time, allowing enough light to enter the sensor, while simultaneously 

freezing the wings as they are motionless for the duration of the flash, Fig. 3.1(b). This 

stroboscopic technique illustrates how intensity and duration of the flash, determines 

the timescale of the motion we can capture. The above analogy gives a sense of ultrafast 

spectroscopy, where light sources having extremely high intensity over a duration 

shorter or comparable to the phenomena being investigated are used to capture, 

 
26 Sensitivity of the image sensor - CCD.  
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Figure 3.1 a) Picture of a hummingbird taken with shutter speed of 1/1000 s b) Picture taken with a 

flash 1/20,000 s and shutter speed 1/200 s. c) Characteristic energy and timescales in matter. Adapted 

from [66]. 

 

 

(c) 

(a) (b) 



3 Introduction to Ultrafast Spectroscopy 

 

46 

 

understand, and manipulate the dynamics of the quantum world. As shown in Fig. 

3.1(c) both, from understanding the fundamental physics of phenomena and a 

technological point of view the picosecond to femtosecond (10−12 − 10−15𝑠) timescale 

is of high relevance. 

Quantum materials are characterized by competing spin, orbital and lattice 

interactions, resulting in a phase diagram with multiple co-existing/competing phases 

and collective modes from broken continuous symmetries. In response to a weak 

external stimulus, these phases can rapidly transform from one to another. Phase 

transitions showing: Insulator ⇌ Metal, Insulator ⇌ Superconductor, Paramagnet ⇌ 

Magnet, have been observed in quantum materials [67]. Therefore, by developing the 

ability to controllably manipulate their phases, we can develop a number of 

technological applications from them [68].     

3.2 Pump-Probe Technique 

 

The invention of femtosecond lasers with solid state gain medium, like titanium-doped 

sapphire (Ti:sapphire), was truly transformational for ultrafast spectroscopy. In 

comparison to previous dye-lasers, Ti:sapphire lasers are highly stable, have low noise 

and provide turnkey operation, thus being a  perfect light source for investigating subtle 

transient phenomena on a femtosecond timescale.  

The workhorse of ultrafast spectroscopy is the pump and probe technique, where a 

laser beam is split into two – a pump and a probe beam. The pump beam provides the 

trigger, it photo-excites27 the dynamics we wish to investigate, either by providing 

sufficient energy to the system to overcome a potential barrier or resonantly excite a 

particular transition/mode. The probe beam sequentially images the system at different 

time delays post the photoexcitation. This allows us to build a complete picture, a 

movie of sorts, of the phenomena we wish to investigate and watch the evolution of the 

 
27 I am using the term photo-excite in a general sense that is excitation by a femtosecond laser pulse. 

In literature, the term is used synonymously with excitation at 800 nm (1.55 eV).   
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system as it relaxes back into the ground state or transform into another phase. An 

illustration of a pump-probe setup is shown in Fig. 3.2(b). Using this template, we can 

construct more sophisticated ways to examine our sample.   

Importantly, we are not restricted to the photon energy of the laser, which in the case 

of a Ti:sapphire laser is 1.5 eV (~820 nm). Due to the high field intensity of a laser 

pulse, the linear relationship (𝑃 = 𝜒𝐸) between the polarization 𝑃 induced in a medium 

and an external electric field 𝐸 breaks down. In general, 𝑃 can be expressed as a power 

series in 𝐸 –   

𝑃 = 𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 +⋯+ 𝜒(𝑛)𝐸𝑛 , 

here 𝜒(𝑛) is the 𝑛𝑡ℎ order susceptibility of the material. For weak fields, the dominant 

contribution is 𝜒(1), however for strong fields the higher order terms, 𝜒(𝑛>1) become 

relevant and this gives rise to nonlinear processes, which play an important role in 

ultrafast spectroscopy. Essentially, the nonlinear response of a material, allows the 

emission of a photon having a frequency different from the one incident. Also, as 

accelerating charges and time-varying currents radiate electromagnetic waves, we can 

 

 

 

Figure 3.2 (a) Evolution of a photoinduced phase transition. (b) Schematic of a pump-probe setup 

used to temporally resolve the dynamics of a photoinduced state. A pump (red) pulse creates a 

nonequilibrium state. Snapshots (1-6) of the transient state are taken at different time delays by a 

probe (blue) pulse. Figures from [69]. 

 

(a) (b) 
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also create far-infrared radiation (THz) from biased photoconductive antennas28 excited 

by laser beams. Therefore, by directing a laser beam through optical crystals and/or 

photoconductive antennas we can tune the wavelength to selectively probe or pump 

certain energy states of a system.  

Furthermore, Ti:sapphire lasers are now often used in conjunction with x-ray Free 

Electron Lasers and 3rd generation synchrotrons. As the latter generate high intensity 

short pulses spanning the ultraviolet-to-hard x-ray regime, a number of time-resolved 

diffraction and photoemission techniques have been developed to study the effects of 

photo-excitation on photoemission and electronic/orbital/lattice ordering, among other 

things [67].  

It was shown early on that intense laser pulses can nonthermally destroy the 

superconducting state [70,71]. Pump-probe studies in high-Tc superconductors have 

concentrated on studying the Cooper-pair breaking and quasiparticle relaxation 

dynamics in these materials. Shining eV-energy photons on a superconductor leads to 

Cooper-pair breaking and creation of quasiparticles, with excitation of electrons to 

unoccupied states above the Fermi-level. Thereafter, the photo-excited carriers relax to 

states near the Fermi level via intraband electron-electron scattering and electron-

phonon scattering. In the next step quasiparticles recombine across the superconducting 

gap (∆𝑠𝑐) with emission of a boson with energy ≥ 2∆𝑠𝑐. Since, pair-breaking and 

quasiparticle recombination are related by time reversal symmetry, both processes are 

mediated by the same boson/s. Identifying, the boson mechanism for pairing is crucial 

to understanding and developing a theory for high-Tc superconductivity.   

The scope of this thesis is qualitatively different because the goal of our work is to 

destabilize a coexisting or competing order and study the temporal evolution of the 

underlying suppressed superconducting state.  

 

 
28 A photoconductive antenna is a light switch consisting of metal electrodes deposited on a 

semiconductor substrate. They are discussed in greater detail in chapter 5.   
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4 Time resolved Resonant Soft X-

ray Diffraction and Setup at I06 

Beamline at Diamond Light 

Source 

 

For over a century X-rays have been used to study the atomic and electronic structure 

of materials. With the advent of quantum materials where the ordering of charge, spin, 

orbital, and lattice degrees of freedom determine the electronic and magnetic grounds 

states, new experimental approaches with selective sensitivity to such ordering were 

required. Resonant X-ray scattering has proved to be a powerful technique in that 

sense allowing to measure new forms of electronic and magnetic order in materials. In 

this chapter, I start by describing light-matter interaction and lay the groundwork for 

diffraction and resonant X-ray scattering. Thereafter, I introduce synchrotron radiation 

and conclude with describing the experimental setup used to carry out time resolved 

resonant soft X-ray diffraction at the I06 beamline at Diamond Light source.  

4.1 Semi-classical picture of X-ray scattering 

Consider an electromagnetic wave with unit polarization vector 𝝐 and fields,   

𝑬(𝒓, 𝑡) =  𝝐𝐸0𝑒
−𝑖(𝜔.𝑡−𝒌.𝒓), (4.1) 

𝑩(𝒓, 𝑡) =  
1

𝑐
(𝒌 × 𝝐)𝐸0𝑒

−𝑖(𝜔.𝑡−𝒌.𝒓), (4.2) 

incident on a free electron (𝑚𝑒) with charge −𝑒 and spin s. The motion of the electron 

follows the oscillating electric field, creating an electric dipole moment [72]– 
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𝒑(𝑡) =  
−𝑒2

𝑚𝑒𝜔2
𝐸𝑜𝑒

−𝑖𝜔𝑡 (4.3) 

The dipole acts as a source of radiation and if we assume it to be a point source, the 

field of the radiation scattered/re-radiated from the dipole has a spherical wave form, 

𝑒𝑖𝒌.𝒓 𝑟⁄  and is expressed as 

𝑬′(𝑡) =  
𝜔2

4𝜋휀𝑜𝑐2
𝑒𝑖𝒌

′𝒓

𝑟
[𝒌′ × 𝒑(𝑡)] × 𝒌′ (4.4) 

where 𝒌′ is the scattered wave vector. On substituting eq. (4.3) in (4.4) we get the 

scattered field for charge scattering  

𝑬′(𝑡) = − 
1

4𝜋휀𝑜

𝑒2

𝑚𝑒𝑐2
𝑒𝑖𝒌

′𝒓

𝑟
[𝒌′ × 𝑬(𝑡)] × 𝒌′ (4.5) 

The negative sign implies that charge scattering introduces a phase shift of 𝜋 between 

the incident and scattered fields.  

Similarly, we can obtain the field scattered by the spin, s, of an electron/charge, by 

taking into account the associated magnetic field B(r,t) which induces a magnetic 

moment m (t). However, since we primarily look at charge scattering in cuprates, I will 

not be elaborating further on spin scattering.  

From a practical point of view, it would be important to calculate the intensity of the 

radiation scattered from the free charges into a detector that subtends a solid angle 

ΔΩ.  This quantity is defined as the differential scattering cross-section, with 

dimensions [Lenght2/Solid Angle], given by 

𝑑𝜎

dΩ
= |𝑓(𝝐, 𝝐′)|2 (4.6) 

Here, 𝝐′ is the polarization of the scattered light and 𝑓(𝝐, 𝝐′) is the polarization 

dependent scattering length, defined as  
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𝑓(𝝐, 𝝐′) =  −
𝑟𝑒−𝑖𝑘

′𝑟

𝐸
𝑬′. 𝝐′. (4.7) 

Then, the total scattering cross-section from the charge of a single electron also called 

the Thomson cross-section, is 

 𝜎𝑒 = ∫|𝑓(𝝐, 𝝐
′)|2 𝑑Ω = 𝑟𝑜

2∫ ∫𝑠𝑖𝑛2𝜃

𝜋

0

2𝜋

0

𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙 =  
8𝜋

3
𝑟𝑜
2 (40) 

where 𝑟𝑜 = 𝑒
2 4𝜋⁄ 휀𝑜𝑚𝑒𝑐

2 = 2.82 x 10 -6 nm is the classical electron radius or the 

Thomson scattering length.  

The next step in complexity is to study scattering from a multi-electron atom. From 

the above treatment we can assume the total scattered amplitude as the sum of 

amplitudes of individual electrons. However, since the atom is of finite size, depending 

on which electron scatters, there would be a small path length differences in the travel 

of the scattered radiation to the detector. This leads to interference effects, which are 

taken into account by the atomic form factor, 𝐹𝑜(𝑄), defined as [72,73] 

𝐹𝑜(𝑄) =  ∫𝜌(𝑟)𝑒𝑖𝑸.𝒓 𝑑r (4.9) 

Here 𝜌 is the charge density in the atomic volume and Q = 𝑘’ − 𝑘 is the associated 

momentum transfer in the scattering process. In the limit Q → 0 all the volume 

elements scatter in phase and 𝐹𝑜(𝑄) = Z, the number of electrons in the atom. The 

atomic form factor 𝐹𝑜(𝑄) defined in eq. (4.9) can also be defined as the Fourier 

transform of the charge density of the atom. The scattering length of the atom, 

𝑓𝑎𝑡𝑜𝑚(𝑄), is given by the Thomson scattering length 𝑟𝑜times the atomic specific form 

factor times the polarization factor   

𝑓𝑎𝑡𝑜𝑚(𝑄) =  𝑟𝑜𝐹
𝑜(𝑸)𝝐. 𝝐′ (4.10) 

Baring Free Electron Laser (FEL) X-ray sources, the x-ray intensity at present 

synchrotrons is insufficient to produce a measurable signal from the scattering cross-
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section of atoms and molecules. Therefore, in order to amplify the scattered intensity 

and get a good signal to background ratio, it is necessary to bring the numerous 

scattering elements together and assemble them into crystals.  

4.2 Crystal Diffraction 
 

The lattice of a crystal is the periodic arrangement of atoms, molecules or ions in three 

dimensions. Owing to the translational symmetry of the system we can define a vector 

R n which spans the entire lattice. Such a vector is called a primitive lattice vector and 

defined as  

𝑅𝑛 = 𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑     ;  𝒏𝟏, 𝒏𝟐, 𝒏𝟑 𝜖  ℤ (4.11) 

Where 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are the basis vectors of the lattice and ℤ is the set of integers. If rj is 

the position of jth element in the lattice, then the position of any element in the crystal 

is given by Rn + rj. Therefore, summing over the individual atomic form factors, the 

scattering length for a crystal, 𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙(𝑄), can be written as [73] 

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙(𝑄) =  𝑟𝑜 . (𝜖. 𝜖
′)∑𝐹𝑗

𝑜(𝑸)

𝑟𝑗

𝑒𝑖𝑸.𝑟𝑗
⏞          

𝑈𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 
𝑓𝑎𝑐𝑡𝑜𝑟

∑𝑒𝑖𝑸.𝑹𝒏

𝑅𝑛

⏞      
𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑆𝑢𝑚

(4.12)
 

where we factorized the scattering amplitude of a crystal into two parts. The first term 

under the summation operator is called the unit cell structure factor with 𝐹𝑗
𝑜(𝑸) being 

the atomic form factor of the jth atom. The second term is a sum over all lattice sites. 

