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Alkali-doped fullerides are strongly correlated organic superconductors that exhibit high transition
temperatures, exceptionally large critical magnetic fields, and a number of other unusual properties. The
proximity to a Mott insulating phase is thought to be a crucial ingredient of the underlying physics and may
also affect precursors of superconductivity in the normal state above Tc. We report on the observation of a
sizable magneto-thermoelectric (Nernst) effect in the normal state of K3C60, which displays the
characteristics of superconducting fluctuations. This nonquasiparticle Nernst effect emerges from an
ordinary quasiparticle background below a temperature of 80 K, far above Tc ¼ 20 K. At the lowest fields
and close to Tc, the scaling of the effect is captured by a model based on Gaussian fluctuations. The
behavior at higher magnetic fields displays a symmetry between the magnetic length and the correlation
length of the system. The temperature up to which we observe fluctuations is exceptionally high for a three-
dimensional isotropic system, where fluctuation effects are expected to be suppressed.
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Recent work suggests that the exceptional properties of
alkali-doped fulleride superconductors, A3C60, result from
an unusual cooperation between electron-phonon and
electron-electron coupling [1–4]. The former is primarily
governed by a dynamical Jahn-Teller distortion of the C60

molecules, leading to an inverted Hund’s coupling between
electrons, while the latter contributes to a suppression of the
effective bandwidth. With increasing lattice spacing, super-
conductivity in A3C60 acquires a “domelike” Tc, eventually
evolving into a Mott insulator with an antiferromagnetic
ground state [5,6]. Unlike other high-temperature super-
conductors, however, A3C60 features no anisotropy and
displays the characteristics of an s-wave superconductor.
Additionally, A3C60 seems to follow the Uemura relation

[7,8], with a transition temperature Tc proportional to the
superfluid density, suggesting that the loss of long-range

phase coherence may be responsible for the disappearance
of superconductivity atTc. Yet, someuncertainty remains on
this assignment because of the large spread of experimen-
tally determined superfluid densities in A3C60 [9,10].
In K3C60 [see Fig. 1(a)], observables such as the specific

heat and the pressure dependence of Tc suggest that the
material may be well described by weak-coupling BCS
theory [9,10], but discrepancies in the size and temperature
dependence of the superconducting gap remain [11]. Very
recent measurements in few-layer thin films of K3C60 have
reported the appearance of a pseudogap up to about twice
Tc [12].
Finally, upon illumination with midinfrared laser pulses,

optical properties compatible with superconductivity have
been observed in K3C60 at temperatures that exceed Tc by
an order ofmagnitude [13–16], further underscoring a highly
unusual normal state. Recent experiments have also provided
suggestive magnetic anomalies when Rb3C60 interacts with
electromagnetic vacuummodes in an optical cavity [17].One
of the proposed mechanisms for these phenomena suggests
that the effect of the light field consists in synchronizing
preexisting, but phase-incoherent, Cooper pairs [15,18,19].
The magneto-thermoelectric effect known as the Nernst
effect offers a powerful probe of the presence and nature
of Cooper pairs above Tc [20].
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The Nernst effect describes the appearance of an electric
field, Ey ¼ −N∂xT, transverse to an applied temperature
gradient, ∂xT, and to a magnetic field Bz pointing along the
third spatial direction. The Nernst signal N is related to the
conductivity and thermoelectric tensors, σ and α, via

N ¼ αxyσxx − αxxσxy
σ2xx þ σ2xy

≈
αxy
σxx

− SμHBz ð1Þ

for an isotropic system. Here, μH ¼ σxy=ðσxxBzÞ denotes
the Hall mobility and S ¼ αxx=σxx the Seebeck coefficient.
The approximate equality holds for small Hall angles and is
an excellent approximation for the parameters used in
this work.
For a metal, the effect can be seen as a combination of a

flow of charges carrying entropy along a temperature
gradient (the Seebeck effect) and the deflection of moving
charges in the presence of a magnetic field (the Hall effect)
[see Fig. 1(b)]. However, with exact particle-hole sym-
metry, the two terms in Eq. (1) would cancel exactly [21].
The overall sign and amplitude of the effect depend on the
details of the quasiparticle band structure, to which the
Nernst signal is very sensitive. The expected magnetic field
dependence is linear. In the free-electron approximation,
this signal is linear in temperature as well.
In a superconductor, a different contribution to the