For a non-vanishing 𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙(𝑄), it is required that  

𝑸.𝑹𝒏 = 2𝜋 × 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (4.13) 

In which case the, lattice sum becomes of the order N, with N being the number of 

unit cells. For eq. (4.13) to be fulfilled it can be shown that 𝑸 = 𝑮, where G  is the 

reciprocal lattice vector, defined as   

𝑮 = ℎ𝒂𝟏
∗ +  𝑘𝒂𝟐

∗ +  𝑙𝒂𝟑
∗     ;  𝒉, 𝒌, 𝒍 𝜖 ℤ (4.14) 
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and spanned by the reciprocal lattice basis vectors 𝒂𝟏
∗ , 𝒂𝟐

∗ , 𝒂𝟑
∗  and constructed in terms 

of the basis vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 – 

𝒂𝟏
∗ = 2𝜋

𝒂𝟐 × 𝒂𝟑
𝒂𝟏. (𝒂𝟐 × 𝒂𝟑)

   ;  𝒂𝟐
∗ = 2𝜋

𝒂𝟑 × 𝒂𝟏
𝒂𝟏. (𝒂𝟐 × 𝒂𝟑)

  ;  𝒂𝟑
∗ = 2𝜋

𝒂𝟏 × 𝒂𝟐
𝒂𝟏. (𝒂𝟐 × 𝒂𝟑)

 (4.15) 

Therefore, using eqns (4.11), (4.14) and (4.15) gives  

𝑮.𝑹𝒏 = 2𝜋 (ℎ𝑛1 + 𝑘𝑛2 +  𝑙𝑛3) = 2𝜋 × 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟 (4.16) 

Consequently, 𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙(Q) is non-vanishing if and only if, 𝑸 = 𝑮 equals a reciprocal 

lattice vector. As shown in fig. 4.1 this condition is also known as Laue condition and 

is equivalent to Bragg’s law, 𝑛𝜆 = 2𝑑 sin 𝜃, where 𝜆 is the wavelength of the incident 

X-rays and 𝑑 is the distance between the atomic planes29.  

To summarize, scattering from a crystal is restricted to defined points in the reciprocal 

lattice. Furthermore, the intensity at each point is modulated by the magnitude of the 

unit cell structure factor.  

 
29 Starting with Laue equation 𝑄 = 𝐺 → 𝑘′ − 𝑘 = 𝐺 → |𝑘|2 = |𝑘′ − 𝐺|2 for elastic scattering condition 

since |𝑘|2 = |𝑘′|2 we get 2𝑘′. 𝐺 = |𝐺|2. For a lattice spacing d, |𝐺| = 2𝜋𝑛/𝑑. Therefore, the Laue 

equation reduces to Bragg’s law 2𝑑. 𝑠𝑖𝑛𝜃 = 𝑛𝜆 

 Figure 4.1 (a) Bragg diffraction in real space and (b) Laue condition in reciprocal space. These 

descriptions are equivalent. See footnote 28.  

(a) (b) 



4 Time resolved resonant soft X-ray Diffraction and setup at I06 Beamline 

 

54 

 

4.3 Resonant Scattering 

So far we have considered the interaction of EM radiation with free electrons. This is 

an obvious simplification since electrons in atoms are bound and occupy states with 

discrete energy levels. Therefore, a multielectron atom can be envisaged as a collection 

of n harmonic oscillators with each oscillator corresponding to resonant excitation/de-

excitation of a core electron from a shell, with binding energy 𝐸𝑛. Consequently each 

atom will have a set of resonance frequencies 𝐸𝑛 = ℏ𝜔𝑛 and a characteristic damping 

term Γ𝑛, which represents the dissipation or absorption of the applied field. Therefore, 

the motion of the bound electron with coordinate 𝑥, can be approximated to that of a 

forced harmonic oscillator, with the equation of motion written as [72], 

𝑑2𝑥

𝑑𝑡2
 +  Γ𝑛

𝑑𝑥

𝑑𝑡
 + 𝜔𝑛

2𝑥 =  −
𝑒𝐸𝑜
𝑚𝑒

𝑒−𝑖𝜔𝑡 (4.17) 

having a solution of the form  

𝑥 =
1

𝜔2 − 𝜔𝑛2 + 𝑖𝜔Γ𝑛

𝑒𝐸𝑜
𝑚𝑒

 . (4.18) 

Similar to our earlier consideration calculating the scattering length for a free single 

electron, we can obtain the frequency dependent scattering length of a bound electron 

n with resonance frequency 𝜔𝑛 

𝑓𝑛(𝜔) =  𝑟𝑜𝐹𝑛(𝜔)𝝐. 𝝐
′ (4.19) 

Here 𝐹𝑛(𝜔) is the frequency dependent resonance factor for a core electron n given by 

𝐹𝑛(𝜔) =
𝜔2

𝜔2 − 𝜔𝑛2 + 𝑖𝜔Γ𝑛
. (4.20) 

Using the definition (4.8) the angle integrated scattering cross-section is  

𝜎𝑛
𝑠𝑐𝑎𝑡 =

8𝜋

3

𝜔4

(𝜔2 − 𝜔𝑛2)2 + (𝜔Γ𝑛)2
𝑟𝑜
2, (4.21) 
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 which at resonance 𝜔 = 𝜔𝑛 reduces to  

𝜎𝑛
𝑟𝑒𝑠,𝑠𝑐𝑎𝑡 =

8𝜋

3
(
𝜔𝑛
Γ𝑛
)
2

𝑟𝑜
2 = (

𝜔𝑛
Γ𝑛
)
2

𝜎𝑇  . (4.22) 

Since 𝜔𝑛 and Γ𝑛 have the same dimensions and Γ𝑛<< ω𝑛, the resonant scattering factor 

is enhanced by a factor (𝜔𝑛 Γ𝑛⁄ )2 ≈ 104 over non-resonant Thompson scattering. Thus, 

resonant scattering allows us to observe systems with small scattering cross-section.  

Furthermore, resonant scattering can be used to probe valence band states.  This 

becomes evident from the quantum mechanical description of the process. A time-

dependent EM field induces transitions between an initial state |𝑖⟩ and final state |𝑓⟩, 

both states are a combination of the photon and electron. Therefore, the X-ray 

absorption and scattering cross-sections can be calculated by considering the time-

dependent perturbation of the sample by the EM field.  

The transition probability up to second-order perturbation is given as,  

𝑇𝑖→𝑓 =
2𝜋

ℏ
|⟨𝑓|𝐻𝐼|𝑖⟩ +∑

⟨𝑓|𝐻𝐼|𝑛⟩⟨𝑛|𝐻𝐼|𝑖⟩

𝐸𝑖 − 𝐸𝑛

∞

𝑛=1

|

2

𝛿(𝐸𝑖 − 𝐸𝑓)𝜌(𝐸𝑓) . (4.23) 

  

 

Figure 4.2 (a) Resonant and non-resonant scattering. As opposed to non-resonant scattering, resonant 

scattering process is a virtual transition. It involves absorption of a photon through the excitation of 

an occupied core electron to an unoccupied valence state, followed by a de-excitation process with 

photon emission. (b) Enhancement of scattering cross-section at resonance. Figure from [74]. 

(a) (b) 
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𝐻𝐼 is the Hamiltonian representing the interaction of the electron with the photons,  

𝐻𝐼 =
𝑒𝑨. 𝒑

𝑚
+
𝑒2𝐴2

2𝑚
 , (4.24) 

and 𝜌(𝐸𝑓) is the density of final states per unit energy. The vector potential 𝑨(𝒓, 𝒕) 

describing the radiation field is linear in photon creation (𝑎𝑘
ϯ
) and annihilation 

operators (𝑎𝑘). Since in free space 𝑬 = −𝜕𝑨 𝜕𝑡⁄ , the transition probability is driven by 

the electric field 𝑬 of the EM wave.  

In eq. (4.23) the first term describes first-order processes, where the system evolves 

directly from the initial to the final state. The first contribution to 𝐻𝐼 (see eq. (4.24)) 

describes an absorption or emission process as it is linear in 𝑨 and hence can either 

create or destroy a photon. The second term of 𝐻𝐼 is quadratic in 𝑨 and represents an 

elastic scattering process, with the annihilation and creation of a photon, leaving the 

electron in the same state after scattering. 

Resonant scattering is a second-order process, which involves transitions from |𝑖⟩ to 

|𝑓⟩ via virtual30 intermediate states |𝑛⟩. As shown in fig. (4.2) the process can be 

visualized as absorption of an incident photon which leads to the excitation of an 

electron from its ground state |𝑖⟩ to an unoccupied31 intermediate state |𝑛⟩. The electron 

then undergoes the reverse, making a transition from |𝑛⟩ to |𝑖⟩ with the emission of a 

scattered photon in the process. Away from resonance, the transition rate of these 

processes is suppressed by the denominator, 𝐸𝑖 − 𝐸𝑛. However close to resonance, 𝐸𝑖 ≈

𝐸𝑛, the denominator tends to zero and there is a strong enhancement in the transition 

rate of resonant scattering processes. Therefore, resonant scattering not only provides 

enhanced scattering close to absorption edges, providing elemental specificity but also, 

through intermediate states allows access to the physics of unoccupied valence states. 

 
30 Energy conservation can be violated till the final state is reached.  
31 On account of Pauli’s exclusion principle.  
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The photon energies used in Resonant Soft X-ray Diffraction (RSXD) lie in the soft x-

ray range, 100 𝑒𝑉 < ℎ𝜔 < 2 𝑘𝑒𝑉 and thus the name32. The energy range for RSXD 

leads to a couple of experimental challenges. One, in the soft x-ray range there is high 

absorption of x-rays in air, therefore measurements must be carried out in an ultra-

high vacuum environment. Second, x-ray wavelengths range from 12 𝑛𝑚 (100 𝑒𝑉) to 

0.6 𝑛𝑚, resulting in a large Ewald sphere. Thus, resonant soft-ray diffraction is useful 

for investigating materials with a large unit cell or when the system shows ordering 

over large lattice spacing.    

4.4 Synchrotron Radiation 

The RSXD measurements detailed in the thesis were carried out at the I06 beamline, 

at Diamond Light source (henceforth referred to as ‘Diamond’), an advanced third 

generation synchrotron facility based at the Rutherford Appleton Laboratory, UK.  

A synchrotron produces light from a relativistic beam of charged particles, typically 

electrons, orbiting a storage ring at a constant energy33 (a few 𝐺𝑒𝑉). The beam is kept 

in the desired horizontal orbit by magnetic fields34. In such a configuration, the 

electrons experience the Lorentz force and emit Bremsstrahlung radiation tangential 

to their motion, which in the rest frame of the observer is confined to a radiation cone 

with a small opening angle [72,73]. The radiation is typically in the x-ray (𝑘𝑒𝑉) part 

of the electromagnetic spectrum, though photon energies down to the infrared (𝑚𝑒𝑉) 

are also produced, but at lower intensities. This collimated intense beam of light, 

spanning a very wide frequency range can be used for a variety of experiments. 

 
32 This energy range includes the metal K- and L- edges. Both edges involve transitions that provide 

valuable spectroscopic information on transition metals.   
33 Electrons are generated by thermionic emission inside an electron gun. Thereafter, they are accelerated 

in stages to the desired energy, following which they are injected into the storage ring. 
34 The beam is kept in a circular orbit by dipole electro-magnets (also called Bending Magnets), while 

other magnets such as quadrupoles and sextupoles keep the beam to a well-defined cross-section.  
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It is important to note that the radiation produced at a synchrotron is not a continuous 

beam. Electrons emit radiation as they transverse around the ring and therefore lose 

energy. Radiofrequency (RF) cavities are spaced at regular intervals along the storage 

ring to replenish the energy lost by the electrons. The electric field inside an RF cavity 

forms a potential well, a ‘bucket’, forcing the electrons to accumulate in ‘bunches’35. 

Consequently, the emitted radiation has a time structure. Each bunch comprises 

~ 1010 electrons within a length 𝑙 ≃  10 𝑚𝑚, in the rest frame of the observer. This 

corresponds to a pulse duration of about 𝜏 = 𝑙/𝑐 ≃  30 𝑝𝑠 full width half maximum, 

making synchrotrons ideal light sources for time resolved x-ray diffraction studies.  

4.5 Diamond Light Source 

Diamond Light Source has a storage ring with a circumference of 561 meters with the 

electrons orbiting at 3 𝐺𝑒𝑉. The ring comprises of 48 straight sections which can 

accommodate insertion devices - array of permanent magnets configured to make the 

electron beam oscillate about the propagation direction many times - and 48 bending 

 
35 The electric field oscillates at a frequency such that only electrons moving at the desired energy 

experience zero acceleration inside the cavity, while electrons with slightly different energies will either 

decelerate or accelerate depending on if they arrive earlier or later inside the cavity. 

 
 
 

Figure 4.3 Schematic of the storage ring of a Synchrotron. The ring comprises of multiple straight 

sections with Bending magnets used to steer the beam around the ring. Beamlines are situated 

tangential to the ring [75].  
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magnets which are used to steer the beam around the ring36. The various experimental 

stations (Beamlines) situated tangentially around the ring make use of radiation 

emitted from either insertion devices or the bending magnets (Fig. 4.3). At Diamond 

depending on the beamline, the electromagnetic radiation can range from the far-

infrared (2.4 𝑚𝑒𝑉) to the ultra-hard x-ray (150 𝑘𝑒𝑉) regime.  

Under standard operation, the beam current of the storage ring is kept constant (≅

300 𝑚𝐴) by operating in top-up mode, where electron bunches in the storage ring37 are 

replenished periodically (~ 12 mins). Consequently, the x-ray intensity on the sample 

varies by very small amounts and experiments can run over multiple days without 

interruptions.  

4.6 Undulator Radiation 

Insertion devices comprise of an array of alternating north and south poles of 

permanent magnets, which force the electrons to execute a highly oscillatory path and 

concomitantly emit X-rays. There are two types of insertion devices, wigglers and 

undulators, with the latter being used on beamline I06 for the production of soft x-ray 

radiation. 

The difference between wigglers and undulators is the maximum angular deviation of 

the electron beam from the propagation axis as it transverses the device. This is 

denoted by a dimensionless number 𝐾, expressed as [73] -  

𝐾 = 0.934𝜆𝑢[𝑐𝑚]𝐵[𝑇]. (4.25) 

where 𝜆𝜇 is the oscillation period and 𝐵 is the magnetic field of the insertion device. In 

a wiggler the magnetic field is strong and thus the angular deviation of the electron  

 
36 Insertion devices are way more efficient at producing x-rays as compared to bending magnets. 

Synchrotrons with storage rings optimised to accommodate insertion devices are characterised as 3rd 

generation light source.  
37 Even though the storage ring is kept under very high vacuum (typically 10-10 mbar) there are collisions 

between electron bunches and particles in the ring, which leads to the beam current decaying over a 

period of time.  
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beam about its propagation direction is large, 𝐾 ≫ 1 . The radiation generated by a 

wiggler may be viewed simply as that generated from a series of independent bending 

magnets.  

In contrast, the magnetic field in an undulator is weak, and the angular deflection is 

very small, 𝐾 ≈ 1.  Because of the weak deflection we can assume that both the 

electrons and emitted photons travel effectively straight. Therefore, the wavefront 

emitted by an electron from two positions separated by 𝜆𝜇 (or multiples 𝑛 thereof) will 

be in phase, resulting in constructive interference. The energy spectrum from an 

undulator, thus is centered around a fundamental wavelength and includes its higher 

harmonics, given by the following equation - 

𝑛𝜆𝑛 =
𝜆𝑢
2𝛾2

(1 +
𝐾2

2
) ,    𝑛 = 1,2, … (4.26) 

The emitted wavelength can be tuned by varying the undulator gap, which changes 

the inside magnetic field, which in turn changes 𝐾. Additionally, undulators provide 

complete control of the polarization of the emitted radiation. Not only can we achieve 

 

Figure 4.4 Comparison of radiation intensity and spectrum emitted from different sources [76].  
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linearly polarized light but through a complicated arrangement of the magnets make 

the electron beam transverse a helical trajectory, giving rise to emission of circularly 

polarized light of either handedness. 

4.7 Beamline I06 

The I06 beamline is a soft x-ray beamline making use of two so-called APPLE II 

undulators, whose energies can be tuned over a range of 120 – 1500 𝑒𝑉 for vertical 

polarization, 80 – 2100 𝑒𝑉 for horizontal polarization and 106 – 1300 𝑒𝑉 for circular 

polarization. Following the undulator, a plain grating monochromator spectrally filters 

the light to a bandwidth of 40 𝑚𝑒𝑉.  

Time resolved Resonant Soft X-ray Diffraction (Tr-RSXD) experiments reported in 

this thesis were performed on the branchline of the I06 beamline, which is outlined in 

Fig. 4.5. On the branchline, the x-rays can be focused to a spot size of 20 𝜇𝑚 × 200 𝜇𝑚 

in the vertical and horizontal direction, respectively. Furthermore, as runtime of single 

measurement often last many hours, and the sample size can be relatively small, it is 

essential that the X-ray beam maintained very high pointing stability on the sample 

for long durations. This was achieved by stabilizing a hexapod mirror such that the 

 

Figure 4.5 I06 Beamline. The highlighted area is the branchline. 
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photoemission (which is measured as a current) from exit slits close to the sample is 

kept constant.  

4.8 Filling pattern 

The Diamond storage ring can accommodate 936 electron bunches separated from each 

other by  2 𝑛𝑠. This translates to 499.654 𝑀𝐻𝑧 repetition rate for the X-rays, with 

round-trip frequency of each electron bunch being 533.83 𝐾𝐻𝑧. Unfortunately, such 

high repetition rates do provide a sufficiently large time window to measure the signal 

generated from a specific x-ray pulse. Therefore, for time-resolved measurements, a 

special filling pattern of the storage ring is used. This pattern is referred to as 

‘Camshaft’ or ‘Hybrid’ mode.  

In this configuration, two-thirds of the ring is filled with electron bunches with the 

usual 2 𝑛𝑠 temporal spacing, while the remainder third of the ring is filled with only 

one electron bunch, Fig. 4.6(a). As a result, the single bunch is separated from the 

next bunches by several hundred nanoseconds on either side and is known as the 

‘camshaft’ or timing pulse. Consequently, this provides a large enough time window 

for the X-ray detection electronics to ‘gate’38 the signal generated from the camshaft 

pulse. Another advantage of the separation of the camshaft pulse from the contiguous 

 
38 Time window during which any generated signal is measured. Signals outside the time window are 

discarded.  

  
Figure 4.6 (a) Filling pattern in ‘camshaft’ or ‘hybrid’ mode. (b) Comparison of the charge in the 

‘low-alpha’ mode with the normal hybrid mode.  

(a) (b) 
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pulses is that it allows increasing the charge in the camshaft bunch by about an order 

of magnitude to ~5 − 6 𝑛𝐶, as compared to the multi-bunches ~0.4 𝑛𝐶, see Fig.4.6(b). 

This produces bigger signals from the camshaft pulses, albeit these bunches are wider 

spread in space on account of enhanced coulomb repulsion inside the bunch. Typically, 

the camshaft pulse has a duration of about 60 𝑝𝑠 (Full Width at Half Maximum -

FWHM).  

The X-ray pulse duration can be reduced by decreasing the longitudinal width of the 

electron bunch, coming at the cost of the reduced amount of charges that can be packed 

into the same bunch and the concomitantly decreased X-ray flux. Since, the 

longitudinal width of the electron bunch is expressed in terms of the momentum 

compression factor, 𝜶, this mode of operation is known as the ‘low-𝜶’ mode. At 

Diamond, in the low-𝜶 mode, X-ray pulse duration of 5 𝑝𝑠 (FWHM) can be achieved 

with 64 𝑝𝐶 of charge stored. 

4.9 Diffraction Chamber Layout and Experimental Setup 

The diffractometer designed for the RSXD experiments is housed inside a vacuum 

chamber (base pressure of 10−9𝑚𝑏𝑎𝑟) and employs a 𝜃 − 2𝜃 design, with independent 

manipulators for the sample (𝜃) and (2𝜃) detector rotation. The diffractometer 

geometry allows the following types of diffraction scans: 

1. Radial scan or 𝜽 − 𝟐𝜽 scan : A scan along a fixed direction defined by the 

scattering vector 𝑸 perpendicular to the sample surface. This is done by rotating 

the sample and the detector in steps of 𝜃 and 2𝜃, respectively, about the center of 

rotation z.  

2. Transverse scan . This is a scan perpendicular to the direction defined by 𝑸. It 

contains information about correlation in the plane perpendicular to 𝑸, but is also 

often affected by the sample mosaicity. A transverse scan can be done by rotating 

the sample about z , while keeping the detector position fixed. 
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3. Energy scan. Here the photon energy dependence of for fixed 𝑸 is measured. This 

is achieved by scanning the photon energy, while recording the scattered intensity 

at 𝑸 = 𝒌′ − 𝒌. Since both 𝒌 and 𝒌′ change with the photon energy, for each photon 

energy the scattering geometry is adjusted to keep 𝑸 constant. 

The sample holder is attached to a liquid Helium flow cryostat, allowing control of the 

sample temperature between 4.5 − 320 𝐾. The sample holder also incorporates a knife 

edge – to measure the x-ray and laser spot size at the sample, and a phosphor screen 

above the sample which lies in the same vertical plane as the sample, Fig 4.7(b). The 

phosphor screen not only helps with making the x-rays visible to the naked eye via a 

CCD camera but also aids with coarse spatial overlap of the x-ray and laser beams. A 

‘holey mirror’ (a silver mirror with a hole in the center) is used to couple the laser 

light into the chamber resulting in a nearly collinear pump-probe configuration, with 

the x-ray beam passing from the back of the mirror through a hole. A schematic of 

this is shown in Fig. 4.8. Once the x-rays and laser beam are overlapped on the 

phosphor screen, the sample is translated into the beam and spatial overlap is 

optimized with the help of fast steering mirrors, which raster the laser beam on the 

sample (in the XZ plane) to give the maximum photo-excited signal. Thereafter, the 

  

Figure 4.7 (a)Diffraction chamber used for Tr-RSXD. (b) Degrees of freedom of sample holder and 

detector. Both the sample holder and detector can be translated along the z-direction [77]. 

(a) (b) 
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laser beam is spatially locked onto the sample position using a combination of fast 

steering mirrors and beam position monitors. Active beam stabilization of both the 

laser and x-rays mitigates against loss of spatial overlap on the sample due to long 

term changes (primarily thermal in origin) in the experimental setup.  

Lastly, just before the laser beam is coupled into the vacuum chamber, a polarizer sets 

the polarization of the laser beam. In conjunction with a motorized half-wave plate, 

the excitation fluence of the laser pulse on the sample can be controlled. The beam 

profile and power of the laser are actively recorded to have an accurate assessment of 

the pump fluence during a measurement.  

4.10 Detection Instrumentation 

The detector arm also holds an array of detectors which can be used to measure static 

and time resolved signals. A photodiode is used to measure the static diffracted signal 

and a Micro Channel Plate (MCP) is used to measure the time resolved diffracted 

signal from the sample. The MCP is an ideal detector for such time resolved 

measurements as,  

 

Figure 4.8. A nearly collinear geometry of X-ray and laser beam is achieved by using a holey mirror 

[77].  
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• it is fast enough to resolve the X-ray bunch structure 

• can detect single photons 

• is blind to 1.55 𝑒𝑉 excitation photons of the optical laser. 

The signal from the MCP is amplified and fed into two identical gated discriminators, 

which are triggered by a gate signal generated from a delay generator synchronized to 

the master clock of the storage ring. Two adjacent x-ray pulses are used to measure 

the photo-excited response. One discriminator measures the pump ‘on’ signal – when 

the sample is in its photo-excited state and the second discriminator measures the 

pump ‘off’ channel – when the sample is in its ground state39. Therefore, with each 

measurement we can measure the change in the diffracted intensity normalized to the 

ground state of the sample. The signal from the discriminator is converted into a scaler 

counter, giving counts per unit time and this value from the two channels - ON and 

OFF are logged.  

4.11 Laser System 

The light source for the sample excitation in Tr-RSXD experiments at I06 is a 

Ti:sapphire laser system, producing 800 𝑛𝑚 (1.55 𝑒𝑉) femtosecond laser pulses. The 

system comprises of a mode-locked oscillator (MIRA) which seeds a Regenerative 

Amplifier (RegA) producing 𝜇𝐽 pulses with a pulse width of ~200 𝑓𝑠. Both the 

oscillator and the amplifier are pumped by the same pump source, a Verdi V18 CW 

solid state laser emitting at 532 nm.  

Laser pulses are synchronized to the X-rays by locking the repetition rate of the laser 

oscillator to exactly one-sixth (83.275 𝑀𝐻𝑧) of the storage ring master clock frequency. 

This stabilization is done actively through electronic synchronization (Synchrolock 

system, Coherent Inc. [78]), which receives the frequency from the storage ring master 

clock and the oscillator frequency from an external photodiode. The stabilization 

system minimizes the timing jitter between the x-ray and laser pulses by adjusting the 

 
39 Such a measurement is only possible if the repetition rate of the laser, 𝑓𝑙, is smaller than half the 

revolution frequency of the single x-ray bunch, i.e. 𝑓𝑙 <
533.82

2
 𝐾𝐻𝑧 
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length of the oscillator cavity by moving a piezo element on one of its end mirrors. 

Whilst the repetition rate of the oscillator is locked the frequency of the amplifier can 

be adjusted from 266.91 𝐾𝐻𝑧 (half the revolution frequency of the storage ring) down 

to 22 KHz. An Avalanche Photo Diode (APD) housed at the back of the vacuum 

chamber is used to measure the temporal delay between the x-ray and laser pulses. 

Output from the APD can be viewed directly on a fast oscilloscope and with the use 

of Synchrolock, the laser pulse delay can be adjusted to within a resolution of ±500 𝑝𝑠 

of the x-ray pulse. 

The Synchrolock is also used while taking scans to measure the photo-induced signal 

as a function of pump (laser) delay. Coarse temporal delay is achieved by choosing 

which oscillator pulse is amplified. This gives a delay of an integer multiple of the 

oscillator clock 𝑡 = 𝑛 ∙
2

83.275 𝑀𝐻𝑧
≈ 𝑛 ∙ 24 𝑛𝑠. By changing the phase delay in the 

Synchrolock one can adjust the time delay continuously between 0 − 12 𝑛𝑠, with an 

accuracy of 22 fs. The finest temporal adjustment is achieved by using a mechanical 

delay stage, which gives a range of 1 𝑛𝑠 with a minimum step size of 1 fs.  

Measurements performed with the above experimental setup are reported in chapter 

6.   
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5 Terahertz Time-Domain 

Spectroscopy 
 

5.1 The Terahertz Domain 

 

The Terahertz (1 𝑇𝐻𝑧 = 1012 Hz) band lies between microwaves and infrared region of 

the electromagnetic spectrum and is roughly defined from 0.1 THz - 10 THz, which 

corresponds to wavelengths ranging between 3 𝑚𝑚 to 30 𝜇𝑚40. This spectral range is 

important to understanding the electronic properties of condensed matter systems as, 

electronic bound states such as excitons and Cooper pairs, collective quasiparticle 

excitations, scattering rates, confinement in low dimensional materials, all have energies 

in the THz regime.  

Traditionally, terahertz spectroscopy has been hampered by lack of bright sources and 

efficient detectors. Microwave sources are limited to frequencies below 100 GHz and 

Fourier Transform InfraRed (FTIR) spectrometers lack brightness in the THz regime. 

Additionally, the aforementioned techniques only measure the intensity of the electric 

field and are insensitive to the phase and therefore rely on Kramers-Kronig analysis, to 

calculate the real and imaginary part of the response functions. 

In the last few decades, advances in laser and optical technologies, especially the 

widespread adoption of femtosecond laser systems has led to proliferation of Terahertz 

Time-Domain Spectroscopy (THz-TDS). The principle of THz-TDS is based on the 

opto-electronic generation of the THz transients from femtosecond laser pulses, which 

are then detected using optical gating. This allows for the direct measurement of the 

amplitude and phase of the terahertz electric field, from which the real and imaginary 

 
40 In other frequently used units: 1 𝑇𝐻𝑧 =  4.13 𝑚𝑒𝑉; 33.3 𝑐𝑚−1.     
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part of the response function (optical constants) of a medium can be extracted without 

resorting to Kramers-Kronig analysis. The THz transients are much brighter than 

conventional thermal sources and spectrally broad, ranging from less than 100 GHz to 

more than 10 THz. Additionally, as gated detection is only sensitive to signals in phase 

with the source, it is orders of magnitude more sensitive than bolometric detection. 