Nernst effect arises from the movement of superconducting
vortices. When these mobile vortices carry entropy along
the applied temperature gradient [see Fig. 1(b)], they also
carry magnetic flux, which induces a voltage in the trans-
verse direction [20]. This effect is characterized by a highly
nonlinear dependence on Bz, perhaps owing to a competi-
tion between vortex density and vortex mobility.
If, at Tc, superconducting long-range order breaks down

because of fluctuations of the phase of the order parameter
while a finite Cooper pair amplitude remains, this vortex
Nernst effect would be expected to survive at temperatures

above Tc. However, even for a transition driven by a
thermal breakdown of Cooper pairing, the thermal diffusion
of short-lived Cooper pairs may also contribute to the
Nernst signal above Tc [20,22,23].
In a number of materials, the superconducting contri-

bution to the Nernst effect is much larger than its quasi-
particle counterpart. Even precursors of superconductivity
may exceed the quasiparticle background [20,23–28].
However, this cannot be assumed to be the case, in general
[29,30]: The largest Nernst effect observed so far originates
from quasiparticles in bismuth [20,31,32]. A careful
analysis of the field and temperature dependence of the
Nernst effect is therefore required to distinguish different
contributions [27,33].
In general, the presence of such precursors of super-

conductivity is expected to be suppressed as the dimension-
ality of the system increases. Indeed,Nernst signals that could
be related to superconducting precursors have been reported
in layered materials, where the interlayer superconducting
coherence length is short [24,25,27,33–39], and in thin-
film samples with a thickness smaller than or comparable to
the coherence length [23,26,28]. However, we are not aware
of any previous observations in a microscopically isotropic
and macroscopically three-dimensional system.
Interestingly, K3C60 and Rb3C60 were the first fully

three-dimensional materials where slight deviations of the
normal state conductivity in the immediate vicinity of Tc
could be attributed to paraconductivity [40].
In the experiments reported in this paper, air-sensitive

K3C60 powders were compressed into pellets (see
Appendix A) and incorporated into a circuit board printed
on an FR4 substrate, which features low thermal conduc-
tivity. Embedded heaters and temperature sensors, as well
as indium-coated contacts with contact resistances below
1 Ohm, were used to optimize these measurements (see
Appendix B and Fig. 6). Four-probe resistance measure-
ments (see Appendix C) were used to identify the super-
conducting transition, as shown in the inset of Fig. 2(a). In
the zero field, we found TcðB ¼ 0Þ ¼ 19.8 K, in good
agreement with previous reports and with magnetic mea-
surements on the same batch of samples [9,10,14]. A
Werthamer-Helfand-Hohenberg (WHH) theory [41] was
used to extrapolate the zero-temperature upper critical field,
μ0Hc2ð0Þ, from the field dependence of the resistive
transition via μ0Hc2ð0Þ ¼ 0.69μ0Tcð∂Hc2=∂TÞjTc

, where
μ0 denotes the vacuum permeability. This yielded a value of
about 39 T, corresponding to a zero-temperature coherence
length of ξ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0=2πμ0Hc2ð0Þ
p ¼ 2.9 nm (here, Φ0 is

the magnetic flux quantum). This lies within the range of
values extrapolated from other experiments [9,10] and
closely matches the value recently determined using pulsed
fields in a range exceedingHc2 [42]. Importantly, this value
is also orders of magnitude smaller than the thickness of the
sample or the powder grain size (see Appendix A), meaning
that the description of the sample remains fully three
dimensional throughout.

FIG. 1. Probing the Nernst effect in K3C60. (a) The fcc lattice
structure of K3C60, with potassium atoms shown in gray and
carbon buckyballs in green. (b) Schematic of the measurement
configuration. A temperature gradient∇T is applied orthogonally
to the external magnetic field B. The voltage V is then measured
orthogonally to both. Cartoons of various possible contributions
to the Nernst signal, such as quasiparticles (left), short-lived
Cooper pairs (center), and mobile vortices (right), are included.
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As expected, no Nernst signal (N) is observed for
temperatures far below Tc, likely due to freezing of vortex
motion. For higher temperatures, entering the temperature
range where vortices become mobile, the signal is seen to
increase [see Fig. 2(a)]. For a given magnetic field, the
number of vortices in the system remains nearly constant
(as all fields in our measurements are much larger than the
lower critical field), but their mobility increases rapidly.
Near Tc, the Nernst signal reduces again. A detailed
quantitative understanding of this well-known phenomenon
is still lacking—both the increasing vortex-vortex inter-
actions that appear as vortex length scales increase and a
change in the entropy per vortex are relevant [20,43].
However, very recent results suggest that an upper bound
for this vortex Nernst effect may exist, and various

superconductors spanning several orders of magnitude in
critical fields and temperatures show signals that peak close
to this bound [28]. Although the amplitude of N does not
yet saturate at 15 T, the largest magnetic field achieved in
our measurement, the value it seems to approach agrees
with this upper bound—a quantitative discussion is found
in Appendix D.
As a function of magnetic field, the Nernst signal in the

superconducting phase is strongly nonlinear [see Fig. 7(a)]
and peaks at a field Bmax that reduces on approaching the
critical temperature. This reduction fits very well to a linear
function with a slope of −2.27ð3Þ T=K; see Fig. 4(a). It
displays a zero-field intersect at T ¼ 19.5ð1Þ K, close to
the resistive critical temperature TcðB ¼ 0Þ ¼ 19.8 K.
Note that Bmax has previously been shown to bear some
similarity to a softening mode [20,29], and its vanishing
value when approaching Tcð0Þ suggests that the Nernst
effect changes in nature when crossing Tc. Above Tc, this
nonlinear magnetic field dependence persists and is com-
patible with the existence of a “ghost critical field”—more
details are provided in Appendix E.
Above Tc, precursors of superconductivity may contrib-

ute to the Nernst signal, but quasiparticles can also play a
role. The latter contribution is expected to scale linearly
with magnetic field and temperature (at constant volume)
for a simple metallic state [21].
We therefore used the temperature- and magnetic-field-

normalized Nernst signal, N ¼ N=BT ¼ ν=T, in order
to distinguish superconducting and quasiparticle con-
tributions. Here, ν ¼ N=B denotes the magnetic-field-
normalized Nernst signal, generally referred to as the
“Nernst coefficient.”
In Fig. 3(a), N is shown to evolve smoothly across Tc,

remaining positive and retaining a strong field dependence,
as expected for a signal that is primarily caused by
superconducting fluctuations. Strikingly, the inset in
Fig. 3(a) shows that N displays near-universal behavior
upon approaching the field-dependent critical temperature
TcðBÞ [see also Figs. 4(b) and 7(d)]. Theoretical work on
two-dimensional systems [44–46] predicted such behavior
close to the phase transition given by TcðBÞ, and our results
suggest that this also holds in three dimensions.
At higher temperatures, we observed two characteristic

features in the data [see Fig. 3(b)]. First, at T0ðBÞ ≈ 50 K,
the signal changed from positive to negative. The temper-
ature of the zero crossing, T0ðBÞ, hence denotes the point
where the superconducting and the quasiparticle contribu-
tions to the Nernst effect have the same magnitude. Note
that T0ðBÞ shows a field dependence similar to TcðBÞ [see
Fig. 4(a)]. This suggests that the aforementioned observa-
tion, that the Nernst effect close to the phase transition
tracks the field-dependent critical temperature TcðBÞ, still
remains visible at much higher temperatures.
Second, a minimum in N appears at TminðBÞ ≈ 80 K,

above which N shows a linear and positive slope. In order

FIG. 2. Nernst signal in the superconducting regime. (a) Mea-
sured transverse thermoelectric effect N in the presence of
magnetic fields ranging from 1 T (gray line) to 15 T (blue line),
in steps of 1 T. The red dashed line shows the critical temperature
in the zero field. Inset: sample resistance near the critical
temperature, 0 T (black) to 15 T (blue) range. (b) Contour plot
of N as a function of temperature and magnetic field. The black
dotted line shows the resistive TcðBÞ. A Gaussian convolution
was used for smoothing, and in the low-T, low-B region, the data
are sparse and interpolated. See Fig. 7(b) for raw data and the
field-normalized N=B.
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to disentangle the superconducting contribution to N , we
first focus on the high-temperature limit, where the quasi-
particle contribution should become dominant. We can
compare the behavior of N in this regime to the expected
signal in a single-band free-electron model of a metal,
jN j ∼ μHS=T, with a prefactor of order unity [21]. This
relationship implies that the Nernst effect is proportional to
the ratio of the mobility and the Fermi energy in the metal,
which was found to hold in a variety of materials, with N
ranging from 1 mV=K2T down to 1 nV=K2T [20]. We use
previously determined values for the T-linear S and μH
[47,48], where the latter shows a linear dependence on
temperature that has been shown to scale with the expan-
sion of the lattice. As shown in Fig. 3(b), we find excellent
agreement with our data above Tmin, using a quasiparticle
contribution of −2.7μHS=T, and no discernible field

dependence of N . Given the complex band structure of
K3C60, the agreement with such a simple scaling is
remarkable. It extends its range of validity to values of
N as low as 20 pV=K2T, which are 2 orders of magnitude
smaller than those reported so far [20].
The rapid change in the slope of N around 80 K

indicates a significant change in the electronic properties
of the material. Such a change could, in principle, be caused
by the appearance of charge-density wave order [49], and in

FIG. 3. Nernst effect above Tc. (a) Temperature and magnetic-
field normalized Nernst signal N close to Tc (red dashed line).
Open symbols show the raw data; lines are 10-point boxcar
averages for 5 T, 10 T, and 15 T (gray to blue). Inset: same data
rescaled with the field-dependent TcðBÞ. (b) N at higher temper-
atures, after 10-point boxcar averaging (note the reduced y scale).
The red curve corresponds to the quasiparticle contribution
−2.7μHS=T.