Furthermore, the THz transients are inherently, temporally synchronised with the 

femtosecond laser pulses that generate them and are typically less than 1 ps duration, 

thus making THz-TDS ideally suited for pump-probe experiments.  

5.2 Generation and Detection 

 

Single- or few-cycle THz pulses are generated and detected using either of the two 

operational concepts (i) Interaction of a femtosecond laser pulse with a non-linear 

medium, giving rise to a time varying induced polarization in the medium which results 

in Optical Rectification (OR) of the incident pulse (ii) Accelerating charges or time 

varying currents radiating electromagnetic waves. In the experiments undertaken in 

this thesis, the latter principle has been used for the generation of THz using a 

Photoconductive emitter, while the former is used for the detection of THz using the 

technique of Electro-Optic sampling (EOS) in a ZnTe crystal.  

5.3 Terahertz Generation using a Photoconductive Switch  

 

Photoconductive (PC) emitters are an array of photoconductive switches/antenna and 

are the most commonly used method for the generation and detection of THz in TDS. 

A photoconductive switch is a fast, optically activated switch comprising of metal 

electrodes on a semiconductor substrate. The switch is shortened by a laser pulse with 

photon energy greater than the bandgap of the semiconducting material, creating free 

carriers – electrons and holes. A bias voltage between the electrodes accelerates the free 

carriers which are then recaptured on a picosecond timescale, leading to a transient 

photocurent 𝐼𝑃𝐶 generated between the electrodes.  
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Figure 5.1 (a) Ariel and cross-sectional view of the photoconductive antenna (TeraSED) used for 

generation of THz. Black arrows indicate direction of the applied electric field across the electrodes 

[79]. (b) Profile view of a PC antenna. Femtosecond laser light (800 nm) incident on the surface of an 

antenna with emission of THz radiation [80].  

The PC switch can thus be modelled as a Hertzian dipole with the far field 

radiation 𝐸𝑇𝐻𝑍 described as [81]:  

𝐸𝑇𝐻𝑧 ∝ 𝑑𝐼𝑃𝐶 𝑑𝑡⁄  (5.1) 

For the emitted radiation to be in the THz regime the switching action (ON-OFF) of 

the PC switch should be in the sub-picosecond time range. Switch-ON time is a function 

of the laser pulse duration (first half cycle of the emitted radiation is a function of this) 

and the switch-OFF time is mostly dictated by the lifetime of the photoexcited carriers 

(second half cycle of the emitted radiation is a function of this). Therefore, in order to 

generate single cycle broad bandwidth THz pulses, a combination of short femtosecond 

laser pulses and a material with short carrier lifetime is vital. Among the 

photoconductive materials used, low-temperature grown gallium arsenide (LT-GaAs) 

is the most common. It has a photoexcited carrier lifetime41 of ~0.2 𝑝𝑠 [81] and a 

bandgap of 850 nm which is well suited for use with a Ti:sapphire laser system.  

For our measurements it was crucial to that we measured frequencies down to 

~100 𝐺𝐻𝑧. To meet these requirements, we used a photoconductive emitter, Tera-SED, 

 
41 LT-GaAs has a high concentration of defects (> 1018 𝑐𝑚3) induced during the growth process by 

incorporating an excess of arsenic [ref]  

(b) (a) 
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manufactured by Laser Quantum which has a spectral range from 100 GHz up to 6 

THz [79]. Tera-SED is a large-area GaAs based photoconductive emitter employing a 

patented interdigitated metal-semiconductor-metal (MSM) structure, effectively 

multiplexing more than a hundred photoconductive switches. Metal electrodes with 

5 𝜇𝑚 spacing are fabricated on a semi-insulating GaAs substrate, giving an electric field 

of a 20 𝑘𝑉/𝑐𝑚 for a bias voltage of only 10 𝑉. As the field direction between adjacent 

electrodes is reversed, every second electrode finger spacing is masked with an optically 

opaque metallic layer. Therefore, only gaps with the same field direction are optically 

excited, resulting in constructive interference of the emitted 𝑇𝐻𝑧 in the far field.  

5.4 Terahertz Detection – Electro-Optic Sampling  
 

Electro-Optic (EO) sampling is based on temporally sampling the electric field profile 

of a THz pulse, 𝐸𝑇𝐻𝑧(𝑡), by a much shorter optical pulse. In general, the optical setup 

involves splitting a small fraction of the optical beam that is used to generate the THz, 

to measure the temporal profile of the THz pulse in EO crystals. The underlying 

principle of EO sampling makes use of the Pockels effect, which describes the 

birefringence induced in nonlinear optical medium as proportional to the applied 

electric field. Conversely, by measuring the field-induced birefringence in an EO crystal 

we can determine the applied field strength. Importantly, for the optical pulse to 

experience a constant electric field of the THz pulse in the EO crystal, the optical group 

velocity and THz phase velocity should match inside the crystal.  

A schematic of a typical EO sampling setup is shown in Fig. 5.2 with the bottom half 

depicting the evolution of the polarization of the sampling probe beam, with and 

without a THz field. A balanced photodetector measures the intensity difference, 𝐼𝑠 

between the two orthogonal components of a circularly polarized sampling probe pulse. 

In the absence of a THz field, the orthogonal components are equal, and the 

photodetector is perfectly balanced, thus registering no signal. However, the presence 

of a THz field induces birefringence in an EO crystal which causes the linearly polarised 

probe pulse to develop ellipticity. As a result, after the quarter waveplate, the 
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polarization of the probe pulse is no longer perfectly circular and the two orthogonal 

components after the Wollaston prism are unequal.  

This leads to the photodetector becoming imbalanced and registering an intensity 

difference, 𝐼𝑠, which is proportional to the THz electric field, 𝐸𝑇𝐻𝑧 [81] – 

𝐼𝑠 = 𝐼𝑥 − 𝐼𝑦 = 𝐼𝑜Δ𝜙 =
𝐼𝑜𝜔𝐿

𝑐
𝑛𝑂
3𝑟41𝐸𝑇𝐻𝑧 ∝ 𝐸𝑇𝐻𝑧 (5.2) 

Here Δ𝜙 is the differential phase retardation experienced by the sampling probe beam 

due to the Pockels effect over the thickness (𝐿) of the EO crystal. 𝐼𝑜 is the intensity of 

the sampling probe beam, 𝑛𝑜 is the refractive index at the optical frequency and 𝑟41 is 

the EO coefficient.  

By scanning the relative delay between the sampling and THz pulses, and measuring 

the corresponding intensity differences, we can map out the electric field of the THz 

pulse, 𝐸𝑇𝐻𝑧(𝑡), thus allowing the simultaneous determination of the amplitude and 

phase of the field. The absolute value of the Fourier transform of 𝐸𝑇𝐻𝑧(𝑡) gives the 

spectral range of the field.  

In our measurements, 1 mm, <110> cut ZnTe crystals were used for the EO sampling 

of the THz pulse. ZnTe meets the phase-matching conditions for THz and 800 nm, is 

 
Figure 5.2 Illustration of the Free space Electro-optic sampling used to detect THz. [81]. See section 

5.4 for description.  
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transparent at optical and THz frequencies, and has a large to EO coefficient, making 

it an ideal EO crystal for measuring THz frequencies42 up to 5 THz.  

5.5 Pump-Probe Scanning  
 

There are two time delays in time-resolved THz spectroscopy (TRTS):  

1. The time delay 𝜏 which refers to the delay between the optical pump pulse and 

the sampling probe pulse. This reflects the excitation dynamics of the sample.  

2. The time delay 𝑡, this refers to the delay between the THz pulse and the optical 

sampling pulse and maps out the THz field reflected off the sample.  

Conventionally, 𝜏 = 0, is defined as the pump pulse arriving at the sample surface. 

However, in the case of TRTS there are a couple of challenges that need to be 

addressed.  

Since the THz pulse is much longer than the optical pump pulse, only the part of the 

THz pulse arriving after the photoexcitation will be affected. Therefore, the THz pulse 

reflected off the sample will contain a mixture of information about optical constants 

of the sample at equilibrium and in its photoexcited state. Scanning 𝜏, will create 

datasets with different time zeros, creating ambiguity in defining 𝜏 = 0. This will also 

complicate analysing the temporal evolution of the photoexcited response. The problem 

is further exacerbated if the response of the system is faster than the THz pulse. By 

only scanning 𝜏, we will miss out on the earliest dynamics of the photoexcited system.  

The solution is to simultaneously scan both the delay lines, 𝜏 and 𝑡, such that every 

part of the THz pulse experiences the same pump delay, see Fig. 5.3. This ensures that 

there is no ambiguity with regard to 𝜏 = 0 and for a given pump delay, the reflected 

THz profile encodes the full spectral response of the sample. This also highlights the 

fact that the temporal resolution of the experiment is not limited by the duration of 

 
42 A TO phonon mode at 5.3 THz limits the bandwidth to frequencies below 5 THz 
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the THz pulse, which extends over a few picoseconds, but rather by the spectral content 

of the THz.  

Since our goal is to measure the pump-induced changes to the THz field, which is given 

as, ∆𝐸(𝑡) = 𝐸𝑜𝑛(𝑡) − 𝐸(𝑡), where 𝐸𝑜𝑛(𝑡) is THz field reflected off the sample after 

excitation and 𝐸(𝑡) is the reflected field with sample at equilibrium. The two fields can 

be measured concurrently by using a chopper to modulate the THz beam, with a lock-

in amplifier synchronised to the chopper frequency to read out the signal from the EOS 

photodetector. When the pump-induced changes are very small, we can modulate the 

pump beam to directly measure ∆𝐸(𝑡) at a higher lock-in sensitivity. 

Thus, we measure ∆𝐸𝑇𝐻𝑧(𝑡, 𝜏) which is Fourier transformed to yield ∆�̃�𝑇𝐻𝑧(𝜔, 𝜏).  The 

normalized Fourier transform reflectivity spectrum is given as:  

∆�̃�𝑇𝐻𝑧(𝜔)

�̃�𝑇𝐻𝑧(𝜔)
=
�̃�𝑜𝑛(𝜔) − �̃�𝑇𝐻𝑧(𝜔)

�̃�𝑇𝐻𝑧(𝜔)
 (5.3) 

  

 

Figure 5.3 The time delays involved in time-resolved THz spectroscopy. 𝜏 is the time delay between 

the pump and sampling pulse, and reflects the time after excitation of the sample. 𝑡 on the other 

hand, is the delay between the THz and sampling pulse, and maps out the THz field reflected off the 

sample.    
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5.6 Setup and Chamber  
 

A picture and sketch of the optical pump THz probe setup used for our experiments is 

shown is Fig. 5.4. The measurements presented in the thesis were carried out on single 

crystals of LBCO11.5 and in reflection geometry, with the pump beam hitting the sample 

at normal incidence and the probe beam is incident at 30°. In order to eliminate water 

absorption, achieve short focal length and avoid losses in windows, the THz was 

generated and detected inside a vacuum chamber. The chamber can reach a base 

pressure of 5x10-7 mbar, which is sufficient to prevent ice formation at cryogenic 

temperatures. The sample and a piece of n-doped GaAs sat at the end of a cold finger 

of a Helium-flow cryostat which is affixed to the chamber. By pumping at the exhaust 

of the helium siphon we could reach temperatures of ~2 K. GaAs has a large optical 

pump THz probe response which makes it convenient to optimize for spatial and 

temporal overlap. Once optimized the sample is translated into the beams. After 

cooling, measurements are only commenced once thermal equilibrium is reached which 

can take up to 4 hours. Thermal contraction/expansion of the cold finger can also be 

checked, by looking at the THz reflected off the GaAs or the sample.  

Polarization of the THz is determined by the orientation of the photoconductive switch 

and is checked by a MIR polarizer placed in its path before the EOS optics. The focal 

plane of the THz beam is determined by translating the cold finger so as to maximise 

the low frequency THz response. The pump beam profile is measured outside the 

vacuum chamber using a razor blade and a photodiode, using distances and focal 

lengths that are identical to that used in the setup in the chamber. The focussing lens 

position is optimized to match the THz beam width, with the pump beam spot size 

kept slightly bigger than the THz, so that the THz probes a homogenous pumped 

region. 

Pump-probe response is measured by moving delay stages set along the pump and 

sampling probe paths. A chopper is placed in the pump beam path to measure the 

pump induced changes.   
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Figure 5.4 (top) Picture and (bottom) schematic of the optical pump and THz probe setup used for 

our measurements.  
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5.7 Analytic Models for photo-excited materials  

 

As light propagates through a medium it is absorbed, and its intensity decreases 

exponentially according to the Beer-Lambert Law: 

𝐼(𝑧) = 𝐼0𝑒
−𝛼𝑧 (5.4) 

where, 𝐼0 is the incident intensity, 𝛼 is the absorption coefficient and 1 𝛼⁄  gives the 

penetration depth. Consequently, the optical properties of the material vary not only 

in time but in space as well. We will consider a few models to analysis the optical 

properties of the photo-excited material.  