FIG. 4. Superconducting Nernst effect vs temperature and B
field. (a) Characteristic quantities extracted from the Nernst
signal: Bmax denotes the fitted peak of NðBÞ [see Fig. 2(b)];
T0 and Tmin are the zero crossing and minimum of N ,
respectively; Tc denotes the resistive superconducting transition
temperature. All lines are linear fits. Error bars indicate fit
uncertainties. (b) Quasiparticle subtracted contribution to the
Nernst coefficient νS as a function of dimensionless distance to
the critical temperature ϵ and dimensionless field h. The black
dotted line shows TcðBÞ; the gray dashed line is h ¼ ϵ. (c) νS as a
function of correlation length ξ and magnetic length l̃B. The
dashed line shows l̃B ¼ ξ.
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a number of cuprate superconductors, a very similar feature
was found to coincide closely with the pseudogap temper-
ature T� [27]. In K3C60, a transition to a frozen orientational
disorder of the C60 molecules is known to occur but at a
temperature very close to 200 K [50,51]. There are no
observations pointing at the appearance of competing orders
around 80 K, although it is worth noting that a certain
deviation from linearity has been observed in the Seebeck
effect, which has been attributed to electron-phonon cou-
pling or precursors of superconductivity [47,52,53].
An effect related to the superconducting ground state

seems much more likely, given that the magnetic field
dependence of the Nernst effect in this regime tracks TcðBÞ.
In order to further explore the magnetic-field dependence of
the effect, in Fig. 4(b) we plot the quasiparticle-subtracted
Nernst coefficient νS ¼ NS=B ¼ N=Bþ 2.7μHS as a func-
tion of the dimensionless temperature distance to the
critical temperature ϵ ¼ T=Tcð0Þ − 1 and the dimension-
less magnetic field h ¼ B=μ0H̃c2. Here, we use the
Ginzburg-Landau critical field, which is based on the
low-field extrapolation H̃c2 ¼ μ0Tcð∂Hc2=∂TÞjTc

. It differs
from the WHH extrapolation by a factor of 0.69 (see
Ref. [46] for details and for the expected universal behavior
of the two-dimensional Nernst effect in these units). Close
to the critical line (given by h ¼ −ϵ for h ≪ 1), the Nernst
coefficient depends only on the dimensionless distance
normal to the critical line. Above Tcð0Þ (i.e., for ϵ > 0), we
observe an approximate symmetry with respect to the gray
dashed line where h ¼ ϵ.
A physical explanation for this symmetry has been

suggested in previous work on two-dimensional systems
[44–46,54]. In the normal state, the superconducting
contribution to the Nernst effect is determined by a single
function of two length scales: the (temperature-dependent)
Ginzburg-Landau correlation length ξ ¼ ξ0=

ffiffiffi

ϵ
p

and the
magnetic length l̃B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2eBÞp ¼ lB=
ffiffiffi

2
p

, where e is the
electron charge and ℏ the reduced Planck constant [55]. In
the low-field limit (where the magnetic length is large), the
Nernst coefficient is determined only by the correlation
length (see below), and it increases as the correlation length
becomes longer when approaching Tc. However, at larger
fields or very close to the critical point, the correlation
length can become comparable to the magnetic length,
which then limits the size of the Nernst coefficient.
In thin films of Nb0.15Si0.85, the Nernst coefficient is

found to be approximately symmetric with respect to the
line where the correlation length ξ equals the magnetic
length l̃B [54]. In Fig. 4(c), we present the Nernst
coefficient in K3C60, showing that this approximate sym-
metry can also be found in a three-dimensional system.
In the following, we consider two scenarios through

which precursors of superconductivity could cause a Nernst
effect far above Tc: a vortex-based Nernst signal surviving
in a phase-fluctuating regime above Tc, or a signal caused
by short-lived Cooper pairs.

For the latter scenario, a theory based on Gaussian
fluctuations in a Ginzburg-Landau model [22] predicts a
superconducting contribution to the transverse Peltier
coefficient αxy, which is proportional to the magnetic field
and otherwise depends only on the correlation length ξ and
fundamental constants. Together with the temperature-
dependent conductivity of the sample, this allows for a
prediction of the superconducting contribution to the
Nernst coefficient, νSCG, given by

νSCG ¼ NSCG

Bz
¼ αSCGxy

σxxBz
¼ kBe2

12πℏ2

ξ

σxx
ð2Þ

with

ξ ¼ ξ0
ffiffiffi

ϵ
p ¼ ξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT − TcÞ=Tc

p ð3Þ

for a three-dimensional system. Here, kB denotes the
Boltzmann constant. The two-dimensional version of this
theory is in good agreement with measurements on conven-
tional [20,23,28] and some unconventional [29,33] super-
conductors. Its prediction of a field-independent Nernst
coefficient applies to the low-field regime, where the
correlation length ξ is short compared to the magnetic
length lB, and TcðBÞ ≈ Tcð0Þ. As it is a continuum theory, it
may also become invalid once ξ becomes as short as the
lattice spacing, and generally speaking, Ginzburg-Landau
theory is only applicable in the vicinity of Tc.
In Fig. 5(a), we compare our measurements for fields up

to 6 T to this theory by subtracting the fitted quasiparticle
contribution determined above [red line in Fig. 3(b)] from
the measured Nernst signal. See Appendix F and Fig. 9 for
other possible subtraction schemes. We find that the data
are overall well described by the simple 1=

ffiffiffi

ϵ
p

scaling
predicted by the theory if we use a constant conductivity
of 6 ðmΩ cmÞ−1.
The temperature dependence of the conductivity of the

sample is small enough that it has a negligible effect in the
regime where superconducting fluctuations are visible,
both for the intrinsic conductivity and the effective con-
ductivity of the compressed powder sample we study (see
Appendix G and Figs. 9 and 10). Although we expect our
measurement to be sensitive to the intrinsic conductivity
rather than grain boundary effects [39,57], this value is still
about 3 times larger than the conductivity of high-purity
single crystals [9]. Interestingly, however, a very similar
discrepancy was found in measurements of the paracon-
ductivity [40], suggesting that the residual conductivity
describing the transport properties of superconducting
fluctuations may not be identical to the one extracted from
direct measurements.
At higher temperatures, beyond the expected regime

of validity of this model, deviations from the simple
scaling occur, which might be captured by perturbative
expansions [44,45], but further work would be needed to
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extend those theories to isotropic systems [58]. However,
the data presented in Figs. 4 and 5 already show some of the
qualitative features that would be expected within such a
framework. In particular, the downturn at high temper-
atures, which was also observed in two-dimensional
systems [20], may be an indication of the quantum nature
of fluctuations [44]. Interestingly, at higher fields [see
Fig. 5(b)], the behavior does not follow a single power law.
This suggests that in a high field, the resistive TcðBÞ

deviates from the thermodynamic critical point, which is a
characteristic of unconventional superconductors [59].
Note that the theory presented above predicts a very

different result for the Nernst coefficient in a (quasi) two-
dimensional system [22]. There, α2Dxy =Bz ¼ ξ2kBe2=6πℏ2,
and a sheet resistance must be used to compute ν. The blue
dotted line in Figs. 5(a) and 5(b) shows the expected signal
under the assumption that a dimensional reduction of the
system has taken place (see Appendix H), which was
discussed in the context of alkali-doped fullerides [60]. Our
results clearly deviate from this prediction, confirming the
three-dimensional nature of the state we observe.
In order to gauge the plausibility of a phase-fluctuating

scenario, we use the framework proposed by Emery and
Kivelson [61] to estimate the temperature Tθ at which global
phase coherence in the superconductor would be destroyed
by thermal fluctuations—even if pairing were to survive up
to a higher “mean field temperature” TMF. Taking the most
recent (and largest) value for the penetration depth in K3C60,
λ ¼ 890 nm [62], we find a temperature Tθ as low as 80 K.
This is only 4 times larger than Tc, whereas for conventional
superconductors, Tθ=TMF can be on the order of 105.
Additionally, by taking into account some degree of quan-
tum fluctuations (as expected given the relative proximity of
a Mott-insulating state), it is possible that the superconduct-
ing transition is somewhat suppressed below TMF.
We are not aware of a quantitative prediction of the

vortex Nernst signal above Tc in a three-dimensional
system. Results in two dimensions [43] suggest an impor-
tant role of the lattice geometry and therefore cannot simply
be extrapolated to our system. As the difference between
mean-field models and fully quantum-mechanical descrip-
tions can become less pronounced in higher dimensions,
good agreement of our data with a theory based on
Gaussian fluctuations does not necessarily rule out agree-
ment with a theory based on phase fluctuations.
Further theoretical work is therefore required for a

quantitative distinction between these two theoretical
scenarios. In particular, capturing the behavior at high
temperatures and magnetic fields observed in our data
could serve as an important benchmark for this comparison.
On a qualitative level, the presence of an additional
temperature scale (and hence an additional length scale)
is expected to be visible in a phase-fluctuating scenario
[63], but it does not seem to be observable in our data.
In the context of light-induced superconductivity in

K3C60, our data provide an important input for any
theoretical framework based on the synchronization of
preexisting (stable or short-lived) but globally phase-
incoherent Cooper pairs, which would also need to cor-
rectly describe the initial static state.
It would be highly interesting to extend our work to

Rb3C60 and especially RbxCs3−xC60, where quantum phase
fluctuations caused by the proximity of the Mott-insulating
state will be enhanced. For the latter family, a suppression
in Tc upon approaching the quantum phase transition has