5.7.1 Bulk excitation  

 

When the pump penetration depth is much larger than that of the probe, we can 

consider a homogenously photo-excited volume of the sample. In this limit, we can 

relate the complex reflection coefficient of the excited material, �̃�′, with the transformed 

refractive index, �̃�′, via the Fresnel’s equations -  

�̃�𝑠
′ = 

𝑐𝑜𝑠𝜃𝑖 − �̃�
′√1 − (

𝑠𝑖𝑛𝜃𝑖
�̃�′ )

2

𝑐𝑜𝑠𝜃𝑖 + �̃�′√1 − (
𝑠𝑖𝑛𝜃𝑖
�̃�′ )

2
  ,       (TE Wave) (5.5) 

�̃�𝑝
′ = 

√1 − (
𝑠𝑖𝑛𝜃𝑖
�̃�′ )

2

− �̃�′𝑐𝑜𝑠𝜃𝑖

√1 − (
𝑠𝑖𝑛𝜃𝑖
�̃�′ )

2

+ �̃�′𝑐𝑜𝑠𝜃𝑖

 ,       (TM Wave) (5.6) 

The subscripts s and p refer to the two orthogonal components - perpendicular and 

parallel, respectively - of the incident light. The above are simplified Fresnel equations, 

where we have considered a vacuum interface with the medium (𝑛 = 1) and 𝜃𝑖 is the 

angle of incidence on the sample.  
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The change in the reflection coefficient is related to the change in the reflected electric 

field,  

∆�̃�(𝜔)

�̃�(𝜔)
≡
∆�̃�

�̃�
=
�̃�′ − �̃�

�̃�
 (5.7) 

Thus, by measuring the relative changes in the electric field is insufficient to determine 

�̃�′, since we need to know the equilibrium reflection coefficient �̃� as well. �̃� can be 

calculated independently from broadband reflectivity using Kramers-Kronig analysis or 

from referenced time-domain THz spectra. From the equilibrium refractive index �̃�0 we 

can determine �̃� using the Fresnal equations. Once we have determined �̃�′ we can invert 

equations (5.5) and (5.6) to calculate the transient refractive index,  

�̃�′ = √𝑠𝑖𝑛2𝜃𝑖 + 𝑐𝑜𝑠2𝜃𝑖 (
1 − �̃�′

1 + �̃�′
) , (TE Wave) (5.8) 

�̃�′ =
1

√2
(
1 + �̃�′

1 − �̃�′
)√1 + √1 − 4𝑠𝑖𝑛2𝜃𝑖𝑐𝑜𝑠

2𝜃𝑖 (
1 − �̃�′

1 + �̃�′
)
2

, (TM Wave) (5.9) 

  

 
Figure 5.5 Photoexcited models: (a) Bulk excitation and (b) single film limit 

(a) (b) 
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5.7.2 High Pump-Probe penetration mismatch: Thin Film limit 

 

In the opposing limit when the probe penetration depth is much larger than that of the 

pump, we can consider a thin homogenously photo-excited layer sitting above an 

unperturbed bulk, see Fig 5.5 (b). 

The complex reflection coefficient of such a multilayer system is expressed as [82]: 

�̃�(𝜔, 𝜏) =
�̃�𝐴(𝜔, 𝜏) + �̃�𝐵(𝜔, 𝜏)𝑒

2𝑖𝛿(𝜔,𝜏)

1 + �̃�𝐴(𝜔, 𝜏)�̃�𝐵(𝜔, 𝜏)𝑒2𝑖𝛿
(𝜔,𝜏)

(5.10) 

Where �̃�𝐴(𝜔, 𝜏) and �̃�𝐵(𝜔, 𝜏) are the reflection coefficients at the interfaces 

vacuum/photoexcited layer and photoexcited layer/unperturbed bulk, respectively, 

while 𝛿 = 2𝜋𝑑�̃�(𝜔, 𝜏)/𝜆0 (here, �̃�(𝜔, 𝜏) is the complex refractive index of the 

photoexcited layer and 𝜆0 is the probe wavelength).  

Equation (5.10) can be solved numerically, thus retrieving �̃�(𝜔, 𝜏) from the 

experimentally determined �̃�(𝜔, 𝜏). Complex conductivity for a volume that is 

homogenously transformed can then be calculated using the following relation,  

�̃�(𝜔, 𝜏) =
𝜔

4𝜋𝑖
[�̃�(𝜔, 𝜏) − 휀∞]. (5.11) 

Where 휀∞ represents the screening by interband transitions [83].  

Alternatively, we can also model the photo-excited system as a stack of thin layers with 

a homogenous refractive index, with an excitation profile given by an exponential 

decay. Both these models yield similar results.  
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6 M elting of Stripe and Structural 

order in La2-xBaxCuO4 
 

 

 

6.1 Introduction 
 

In this chapter we report time-resolved resonant soft X-ray diffraction (TR-RSXD) 

measurements of the near-infrared photoexcitation dynamics of the stripe order and 

crystal lattice in superconducting La1.885Ba0.115CuO4 (LBCO11.5) carried out at the I06 

beamline at Diamond Light Source [5]. These results are augmented with our TR-

RSXD experiments on the excitation of the in-plane Cu-O stretching phonon with mid-

infrared pulses in the non-superconducting, stripe ordered La1.875Ba0.125CuO4 

(LBCO1/8) performed at the SXR beamline of the Linac Coherent Light Souce (LCLS) 

[84]. Excitation of the in-plane Cu-O stretching phonon with a midinfrared pulse has 

been previously shown to induce a transient superconducting state in the closely related 

compound La1.675Eu0.2Sr0.125CuO4 (LESCO1/8)43, however the fate of the charge stripe 

order and of the LTT distortion in the transient 3D coherent superconductor, following 

the excitation was unknow [2,85]. We demonstrate that stripe order melting is prompt 

following near-infrared and mid-infrared photoexcitations, whereas the crystal structure 

follows significantly longer timescales and remains intact for moderate fluences. 

In chapter 2 we discussed how in underdoped La2−xBaxCuO4, holes doped into the CuO2 

planes order along domain walls (stripes), separating regions of antiphase 

antiferromagnetic spin ordering. Concomitantly, the crystal structure distorts from the  

 

 
43 LESCO1/8 exhibits an LTT phase below 135 K and charge stripe order below 25 K. 
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low-temperature orthorhombic phase into the low-temperature tetragonal (LTT) phase, 

with the stripes mirroring the symmetry of the LTT phase and posited to be stabilized 

by the LTT distortion. As shown in Fig. 6.1(b) the emergence of superconductivity 

from the stripe phase for 0.09 ≤ x ≤ 0.16 follows a peculiar double-dome phase 

boundary, with the superconducting transition temperature, TC, greatly suppressed for 

x = 1/8 [52].  

6.2 X-ray Absorption Spectroscopy 
 

Single crystals of (LBCO1/8) and (LBCO11.5), grown using the traveling-solvent-floating 

zone method (see Appendix A.1) and cleaved to reveal the (001) surface, were used for 

our measurements. In LBCO11.5, bulk superconductivity develops at TC ≃ 13 K, spin-

ordering at TSO ≃ 41 K and charge ordering along with LTT structural distortion at 

TCO ≃ TLTT ≃ 53 K. While in LBCO1/8, bulk superconductivity is suppressed < 3 K, 

with TSO ≃ 42 K and TCO ≃ TLTT ≃ 55 K [61]. The lattice parameters of the unit cell 

of the high-temperature tetragonal (HTT) phase are at ≃ 3.78 Å and c ≃ 13.2 Å, with 

the scattering vectors specified as Q = (h k l) in all phases in units of (2π/at , 2π/at , 

2π/c). Static charge stripes are observed at a wave vector of Q = (0.23 0 0.65) for  

 

 

Figure. 6.1 (a) Schematic of the optical pump X-ray probe. (b) Phase diagram of La2-xBaxCuO4 as a 

function of temperature and doping as determined in [52].  Red and blue dots indicate the dopings of the 

samples investigated. SC, SO, and CO indicate the superconducting, spin-order, and charge- order states, 

respectively, with TC, TSO, and TCO being the corresponding transition temperatures. TLT represents the 

structural transition temperature.  

(a) (b) 
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Figure 6.2 (a) XAS spectrum for La1.885Ba0.115CuO4 over the O K edge (dashed blue line) along with 

the (0.23 0 0.65) charge-ordering diffraction peak (black circles) and (001) LTT distortion diffraction 

peak (red circles). The (0.23 0 0.65) peak has been scaled up by a factor of 3000. (b) Schematic of 

the stripe ordering (yellow polygons) in the CuO2 planes. Temperature dependence of (c) stripe and 

(d) (001) peak. Solid lines represent Lorentzian fits to the data.    

(c) (d) 

(a) (b) 
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LBCO11.5, and Q = (0.24 0 0.5) for LBCO1/8 [60]. The structural distortion associated 

with the LTT phase has a screw axis along the c-direction44, this allows for the 

observation of the (0 0 1) reflection, which is structurally forbidden at higher 

temperatures [86].  

Figure 6.2(a) shows the energy dependence of the (0.23 0 0.65) stripe and (0 0 1) 

structural diffraction peaks as well as the X-ray absorption spectroscopy (XAS) 

spectrum across the O K edge recorded at T = 5 K. The resonances at 528.6 eV, along 

with the weak shoulder at 530.2 eV, corresponding to transitions into the O 2p doped 

hole states in the conduction band and the Cu 3d upper Hubbard band hybridized with 

O 2p states, respectively [57]. The (0 0 1) diffraction peak has a strong resonance at 

the O K edge, centered at 532.4 eV corresponding to resonant transitions into La-O 

hybridized states [86]. Therefore, the intensities of the (0.23 0 0.65) and (0 0 1) 

diffraction peaks are direct probes of the degree of stripe ordering and LTT distortion, 

which can be measured through resonant soft x-ray diffraction at the oxygen K pre-

edge.  

6.3 TR-RSXD: Near-infrared excitation in La1.885Ba0.115CuO4 
 

We first discuss TR-RSXD measurements on LBCO11.5 performed at I06 beamline at 

Diamond where we probed the (0.23 0 0.65) and (0 0 1) peak, centered at 528.6 eV and 

532.4 eV, respectively to 1.55 eV (800 nm) excitation. All measurements were carried 

out in the superconducting state (T ≃ 5 K). The TR-RSXD experimental setup at the 

I06 beamline has been reported in detail in sections 4.7-4.11.  

The 1.55 eV pump pulses with a pulse duration of ∼ 250 fs from a Ti:Sa amplifier 

running at 22 KHz were polarized in the ab plane and were focused down to a spot size  

 
44 In the LTT phase neighboring CuO2 planes are rotated by 90°, yielding O sites with different (rotated) 

local environments and affect the hybridization between the apical O and the La orbitals. On the other 

hand, in the LTO phase, neighboring CuO2 planes are just shifted, not rotated, with respect to each 

other and the (0 0 1).  
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Figure: 6.3 (a) Intensity changes in the (0.23 0 0.65) charge-ordering diffraction peak (solid black 

circles) and (001) LTT distortion diffraction peak (solid red circles) following near-infrared 

photoexcitation using a pump fluence of 1.6 mJ/cm2. The data were measured in for the open circle 

which represents the change in intensity of the low-α mode with an x-ray pulse width of ∼7 ps 

(FWHM) except (0.23 0 0.65) diffraction peak for 𝜏 = 375 ps recorded in hybrid represent fits to the 

data using an exponential function. mode with an x-ray pulse width of ∼60 ps (FWHM). The solid 

lines represent fits to the data using an exponential function. Photoexcited (b) Stripe and (c) (001) 

peak at ~ 125 ps positive time delay measured in Hybrid mode. Solid lines represent Lorentzian fits. 

(b) (c) 

(a) 
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of ∼ 200 𝜇𝑚 (FWHM) onto the sample. The X-ray probe pulses are also polarized in 

the ab plane (𝜎 polarization) and focused to a spot size of ∼ 100 𝜇𝑚. Since the 

penetration depth inside the sample at 1.55 eV and ∼ 530 eV is the about same (∼ 200 

nm), a homogenous photoexcited volume is probed [38]. The change in diffraction peak 

intensities were measured using a gated micro-channel plate, which is insensitive to 

1.55 eV photons. 

In Fig. 6.3(a) the change in diffraction intensities relative to the fluorescence 

background (Δ𝐼𝜏/𝐼0) as a function of time delay (𝜏) for (0.23 0 0.65) and (0 0 1) peak 

is plotted, with the excitation fluence for both measurements kept at 1.6 mJ/cm2. The 

results were recorded with the storage ring operating in low-α mode, for which the 

longitudinal width of the electron bunch was compressed to give a temporal resolution 

of ∼ 7 ps at the expense of photon flux. As evident from Fig 6.3 both the (0.23 0 0.65) 

and (0 0 1) peaks are reduced in intensity by ~ 40%, for the same pump fluence. 

However, the temporal response to the photoexcitation is different. An exponential fit 

to the stripe peak data (Fig. 6.3 (a), black line) gives a time constant of 10 ± 3 ps and 

is limited by the x-ray pulse width in the low-α mode of operation. The decay of the 

stripe peak likely occurs within only a few hundred femtoseconds of photoexcitation 

[84](discussed further in the next section). The (0 0 1) peak, on the other hand, is 

observed to decrease over a much slower timescale with an exponential fit (Fig. 6.3(b), 

red line) yielding a time constant of 77 ± 7 ps. We note here that the different responses 

of the two peaks precludes loss of intensity from sample heating from the laser pulses 

since TCO ≃ TLTT (see Fig. 6.2 (c) and (d) showing temperature dependence of the 

stripe and (0 0 1) peaks).  

Further insights regarding the disruption of stripe and LTT order can be retrieved from 

the pump fluence dependence of the relative change in intensities. Figure 6.4 shows 

Δ𝐼𝜏/𝐼0 for the stripe and LTT distortion diffraction peaks as a function of fluence for 

𝜏 = 350 ps. The results were recorded with the storage ring operating in hybrid mode 

with a temporal resolution of ∼ 60 ps. Interestingly, at ∼ 0.8 mJ/cm2 the melting of 

the stripe ordering saturates whereas the LTT distortion remains largely intact, which 
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should remain the case for the shortest picosecond timescales inaccessible for 

synchrotron-based TR-RSXD.  

Our experiments demonstrate that photoexcitation using near-infrared 1.55 eV pulses 

creates a charge transfer nonequilibrium phase in which the LTT distortion remains 

intact, but the stripe ordering is strongly suppressed. Given that the measurements 

were carried out in the superconducting state, this then gives a unique system with 

which to explore the emerging dynamics of superconductivity once stripe order is 

disrupted. The photoinduced dynamics of the superconducting state with identical 

excitation conditions are reported in chapter 7.  

6.4 TR-RSXD: Mid-infrared excitation in La1.875Ba0.125CuO4 

 

We used femtosecond resonant soft x-ray diffraction at a free electron laser (FEL) to 

directly probe the dynamics of both the stripe order and the LTT distortion in the 

stripe-ordered cuprate LBCO1/8 following a mid-infrared pump, tuned to resonantly 

excite the 85 meV (14.5 𝜇𝑚) infrared-active, in-plane Cu-O stretching mode [38].  

 

Figure. 6.4 Fluence dependence of the (0.23 0 0.65) charge-ordering diffraction peak (solid black 

circles) and (001) LTT distortion diffraction peak (solid red circles) intensity after photoexcitation 

with 𝜏 = 350 ps. The error in the fluence indicates the uncertainty in the pump beam diameter at the 

sample position. The red line shows a quadratic fit whereas the black line shows an exponential fit to 

the data. 
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The experiments were performed at the SXR beam line of the Linac Coherent Light 

Source (LCLS) [87,88]. A schematic drawing of the experimental setup is shown in Fig. 

6.5(A). The sample was held at base temperature T = 13 K in the stripe-ordered, LTT-

distorted phase. Femtosecond midinfrared pulses (85 meV), derived from an optical 

parametric amplifier and subsequent difference frequency mixing, were used for 

excitation. The excitation pulses were 200 fs long, polarized in the ab plane, and focused 

onto the sample with a spot size of 700 𝜇𝑚. In our experiments, the excitation fluence 

was kept at 1.9 mJ/cm2, equal to the conditions of the light-induced superconductivity 

transition studied in LESCO1/8 [2].  

X-ray pulses of sub-100 fs duration, tuned to photon energies of 528 eV and 532 eV for 

the (0.24 0 0.5) and (0 0 1) wave vectors, respectively, were selected by a grating 

monochromator providing a bandwidth of approximately 1.5 eV. The X-ray beam was 

aligned collinearly with the mid-IR pump and focused onto the sample with a 200 𝜇𝑚 

diameter (see Fig 6.5(A)). Since extinction depth of the mid-IR at the phonon resonance 

is 1–2 𝜇𝑚 and that of the x-ray pulses at the oxygen K edge is approximately 200 nm, 

a homogenously pumped sample volume is probed by the X-rays. A high-vacuum 

diffraction chamber, equipped with a fast- readout CCD camera, was used for the 

experiments [89]. The measurements were performed with a 60 Hz repetition rate. The 

time resolution of this experiment was 300 fs, limited by the timing jitter between the 

synchronized X-ray and optical laser pulses. 

The time-dependent response of the (0.24 0 0.5) stripe order diffraction peak to the 

optical excitation is shown in Fig. 6.5(B). The upper panel shows the diffracted X-ray 

beam, recorded with the CCD camera and averaged over about 20 000 FEL shots. At 

negative time delays, a broad and rather weak peak is observed on the CCD camera, 

consistent with the short correlation length of the stripe order in LBCO1/8 [60,90]. The 

lower panel shows the integrated transient intensity of this diffraction peak. The 

integrated diffraction intensity of this peak promptly decreases by about 70% after the 

arrival of the mid-IR excitation. These results show that stripe order is melted on a 

subpicosecond time scale by these mid-IR pulses. The red solid line represents a single- 
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Figure. 6.5 (A) Top view of the experimental setup, shown for the diffraction condition of the charge 

stripe order peak.  

(B) Transient intensity of the charge stripe order diffraction peak in (001) cleaved La1.875Ba0.125CuO4 

measured at the (0.24 0 0.5) wave vector. Resonant mid-IR excitation with 1.9 mJ/cm2 fluence at 

positive time delay results in a prompt decrease of the scattered intensity on the sub-ps time scale. 

The red solid line represents an exponential function with a time constant set to 300 fs, i.e., the 

resolution of the experiment. The upper panel shows the diffracted spots, recorded with the CCD 

camera and averaged over about 20 000 FEL shots, at negative and positive time delays. 

(C) Light-induced changes in the intensity of the (001) diffraction peak reflecting the LTT distortion. 

Again, the La1.875Ba0.125CuO4 crystal is excited with the 1.9 mJ/cm2 fluence of midinfrared light. The 

red solid line is a single exponential fit to the data yielding a time constant of 15 ps. The inset shows 

the same data set with an expanded y axis. The diffraction spots recorded on the CCD, averaged over 

400 FEL shots for a positive and a negative time delay, are shown in the upper panel. 

A 

B C 
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exponential function used to visualize the reduction of the scattering intensity, with a 

time constant set to the 300 fs time resolution of the experiment. The fast timescale 

observed here is similar to the one observed in the LESCO1/8 THz probe experiments, 

implying that the ultrafast formation of the superconducting state and the melting of 

charge modulations are connected.  

In contrast, the evolution of the LTT phase, as probed by the (001) diffraction peak, 

is very different from that of the stripe order. CCD images of this diffraction peak, 

averaged over 400 FEL shots taken at a positive and a negative time delay, are shown 

in Fig. 6.5(C). The integrated scattered intensity of this structural (and therefore sharp 

and intense) peak drops by only 12%, and on a much longer time scale. A single- 

exponential decay fitted to the data (red solid line) yields a time constant of 15 ps. 

This time scale is likely set by acoustic propagation, as the relaxation of the LTT 

distortion requires the lattice planes to expand, a process that is limited by the speed 

of sound.  

Here too, our experiments demonstrate that the resonant mid-IR excitation in LBCO1/8 

triggers the ultrafast formation of a nonequilibrium state in which stripe charge 

correlations have disappeared while the LTT distortion still exists. This decoupling is 

not present in the equilibrium phase diagram of LBCO.  

Given the prompt appearance of 3D superconductivity in LESCO1/8 under identical 

conditions, the present results support the conclusion that it is the stripe order and not 

the LTT distortion which is responsible for the suppression of the 3D coherent super- 

conducting state [62]. These results are also consistent with the scenario of a system 

which, in the presence of stripe order, is a 2D superconductor. In this case, the 

superconductivity is proposed to be in the form of a pair density wave state, where the 

superconducting order parameter is modulated by the periodic potential resulting from 

the charge order, with twice the period [91]. This, and the 90° rotation of the charge 

stripes along the c axis, provides a natural explanation for the destructive interference 

of the Josephson currents. In this scenario, when the mid-IR pulse melts the charge 
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order, it removes the periodic potential. At that point, the superconducting condensates 

are free to coherently couple along the c axis and do so on a time scale of the Josephson 

plasma resonance, i.e., a few hundred femtoseconds, resulting in the emergence of a 

transient 3D superconducting state.  
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7 Photoinduced Enhancement of 

Josephson coupling in 

La1.885Ba0.115CuO4 
 

 

7.1 Introduction  

 

In this chapter we present results showing the transient enhancement of Josephson 

interlayer coupling in LBCO11.5. The effects of optical excitation on LBCO are studied 

with THz time domain spectroscopy which can probe the response of the 

superconducting condensate at its natural energy scale. In our experiments, LBCO11.5 

was excited with 1.55 eV (800 nm) femtosecond laser pulses polarized either parallel 

(E ∥ ab plane) or perpendicular (E ∥ c axis) to the CuO2 planes. For in-plane excitation, 

since the pump wavelength, polarization and fluence used in the resonant X-ray 

diffraction and THz time domain measurements is the same, this allows us to build a 

comprehensive and complementary picture of the resulting electronic and structural 

dynamics in the LBCO11.5 system. Furthermore, by varying the polarization of the 

near-infrared pump we can compare the efficiency of the enhancement of the interlayer 

coupling for different excitation protocols.  

As mentioned previously, above-gap charge excitation at near-infrared and visible 

wavelengths has been extensively studied in conventional and high-temperature 

superconductors in the past. Typically, the pump fluences used in such studies was ≲ 

10 𝜇J/cm2, which is sufficient to destroy the superconducting condensate and 

investigate its recovery dynamics. Ultrafast studies on high-Tc superconductors with 

probing frequencies in the near- and mid-infrared range helped identifying the intrinsic 

timescales of the response dynamics of the superconducting condensate as well as of 

pseudogap correlations [70]. In addition, by probing the response to above-gap 
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excitations in the THz frequency range, one can study the dynamics of excess 

quasiparticles and condensate recovery on the energy scale of the superconducting gap 

[70,71]. The umbrella of these experiments shed light on evolution of superfluid density 

after photoexcitation by examining the breaking and recombination of Cooper pairs.  

Instead, here we photoexcite a ‘frustrated’ high-Tc cuprate, exhibiting 

coexisting/competing orders, with much higher laser fields (fluences up to 2 mJ/cm2) 

with a goal to directly melt the electronic order (stripes), which frustrates interlayer 

phase coherence at equilibrium, and probe the underlying superconducting condensate 

using transient reflectivity at THz frequencies.  

7.2 Equilibrium Optical Response  
 

La1.885Ba0.115CuO4 single crystal investigated in our THz spectroscopy study was grown 

using traveling-solvent floating-zone method45. The crystal was cut and polished, thus 

exposing an ac-oriented surface of ~ 10 mm2 area, which was sufficient to perform long-

wavelength THz spectroscopy. As shown in the temperature vs doping phase diagram 

of La2-xBaxCuO4 in Fig. 7.1(b), LBCO11.5 undergoes a superconducting transition at Tc 

≃ 13 K, spin-ordering at TSO ≃ 42 K and charge ordering along with the LTT distortion 

at TCO ≃ TLTT ≃ 53 K.  

The equilibrium optical properties were determined using single-cycle THz pulses 

generated by illuminating a large-area photoconductive antenna with near-infrared 

laser pulses from a Ti:Sa amplifier. The THz pulses were focused onto the sample 

surface to a spot size of ~ 1 mm diameter and incident at an angle of 30°, with 

polarization perpendicular to the CuO2 planes (E∥c axis). The reflected electric field 

from the sample, 𝐸𝑅(𝑡), was measured both above and below Tc, by electro-optical 

sampling in a 1-mm thick ZnTe crystal. 𝐸𝑅(𝑡) was then Fourier transformed to obtain 

the complex-valued, frequency dependent �̃�𝑅(𝜔).  

 
45 From the same batch of crystals that were used for TR-RSXD measurements reported in chapter 6. 

An overview of the traveling-solvent floating-zone method is presented in appendix A.1. 
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The out-of-plane equilibrium reflectivity of the superconducting state, 𝑅(𝜔, 𝑇 < 𝑇𝑐) was 

determined as 𝑅(𝜔, 𝑇 < 𝑇𝑐) =
|�̃�𝑅(𝜔,𝑇<𝑇𝑐|

2

|�̃�𝑅(𝜔,𝑇≳𝑇𝑐|2
𝑅(𝜔, 𝑇 ≳ 𝑇𝑐). Here, 𝑅(𝜔, 𝑇 ≳ 𝑇𝑐) is the normal-

state reflectivity measured with Fourier-Transform Infrared Spectroscopy on the same 

sample, which is completely flat and featureless in the THz range, Fig. 7.2(b.1). The 

datasets were then fitted with the model that describes the optical response of a 

Josephson plasma and merged at 𝜔 ≃ 2.5 THz with the broadband spectra from Ref. 

[38]. By performing Kramers-Kronig (KK) transformations on the full spectrum we 

were able to retrieve the complex equilibrium optical response functions like optical 

conductivity �̃�0(𝜔), dielectric function 휀0̃(𝜔) and refractive index �̃�0(𝜔). 

The in- and out-of plane, equilibrium reflectivity and the real part of the optical 

conductivity 𝜎1 above and below Tc for LBCO11.5, retrieved with this procedure, are 

shown in Fig. 7.2. The weak interlayer superconducting coupling of LBCO11.5% results 

in an equilibrium Josephson Plasma Resonance (JPR) at ~ 0.2 THz, which shows up 

as an edge in the c-axis reflectivity [Fig. 7.2(b.1)].  

 

 
Figure 7.1 (a) Schematic of the pump-probe set up used for the THz time domain spectroscopy. (b) 

Phase diagram of La2−xBaxCuO4 as a function of temperature and doping as determined in [52]. SC, 

SO, and CO indicate the superconducting, spin-order, and charge- order states, respectively, with Tc, 

Tso, and Tco being the corresponding transition temperatures. TLT represents the structural transition 

temperature. The circles indicate the different temperatures for which the data is reported here. Below 

Tc (dark red) the sample was photoexcited with both in- and out-of-plane pump polarizations. At 

higher temperatures (blue circle) the sample was only pumped out-of-plane.   

Epump  

(a) (b) 
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We stress here that, to our knowledge, this measurement is the first direct observation 

of a JPR in LBCO11.5, as conventional Fourier-transform spectroscopy techniques can 

hardly yield enough spectral weight down to such low frequencies.  

Out-of-plane superconducting transport is also observed as a small low-frequency 

divergence of the imaginary part of the conductivity, which can be seen in the gray line 

in Fig. 7.3(b). An increase in a positive 𝜎2(𝜔 → 0) with decreasing frequency is 

indicative of perfect transport. Although 𝜎2(𝜔) scales as 1/𝜔 in an ideal 

superconductor, in the cuprates it can deviate from this behavior due to the combined 

effect of the condensate and quasiparticle tunneling [30]. 

For completeness, we also report in Fig. 7.2 [panels (a.1) and (a.2)] the corresponding 

in-plane reflectivity and optical conductivity of LBCO from Ref. [38], where we indicate 

 
Figure 7.2 C-axis and in-plane optical properties of La1.885Ba0.115CuO4 at equilibrium: Frequency-

dependent reflectivity [panels (a.1) and (b.1)] and real part of the optical conductivity 𝜎1(𝜔) [panels 

(a.2) and (b.2)]. The spectral region probed in the current experiment is highlighted in gray. The blue 

arrow indicates the pump wavelength (800 nm) used for excitation.  

 

(a.1) 

(a.2) (b.2) 

(b.1) 
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with an arrow the frequency of our excitation pulses. Unlike the out-of-plane direction, 

the response parallel to the plane is clearly that of a metal (T>TC), being characterized 

by a very high reflectivity (close to unity) toward low frequencies, and by a Drude peak 

in 𝜎1(𝜔).  