FIG. 5. Scaling of the superconducting Nernst coefficient above
Tc. (a) Quasiparticle-subtracted contribution to the Nernst co-
efficient, νS ¼ NS=B ¼ N=Bþ 2.7μHS, for magnetic fields be-
tween 3 T and 6 T. Color scale as in Fig. 1. The data are shown as
a function of the distance to the field-dependent critical temper-
ature at zero field. (b) Data for higher fields, up to 15 T. The
dashed red line shows the expected low-field value from a model
based on three-dimensional Gaussian fluctuations, which scales
with ϵ−1=2. A constant conductivity of 6 ðmΩ cmÞ−1 is used (see
text). The dashed blue line shows the equivalent signal for a two-
dimensional system, which scales with ϵ−1. The top axes indicate
where the correlation length ξ becomes equal to the lattice
spacing aLattice or to the magnetic length lB at the highest field
shown in the respective panel.
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been observed [5,6], but it could not be reproduced in an
otherwise quantitatively successful theoretical model [1].
Studying the Nernst effect in this regime, which should be
possible using the experimental framework presented here,
would provide new insights concerning the nature of the
superconducting transition in the fullerides, and of phase-
incoherent superconductivity in general.
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APPENDIX A: SAMPLE PREPARATION

The K3C60 powder used in this work was prepared and
characterized as previously reported in Refs. [13–15].
In brief, finely ground C60 powder and metallic potassium
were placed in a vessel inside a Pyrex vial in stoichiometric
amounts, evacuated to 10−6 mbar, and sealed. The two
materials were heated at 523 K for 72 h and then at 623 K
for 28 h, and kept separated to ensure that the C60 was only
exposed to clean potassium vapor. After regrinding and
pelletizing in an inert Ar atmosphere, the sample was
annealed at 623 K for 5 days. Powder x-ray diffraction
measurements confirmed the purity of K3C60 and indicated
a domain size between 100 nm and 400 nm. Optical
microscopy measurements show grain sizes on the order
of 10 μm. Magnetic susceptibility measurements yielded a
Tc of 19.8 K [13]. For the Nernst effect and four-point
resistivity measurements, the sample was handled inside an
Ar glove box with less than 0.2 ppm O2 and H2O. It was
placed inside an FR4 frame, which had been glued to the
circuit board described below using thermally and electri-
cally insulating, minimally outgassing glue (Epo-TeK 301-
2FL-T); see Fig. 6. The powder was then compressed with
an FR4 piston, hence creating a pellet of around 150-μm
thickness, and sealed with the same glue. The resistance of
the sample was monitored to ensure that no contamination
occurred during the sealing process and the subsequent
transfer to the cryostat.

APPENDIX B: NERNST EFFECT
MEASUREMENT SETUP

Weused a printed copper circuit board on anFR4 substrate
(which featured a low thermal conductivity, about
0.1 W=Km at 10 K [64]), as shown in Fig. 6(b). Cernox
temperature sensors were embedded in thermally conductive
glue (Stycast 2850FT) in milled pockets on each side of the

sample. They were used to monitor the temperature gradient
across the sample, which was induced using a resistive
heater. An additional Cernox sensor was attached to the
bottom of the circuit board to monitor the base temperature.
The circuit boardwasmounted to the cold finger of a cryostat
using nonmagnetic (titanium) screws and spring washers,
and PMMA spacers were used for additional thermal
insulation. In the sample compartment, the copper contacts
were coated with indium, yielding contact resistances below
1 Ohm. The transverse voltage was measured while slowly
cooling the sample. Data for opposite magnetic fields [see
Fig. 6(c)] were then subtracted to compute the Nernst signal.

APPENDIX C: RESISTANCE MEASUREMENTS

The resistance of the sample was determined using a low-
frequency lock-in measurement in a linear four-contact
configuration, with contacts as shown in Fig. 6(b). Above
Tc, the sample showed an increase in resistance
upon cooling, as previously observed in granular K3C60

samples [9,10]. In order to determine Tc, the point at which

FIG. 6. Experimental setup. (a) Sample (red) pressed on top of a
circuit board (green) using a PMMA piston (beige). The sample
space is encapsulated using nonconductive epoxy glue. The base
temperature is measured with a sensor (black) pressed against the
bottom of the circuit board. The sample and circuit board are
mounted on the cold finger of a cryostat (copper) using titanium
screws (not shown), with spacers made of PMMA (gray).
(b) Schematic of the circuit board. The sample compartment is
indicated by a gray rectangle. A temperature sensor is placed on
each side of the sample in a milled pocket, encapsulated by
thermally conductive epoxy glue. Resistive heaters are placed
on each side. The Nernst signal is measured with the indicated
indium-coated contacts in the center of the sample compartment.
The other contacts are used for four-point resistancemeasurements.
(c) Transverse voltage at þ15 T (blue) and −15 T (gray). For the
data shown in themain text, the Nernst signal is evaluated as half of
the difference between signals measured at opposite fields.
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the resistance changes slope was used, which yielded a zero-
field Tc consistent with magnetic susceptibility measure-
ments on the samebatch of sample.Weverified that thewidth
of the transition is not sensitive to reducing the probe current
below the value of 2 μA that we used.