7.3 Evaluation of transient optical properties 
 

To measure the transient response of the sample after photoexcitation, we employed 

the same THz time-domain spectroscopy geometry used for the equilibrium 

characterisation. The sample was irradiated at normal incidence with optical pulses of 

~ 100 fs duration and 800 nm wavelength from the same Ti:Sa amplifier which is used 

to seed the THz generation. These optical “pump” pulses were focused on a ≳2-mm-

diameter. Their polarisation and fluence was controlled by a polarizer – waveplate 

combination. THz pulses were used to probe the pump-induced reflectivity changes for 

frequencies between ~ 0.15 - 2.0 THz.  

To measure the pump-induced change, ∆𝐸𝑅(𝑡, 𝜏) = 𝐸𝑅
𝑝𝑢𝑚𝑝𝑒𝑑(𝑡, 𝜏) − 𝐸𝑅(𝑡), the THz 

electric field was acquired at each pump-probe time delay 𝜏. The electro-optic sampling 

signal was filtered with a lock-in amplifier, triggered at the frequency of a mechanical 

chopper used to modulate the optical pump. This measurement yields “pump ON” 

minus “pump OFF” reflected electric field46.  

The stationary field 𝐸𝑅(𝑡), was determined for each measurement by chopping the 

probe beam while keeping the pump ON at negative time delay, that is 𝐸𝑅(𝑡, 𝜏 ≪ 0).  

Since the pump power hitting the sample at negative delays is the same as that used 

to determine ∆𝐸𝑅(𝑡, 𝜏), this procedure allowed us to account for possible average heating 

effects.  

The differential electric field ∆𝐸𝑅(𝑡, 𝜏) and the stationary reflected electric field 𝐸𝑅(𝑡) 

were then independently Fourier transformed to obtain the complex-valued, frequency 

 
46 The time delay 𝑡, refers to the delay between the THz pulse and the optical sampling pulse and 

maps out the THz field reflected off the sample. 
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dependent ∆�̃�𝑅(𝜔, 𝜏) and �̃�𝑅(𝜔). The complex reflection coefficient of the photo-excited 

material, �̃�(𝜔, 𝜏), was determined using the relation,  

∆�̃�𝑅(𝜔, 𝜏)

�̃�𝑅(𝜔)
=  
�̃�(𝜔, 𝜏) − �̃�0(𝜔)

�̃�0(𝜔)
 (7.1) 

here �̃�0(𝜔) is the stationary reflection coefficient and was extracted from the equilibrium 

optical properties as described in section 7.2.   

Due to the mismatch between the penetration depth, 𝑑(𝜔) =
𝑐

2𝜔.Im[�̃�0(𝜔)]
 , of the THz 

probe [d(𝜔 ≃ 0.15 − 2.5 THz) ≃ 50 − 500 𝜇m] and that of the optical pump [d(𝜔 ≃

375 THz) ≃ 0.1 𝜇m for E ∥ ab, and ≃ 0.4 𝜇m for E ∥ c] the raw pump-induced reflectivity 

changes were only ~ 0.5 − 1%. This mismatch was corrected by modelling the response 

of the system in the thin film limit, where we considered a thin homogenously photo-

excited layer sitting above an unperturbed bulk. The complex reflection coefficient of 

such a multilayer system is expressed as [82]: 

�̃�(𝜔, 𝜏) =
�̃�𝐴(𝜔, 𝜏) + �̃�𝐵(𝜔, 𝜏)𝑒

2𝑖𝛿(𝜔,𝜏)

1 + �̃�𝐴(𝜔, 𝜏)�̃�𝐵(𝜔, 𝜏)𝑒2𝑖𝛿
(𝜔,𝜏)

(7.2) 

Here �̃�𝐴(𝜔, 𝜏) and �̃�𝐵(𝜔, 𝜏) are the reflection coefficients at the interfaces 

vacuum/photoexcited layer and photoexcited layer/unperturbed bulk, respectively, 

while 𝛿 = 2𝜋𝑑�̃�(𝜔, 𝜏)/𝜆0 (here, �̃�(𝜔, 𝜏) is the complex refractive index of the 

photoexcited layer and 𝜆0 is the probe wavelength).  

Eq. 7.2 can be solved numerically, thus retrieving �̃�(𝜔, 𝜏) from the experimentally 

determined �̃�(𝜔, 𝜏). The complex optical conductivity for a volume that is 

homogenously transformed can then be calculated using the following relation,  

�̃�(𝜔, 𝜏) =
𝜔

4𝜋𝑖
[�̃�(𝜔, 𝜏) − 휀∞]. (7.3) 

Where 휀∞ represents the screening by interband transitions. For high-Tc cuprates the 

standard value of 휀∞ = 4.5 [83].  
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Figure 7.3 (a) Normal-incidence reflectivity and (b) imaginary optical conductivity (𝜎2) of LBCO11.5 

measured with THz time-domain spectroscopy 1.5 ps (red circles) and 2.5 ps (blue circles) after near-

infrared optical excitation. The same quantities measured at equilibrium are displayed as gray lines. 

Red and blue lines are fits to the data performed with a superconducting and Drude model, 

respectively. (c) Changes in the electric field, Δ𝐸𝑅/𝐸𝑅 (solid blue circles) and (𝜎2)𝜔→0 (solid green 

circles) as a function of fluence (frequency = 0.2 THz, 𝜏 = 1.5 ps). The blue line shows a fit using an 

exponential function.   
 

 

 
(c) 

(a) (b) 
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Note that the temporal resolution of our experiment (~350 fs) is limited by the duration 

of the pump pulse and by the inverse bandwidth of the probe pulse. In all our 

measurements, since the signal develops in ~ 1.5-2 ps, and the relaxation occurs within 

~ 3-5 ps, the possibility of any spectral deformation is negligible [92]. 

7.4 Near-infrared excitation parallel to the Cu-O planes 
 

We first discuss results of in-plane near-infrared (1.55 eV) excitation. The c-axis 

transient reflectivity and imaginary conductivity 𝜎2 spectra, measured 1.5 ps time delay 

after photoexcitation, are shown in Fig. 7.3 (red circles) for a pump fluence of ~2 

mJ/cm2. Remarkably, the plasma resonance displays a prompt blue shift from ~ 0.25 

THz to ~ 0.5THz (Fig. 7.3(a), red circles). Correspondingly, an enhancement of 𝜎2 is 

observed which reflects an increase in interlayer Josephson coupling (Fig. 7.3(b), red 

circles).  

At 𝜏 = 2.5 ps we observe a relaxation to a state in which coherence is reduced, 

characterized by a broader edge in reflectivity (Fig. 7.3(a), blue circles) and the absence 

of a divergence in 𝜎2 (Fig. 7.3(b), blue circles). The transient spectra could be fitted 

assuming a superconducting model for 𝜏 = 1.5 ps (Fig. 7.3, red lines), while in the 

relaxed state a Drude model with a finite carrier scattering time in the picosecond range 

had to be employed (Fig. 7.3, blue lines). A more detailed explanation of the fitting 

procedure for the above datasets is given in sections 7.5 and appendix A.2.   

Importantly, we take here the low-frequency limit of the imaginary part of the 

conductivity (𝜎2)𝜔→0, as well as the change in the reflected electric field at the peak of 

the THz response Δ𝐸𝑅/𝐸𝑅 to estimate the fluence-dependent Josephson interlayer 

coupling. As shown in Fig 7.3(c), both these quantities show signatures of a saturation 

~ 0.8 mJ/cm2, suggesting a threshold for enhancement in the interlayer coupling. 

The enhancement of the superconducting response upon above gap optical excitation 

is surprising given that the process certainly generates high-energy hot quasiparticles 

[70]. For LBCO11.5, one may rationalize the process occurring here as follows: First, the 
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frustration of interlayer Josephson coupling due to the competing stripe phase is 

presumably removed by optical excitation, which promptly melts the charge order. This 

leads to an enhancement of the superconducting response (blue shift of the plasma 

resonance). Only at later delays, the role of hot quasiparticles sets in, resulting in a 

broadening, and eventually in the disappearing of the plasma resonance.   

Notably, since light polarized out-of-plane is supposed to couple less efficiently to 

quasiparticle excitations in quasi-2D superconductor like high-Tc cuprates, whilst still 

perturbing the competing stripe phase, we have decided to also explore this different 

excitation geometry with the goal of optimizing optically enhanced superconductivity 

in LBCO.  

7.5 Optimising enhancement of interlayer coupling by near-infrared excitation 
 

The c-axis transient reflectivity, [Fig. 7.4 panels (a.1), (b.1), (c.1), (d.1)] measured 1.5 

ps (red) after photoexcitation for a pump fluence of ~ 2 mJ/cm2 is displayed alongside 

the same quantity at equilibrium (gray). Here, unlike the case of in-plane excitation 

(see previous Section), we have extended our study to carefully determine the 

temperature dependence of the transient dynamics, crossing all relevant phases in this 

compound. 

Below TC [panel (a.1)] a prompt blue shift of the equilibrium JPR from ~ 0.2 to 0.6 

THz was observed after out-of-plane excitation, similar to that reported for in-plane 

pumping [see Fig. 7.3 (a)]. Even more remarkably, in the spin-ordered phase [panel 

(b.1)] above TC, where no edge is observed at equilibrium, an edge appeared at ~0.5 

THz immediately after photoexcitation. A similar effect, although less evident, was 

present also above TSO [panel (c.1)], where a reflectivity edge appeared near ~0.4 THz. 

No appreciable photoinduced dynamics could be measured above TCO [panel (d.1)].   

The combined coherent and incoherent response of the photoexcited state can captured 

by plotting the frequency- and time-delay-dependence of the energy loss function 

−Im[(1/휀̃(𝜔, 𝜏)]. The loss function exhibits a peak where 휀̃ crosses zero, that is, at the  
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the frequency of the plasma resonance. The width of the loss function reflects the 

scattering rate or, equivalently, the inverse coherence length for superconducting 

tunneling. The complete time-dependent response of the energy loss function 

−Im[(1/휀̃(𝜔, 𝜏)] is shown in the color plots of Fig. 7.4 while selected line cuts (showing 

specific time delays) are shown in the panels [(a.2), (b.2), (c.2), (d.2)].  

Below TC the loss-function peak was found to continuously shift from its equilibrium 

value (~ 0.2 THz) toward higher frequencies, up to ~ 1.2 THz (at ~ 2.5 ps delay) 

before relaxing back to lower values. Also, for TC <T <TSO [panel (b.2)] a well-

developed loss-function peak (absent at equilibrium), appeared in the perturbed 

material, continuously broadening and shifting first to the blue and then to the red at 

 Figure 7.4. THz reflectivity of LBCO displayed at different temperatures at equilibrium (gray) and 

1.5 ps after excitation (red). Data in panels (a) and (b) have been taken with a pump fluence of ~2 

mJ/cm2 (a saturation in the fluence dependence of the pump-induced changes was found above ~1 

mJ/cm2). Energy loss function −Im[(1/휀̃(𝜔, 𝜏)] of La1.885Ba0.115CuO4 as a function of temperature and 

pump-probe delay. The lower panels show its evolution throughout the light-induced dynamics. The 

middle panels show selected line cuts at negative (gray), +1.5 ps (red), and +5 ps (blue) time delay.  

(a.1) 

(a.2) 

(b.1) 

(b.2) 

(c.1) 

(c.2) 

(d.1) 

(d.2) 
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longer time delays. All light-induced effects progressively reduce with increasing T and 

completely disappear after crossing TCO [panels (c.2) and (d.2)].  

Further analysis is reported in Fig. 7.5, where the transient optical conductivity 

𝜎1(𝜔) +  𝑖𝜎2(𝜔) is displayed for T = 5 K [panels (a.1) and (a.2)], and T = 30 K [panels 

(b.1) and (b.2)] at three selected pump-probe delays: 𝜏 < 0 (equilibrium), 𝜏 = 1.5 ps, 

and 𝜏 = 5 ps. In the superconducting state at equilibrium, a fully gapped 𝜎1(𝜔) [Fig. 

7.5(a.1), gray curve] and a 𝜎2(𝜔) that turns positive and increases with decreasing 𝜔 

is shown [Fig. 7.5(a.2), gray curve]. At about 1.5 ps after photoexcitation (red curves), 

a strong enhancement in 𝜎2(𝜔) was observed down to the lowest measured frequency, 

while 𝜎1(𝜔) remained gapped. This complex conductivity behavior underscores the 

increase in the superconducting coupling between layers and is incompatible with a 

charge excitation scenario. Indeed, the light-induced conductivity changes saturate with 

fluence (at ~ 1 mJ/cm2) and do not follow the response of an incoherent plasma excited 

above a semiconducting gap. At later delays (𝜏 = 5 ps, blue curves), a relaxation toward 

a more incoherent state is observed. 

The same qualitative behavior was found at 30 K, where the system is insulating at 

equilibrium. After photoexcitation, 𝜎2(𝜔) shows a strong light-induced enhancement at 

low frequency, turning positive and increasing with decreasing ω down to the lowest 

measured frequency, strongly resembling the response observed below Tc. These 

transient properties could be quantified by fitting the optical response with a Drude 

model: 

𝜎1(𝜔) +  𝑖𝜎2(𝜔) =
𝜔𝑃
2

4𝜋

𝜏𝑠
1 − 𝑖𝜔𝜏𝑠

 (7.4) 

where 𝜔𝑃 is the plasma frequency and 𝜏𝑠 is the carrier scattering time. The background 

in the optical spectra, mainly caused by phonon absorptions [see Fig. 7.2(b.1) and (b.2)] 

was simulated by adding high-frequency Lorentz oscillators chosen for the equilibrium 

compound and kept constant in all fits (see appendix A.2). Examples of these fits are 

reported as dashed lines in Figs. 7.5 (b.1) and (b.2).  



7 Photoinduced Enhancement of Josephson coupling in LBCO 

 

102 

 

 

Figure 7.5. [Panels (a.1), (a.2), (b.1), (b.2)] Complex optical conductivity of La1.885Ba0.115CuO4 at 5 

K and 30 K, shown at different pump-probe delays, for a fluence of 2 mJ/cm2. In panels (b.1) and 

(b.2) examples of fits with a Drude model (black dots) and with a perfect-conductor model (red dots) 

are displayed. [Panels (a.3), (a.4), (b.3), (b.4)] Parameters extracted from the Drude fits as a function 

of pump-probe delay. The gray shaded region indicates the insulating regime (no Drude fit possible). 

The red shaded area refers to the highly coherent state. 
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Remarkably, the experimental data could be well reproduced at all temperatures and 

time delays. The extracted fit parameters, i.e., the screened plasma frequency �̃�𝑃 =

𝜔𝑃/√휀𝐹𝐼𝑅 (where 휀𝐹𝐼𝑅 ≃ 30; see Ref. [38]) and the scattering time 𝜏𝑠 are displayed in 

Figs. 7.5 [panels (a.3), (a.4), (b.3), and (b.4)].  

Below Tc [panels (a.3) and (a.4)] and at delays 𝜏 ≲ 1.5 ps the transient optical 

properties are described by a Drude model with scattering time 𝜏𝑠 > 5 ps, or with the 

spectrum of a superconductor with 𝜏𝑠 → ∞: 

𝜎1(𝜔) +  𝑖𝜎2(𝜔) =
𝜔𝑃
2

8
𝛿[𝜔 = 0] +

𝜔𝑃
2

4𝜋

𝑖

𝜔
 (7.5) 

Similar dynamics can be extracted also from the fits to the 30 K data [panels (b.3) and 

(b.4)] where, from the insulating ground state (gray region), a state with high-mobility 

carriers (𝜏𝑠 > 5 ps) is induced, whose optical properties are compatible with those of a 

transient superconductor. At longer time delays (𝜏 ≳ 2 ps), the system relaxes into a 

state only quantitatively different, in which coherence is reduced. Here the data can be 

fitted with a finite carrier scattering time 𝜏𝑠 ~ 5 ps, reducing to 𝜏𝑠 ~ 1 ps at later 

delays. At the same time, �̃�𝑃 continues to increase, exceeding 1 THz at 𝜏𝑠 ≃ 2.5 ps, 

and then relaxing back to about 0.5 THz.  

It is important to emphasis that within the frequency range over which the optical 

response of the transient state can be defined (𝜔 ≳ Γ = 1 𝜏𝑠⁄ ), a transient 

superconductor with lifetime 𝜏𝑠 and a normal conductor with a momentum relaxation 

rate Γ = 1 𝜏𝑠⁄  are indistinguishable. However, despite this ambiguity we 

describe/attribute the transient state in our experiments as a transient superconducting 

state for the following reasons: 

1. We observe a continuous transformation from a weak superconductor at 

equilibrium as evidenced by a Josephson Plasma resonance, into a qualitatively 

identical phase with a blue-shifted resonance. At early time delays (𝜏 ≲ 2 ps), 

the width of this resonance is essentially limited by our frequency resolution, 

giving 1 Γ⁄  values more than ~ 5-10 ps, which corresponds to carrier mobilities 



7 Photoinduced Enhancement of Josephson coupling in LBCO 

 

104 

 

≳ 104 cm2(Vs)-1. Such high values are unprecedented for out-of-plane transport 

in highly resistive normal state oxide [94].  

2. At later time delays (𝜏 ≳ 2-3 ps), the momentum relaxation rates extracted from 

the Drude fits, 1 Γ⁄ ≈ 1 ps, are still anomalously high for conventional incoherent 

charge transport, and are instead suggestive of a strongly fluctuating 

superconducting state [95,96], which may persist for several picoseconds after 

photo-excitation.  

3. Lastly, from the frequency of the Josephson plasma resonance we can determine 

the Cooper pair density along the c-axis. The fact that such high mobility 

transport in the transient state occurs at a Cooper pair density which is 

comparable to that of the same compound at equilibrium, gives further credence 

to the picture of optically enhanced superconducting transport in photo-excited 

La1.885Ba0.115CuO4.   

 

In summary we show that superconducting interlayer coupling, which coexists with and 

is depressed by stripe order in La1.885Ba0.115CuO4, can be enhanced by excitation with 

near-infrared laser pulses. For temperatures lower than Tc = 13 K, we observe a blue 

shift of the equilibrium Josephson plasma resonance, detected by terahertz-frequency 

reflectivity measurements. Key to these measurements is the ability to probe the optical 

properties at frequencies as low as 150 GHz, detecting the weak interlayer coupling 

strengths. For T > Tc a similar plasma resonance, absent at equilibrium, is induced up 

to the spin-ordering temperature TSO ≃ 40 K. Furthermore, enhancement of the below-

Tc interlayer coupling and its appearance above Tc are preferentially achieved when 

the near-infrared pump light is polarized perpendicular to the superconducting planes, 

likely due to more effective melting of stripe order and the less effective excitation of 

quasiparticles from the Cooper pair condensate when compared to in-plane excitation.
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Summary and Outlook  
 

In the work presented in this thesis, by using a combination of x-ray and optical 

spectroscopies we were able to establish a causal link and a hierarchy of timescales 

between rearrangement of the crystal structure, melting of stripe charge order, and 

enhanced superconducting phase rigidity, in stripe ordered La1.885Ba0.115CuO4. 

The measurement of both TR-RSXD and THz time-domain spectroscopy, under the 

same near-infrared excitation conditions, allows the first direct comparison of the time 

scales involved in the dynamics. The interlayer coupling enhancement, which develops 

in ∼1 ps following photoexcitation, is strongly connected with the stripe order melting. 

On the other hand, the lattice dynamics start to develop on considerably longer 

timescales (>10 ps). 

Additionally, the pump fluence dependence of the change in diffraction peak intensities 

(Δ𝐼𝜏/𝐼0) for the stripe and LTT distortion diffraction peaks shown in Fig. S.1(a) 

establishes that at ∼0.8 mJ/cm2 the melting of the stripe ordering saturates whereas 

the LTT distortion remains largely intact. These changes can then be compared with 

the fluence-dependent Josephson interlayer coupling enhancement Fig. S.1(b), 

estimated by the increase in the low-frequency limit of the imaginary part of the 

conductivity (𝜎2)𝜔→0 and by the change in the reflected electric field (∆𝐸𝑅/𝐸𝑅) at the 

peak of the response. These results confirm the causal link between stripe melting and 

superconductivity enhancement, as both the (0.23 0 0.65) diffraction peak and the 𝜎2 

response show a clear saturation at ∼0.8 mJ/cm2 fluence, which is not present for the 

(0 0 1) peak. 

Though a conventional interpretation of competing charge-density wave and 

superconducting order posits that the two orders interact on energy scales 

commensurate with the ordering temperatures (∼10 meV). This is not the case here 
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Figure. S.1. (a) Fluence dependence of the (0.23 0 0.65) charge-ordering diffraction peak and (001) 

LTT distortion diffraction peak intensity after photoexcitation with 𝜏 = 350 ps. The error in the 

fluence indicates the uncertainty in the pump beam diameter at the sample position. The red line 

shows a quadratic fit whereas the black line shows an exponential fit to the data. (b) Changes in the 

electric field, ΔER/ER (blue circles) and (𝜎2)𝜔→0 (green circles) as a function of fluence (frequency = 

0.2 THz, 𝜏 = 1.5 ps). The blue line is an exponential function. 
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where interactions on a high-energy scale compete and cooperate to provide order at 

far lower energies. 

Lastly, the polarization-selective character of the enhanced coherent response is 

highlighted in Fig. S.2, where the transient optical conductivity at 30 K (red) is 

compared with that obtained after excitation with light polarized in the CuO2 planes 

(black). Although a coherent response, attributable to a transiently enhanced 

Josephson tunneling, is certainly present for excitation parallel to the Cu-O planes, this 

appears to be enhanced and “optimized” for out-of-plane pumping. This aspect is 

evidenced not only by the stronger low-𝜔 increase in 𝜎2(𝜔), but also by the much-

reduced quasiparticle response in 𝜎1(𝜔). 

Qualitatively the preferential enhancement of interlayer coherent coupling can be 

explained as light polarized out of plane does not couple to quasiparticle excitations in 

two-dimensional superconductors and is expected to couple only weakly in the quasi-

two-dimensional case of cuprates. However, because of the peculiar arrangement of 

charge order in LBCO, in which parallel stripes in planes 1 and 3 (and 2 and 4) are 

shifted by 𝜋, coupling to the charge stripes and dipole activity is expected for 

polarization perpendicular to the planes [97]. 

 Figure S.2. (Color online) Complex optical conductivity of La1.885Ba0.115CuO4 at 30 K, 1.5 ps after 

optical excitation with light polarized perpendicular (red) or parallel (black) to the CuO2 planes. Data 

are taken with the same pump fluence of 2 mJ/cm2. 
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More generally, our results show how the use of light to switch between different 

symmetries in complex materials can provide microscopic information on the stability 

of individual orders and complement linear spectroscopies in important ways. The 

collapse of stripe order along with the concomitant emergence of an improved 

superconducting phase should encourage further work to reveal the nature of the charge 

transfer process. Systematic studies of the conditions required to depress stripe order 

using charge transfer may become effective for high-speed devices in which the 

electrical, optical, and magnetic properties of highly correlated materials can be 

modified using near-infrared light. 
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Appendix 

 

A.1 Crystal Growth 
 

 

Figure A.1. Schematic of the vertical cross section of a floating-zone furnace [98]. 

Single crystals of LBCO were grown using Traveling Solvent Floating Zone technique 

(TSFZ). TSFZ allows for the growth of large crystals with high melting point and a 

major advantage of this technique over others is that crystals can be grown without 

coming in contact with other materials, like crucibles, which eliminates the main source 

of contamination.  

The crystals are grown inside an infrared radiation furnace equipped with two large 

ellipsoidal gold mirrors and halogen lamps. The light from the lamps is focused onto 

the melt, yielding a sharp temperature gradient around the molten zone, thereby 

providing stable conditions during the growth. The melt is situated between the 

polycrystalline feed rod and seed rod, which rotate counter to each other to ensure a 

homogenous mixing and temperature distribution inside the molten zone. In addition, 

the feed and seed rod are enclosed inside a quartz tube, giving a controlled atmosphere 

for crystal growth. A slow vertical translation of the feed rod initiates crystal growth, 



Appendix 

 

110 

 

which effectively corresponds to a melt traveling along the feed rod and thus the name 

Traveling Solvent Floating Zone.  

The recipe used for growing single crystals of La2-xBaxCuO4 that were measured in the 

thesis is the following: the raw materials for the feed and seed rod are powders of La2O3, 

BaCO3 and CuO. The powders are mixed in their metal ratios, ground in an agate 

mortar and then calcined in air at 970 oC for 24 hrs. This process was repeated three 

times. Thereafter, the powders are put into thin-walled rubber tubes and 

hydrostatically pressed at 4 kbars. The last step involves sintering in air for 48 hrs so 

as to obtain compact, high density rods.  

The fed and seed rods are put inside the furnace and crystal growth is carried out under 

specific O2 pressure, which depends on the desired doping of Ba. The vertical 

translation rate of the zone was 1.0 mm/hr and the rotation speed of the feed rod and 

grown crystal was 30 rpm.  
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A.2 Fitting Procedure 
 

All transient optical spectra reported in this work was fitted either with a model 

describing a Josephson Plasma or with a Drude model for metals. For each data set 

taken at a specific temperature and pump-probe delay, the transient reflectivity, 𝑅(𝜔), 

and the real and imaginary part of the optical conductivity, 𝜎1(𝜔) and 𝜎2(𝜔), 

respectively, were fitted concurrently with a single set of parameters.  

The phonon modes in the far- and mid-infrared spectral range (5 THz ≲ 𝜔 ≲ 20 THz) 

and the high frequency electronic absorption (𝜔 ≳ 100 THz) were fitted from the 

equilibrium spectra with Lorentz oscillators, for which the complex dielectric function 

is expressed as  

휀�̃�𝐹(𝜔) =∑
𝑆𝑖
2

(Ω𝑖
2 − 𝜔2) − 𝑖𝜔Γ𝑖𝑖

 , 

And kept fixed throughout the whole analysis. Here, Ω𝑖, S𝑖, and Γ𝑖 are central frequency, 

strength, and damping coefficient of the ith oscillator, respectively.  

An additional term in the model was introduced for the low-frequency spectral range 

(𝜔 ≲ 2.5 THz), which was directly probed in our pump-probe experiment. For all data 

taken at long time delays (𝜏 ≳ 2 ps), for which the reflectivity edge appeared broadened, 

the transient optical spectra could be well reproduced by a simple Drude term. The full 

complex dielectric function used in this case is expressed as  

휀�̃�(𝜔) = 휀∞ [1 −
𝜔𝑝
2

𝜔2 + 𝑖𝜔Γ
] + 휀�̃�𝐹(𝜔) 

Where 𝜔𝑝 and Γ are the Drude plasma frequency and momentum relaxation rate, which 

were left as free parameters for the fit, while 휀∞ was kept fixed to 4.5, a standard value 

for high-Tc cuprates [83]. 

For the early time delays, a model describing the optical response of a Josephson 

Plasma at equilibrium used to fit the data and compare results. This model was also 
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employed to reproduce the equilibrium spectra in the superconducting state and was 

able to fully capture all the main features – sharp edge in 𝑅(𝜔), a gapped 𝜎1(𝜔), and 

a diverging 𝜎2(𝜔) at low frequencies – observed at early time delays in our experiment.  

The full dielectric function for this model is expressed as  

휀�̃�(𝜔) = 휀∞ [1 −
𝜔𝐽
2

𝜔2
] + 휀�̃�(𝜔) + 휀�̃�𝐹(𝜔) 

Here, the free fit parameters are the Josephson Plasma frequency, 𝜔𝐽, and 휀�̃�(𝜔), a 

weak “normal fluid” component [99] (overdamped Drude term), which was introduced 

to replicate the small positive offset in 𝜎1(𝜔). 
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