APPENDIX D: MAXIMUM VORTEX
NERNST SIGNAL

Very recent results suggested that a universal upper
bound for the vortex Nernst signal below Tc may exist [28].
By looking at Figs. 2(a) or 7(b), it is clear that for K3C60 at
15 T, the signal has not reached its maximum possible value
yet. However, a sublinear dependence of the peak in NðTÞ
as a function of magnetic field is already visible. Given the
upper critical field of around 39 T, we can therefore
estimate the largest value of NðT; BÞ to be around 2 μV=K.
This value in itself is comparable to the values compiled

by Rischau et al. [28]. The upper bound proposed in
that work relates to the entropy per vortex per layer SV,
which can be determined from the Nernst signal N and the

resistivity of the sample ρ via SV ¼ Φ0aLatticeN=ρ, where
aLattice ¼ 1.42 nm denotes the lattice spacing. Taking this
ratio at the temperature and magnetic field corresponding to
the peak in N, values for SV very close to kB ln 2 ¼ 0.96 ×
10−23 J=K were found for a range of materials. As the
resistivity of our samples is dominated by grain boundary
effects, we use the intrinsic low-temperature normal resis-
tivity of around ρ0 ¼ 0.5 mΩ cm [9] to estimate whether S
may exceed kB ln 2. Taking a resistivity between ρ0 and
ρ0=3 as a low guess for the resistivity at the peak of N
(which lies below Tc, but at high fields, so that flux-flow
resistance appears [28]) then yields values between
0.1 × 10−23 J=K and 0.4 × 10−23 J=K. This result is below,
but reaches the same order of magnitude as, the upper
bound identified in Ref. [28].

APPENDIX E: VISIBILITY OF THE GHOST
CRITICAL FIELD

Previous theoretical and experimental work on the
Nernst effect in two-dimensional and layered supercon-
ductors identified a “ghost critical field” at which the

FIG. 7. B-T maps of the Nernst signal. (a) N as a function of magnetic field for different temperatures below TcðBÞ. (b) Raw data of N
as a function of temperature and magnetic field (see Fig. 2 for a smoothed contour map). Gray dots indicate the B-T values of each
measurement; the data are interpolated to the nearest available point. The black dotted line shows TcðBÞ. (c) Same as (b), but showing
the field-normalized value N=B. (d) Smoothed contour plot of (c).
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Nernst signal N (B) peaks, for a given temperature above
Tc [26,29,33,46,54]. This happens when the magnetic
length lB becomes comparable to the correlation length
ξðTÞ. This ghost critical field is typically close to, but
higher than, the “mirror field” given by the reflection
around T ¼ Tc of the linear low-field limit of Hc2, i.e.,
given by BMirror ¼ μ0ðT − TcÞð∂Hc2=∂TÞjTc

. Expressed in
terms of the dimensionless quantities defined in the main
text, this mirror field hence occurs where h ¼ t − 1.
No exact analytical expression for the ghost field has

been found so far, but numerical work reported in Ref. [46]
has shown that, for a two-dimensional system, it can be
approximated by the expression h ¼ 1.12t − 0.94 as soon

as the temperature is larger than about 1.07 Tc (i.e., about
21 K for our system). For temperatures closer to Tc, the
ghost field rapidly approaches zero. Although the approxi-
mate solution found in 2D is unlikely to hold exactly in 3D,
we can use it to estimate where the ghost critical field may
appear in K3C60. We find that, for K3C60, the 2D expression
for the ghost critical field reaches 15 T (the maximum field
accessible in our experiment) at 21.3 K already. The mirror
field reaches a value of 15 T at a temperature of 25 K (i.e.,
about 1.25 Tc). This means that our experiment is mostly
carried out in a regime where the magnetic field acts as a
linear probe of the intrinsic properties of the sample and
does not impose an additional length scale for the thermo-
dynamics of the Nernst effect.
In the immediate vicinity of Tc, however, signatures of

the ghost critical field may appear. Figure 8 shows the
Nernst signal as a function of magnetic field, at different
temperatures close to Tc ¼ 19.8 K. Well below Tc, a sharp
peak can be observed in the (quasiparticle-subtracted)
Nernst signal (see also Fig. 7), which is the quantity shown
as Bmax in Fig. 3(c). Upon approaching Tc, the last range
where a sharp peak can be identified is 17.5–18 K (see blue
curve on the right). Above that range,NSðBÞ becomes more
flat (similar to what was observed in NbSi [46]). Given the
flatness of this feature, it is difficult to unequivocally
determine the peak position; however, the data are com-
patible with a peak that moves towards even lower fields.
For temperatures above Tc [Fig. 8(b)], our data are
compatible with a peak in NSðBÞ that very rapidly moves
towards higher fields. As outlined above, we expect that
this peak may exceed 15 T at around 21 K, and indeed our
data in the 20–21 K range already show that the peak has
shifted to 8 T or higher, but sublinear behavior is still
clearly visible.

APPENDIX F: SUBTRACTION OF THE
QUASIPARTICLE SIGNAL

By comparing different subtraction schemes, we verify
that the details of how the quasiparticle contribution to N is
subtracted do not strongly affect the comparison to the
Gaussian fluctuation model shown in Fig. 5: In Fig. 9(a),
instead of subtracting the temperature-dependent quasipar-
ticle function (−2.7μHS), we subtract its fixed value at
100 K. Here, the simple theoretical model seems to capture
the data even at higher temperatures. In Fig. 9(b), we plot N
without any quasiparticle subtraction. This leads to a
deviation at high temperatures (as expected given that
the signal changes sign there), but within the expected
range of validity of the theoretical model, it still captures
the data well. We have also verified that using a temper-
ature-dependent value of the conductivity in Eq. (2) (where
we have used the quadratic dependence found in Ref. [65]
as a comparison) has a negligible effect in the rel-
evant range.

FIG. 8. Magnetic field dependence of the Nernst signal close to
the critical temperature. (a) Quasiparticle-subtracted Nernst
signal as a function of magnetic field for different temperatures
just below Tc and just above Tc (b). Note the different vertical
scales. A peak in Ns above TcðBÞ may indicate the presence of a
ghost critical field (see text).
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APPENDIX G: RATIO OF NERNST
COEFFICIENT AND RESISTIVITY

The theory for a Nernst effect caused by Gaussian super-
conducting fluctuations [22] predicts a result for the Nernst
coefficient νSCG that depends only on the (temperature-
dependent) correlation length ξ and the conductivity of the
sample. As the conductivity of the sample is generally
temperature dependent, this will affect the scaling of the
Nernst coefficient with temperature. For K3C60, this effect is
expected to be very small, as the change in the Nernst
coefficient ismuch larger than the change of the conductivity.
Figure 9 shows how taking into account the temperature
dependence of the intrinsic conductivity would change the

expected scaling (dotted gray line vs dashed dark red
line). We additionally investigate the effect of temper-
ature-dependent conductivity by dividing our measured
Nernst coefficient νS ¼ NS=B by either the temperature-
dependent intrinsic resistivity, ρI , based onmeasurements on
single-crystal samples [9], or the measured temperature-
dependent resistivity of our compressed powder sample, ρP
(see Fig. 10). In both cases, we only find very small changes
with respect to the scaling of the Nernst coefficient itself.
Note that we do not expect the measured resistivity of the
powder sample to be the correct quantity in order to
determine the expected size of the Nernst effect: In a
resistance measurement, current flows through grain boun-
daries, leading to a voltage drop that will provide the
dominant contribution to the measured resistance. In a
measurement of the Nernst signal, on the other hand, no
current is flowing in the steady state (where the Nernst
voltage is measured), meaning that the electrical resistance
caused by grain boundaries does not contribute, and only the
intrinsic resistivity of the sample determines the signal. See
also Refs. [39,57] for theoretical and experimental work
corroborating this statement.

APPENDIX H: COMPARISON TO
TWO-DIMENSIONAL THEORY

In order to illustrate the distinct three-dimensional nature
of our observations, there are two possible scenarios to take
into account, in which the effect could become effectively
two dimensional: First, one could consider the limit of a
sample that is thin enough (in the direction of the magnetic
field and transverse to the thermal gradient) that the
correlation length ξ exceeds the thickness d. In that case,
one would use the resistivity multiplied by the sample
thickness as a sheet resistance. The expression for the
Nernst coefficient forGaussian superconducting fluctuations
[Eq. (2)], νSCG ¼ ðkBe2=12πℏ2Þðξ=σxxÞ, would become
ðkBe2=6πℏ2Þðξ2=σxxaÞ; i.e., it would be multiplied by a
(temperature-dependent) factor of 2ξ=d. In the range
explored in Fig. 5, this factor would range from 1 × 10−4

to 6 × 10−6; i.e., the signal would be several orders of
magnitude smaller than the signal predicted by the three-
dimensional theory and observed in our data, in addition to
having a different temperature dependence. Furthermore, as
the Ginzburg-Landau correlation length remains below
10 nm even at the data closest to Tc and our sample has a
thickness of around 150 μm (and even the smallest sample-
related length scale, the size of the crystal domains, is
between 100 nm and 400 nm), this scenario can be ruled out.
Second, a more realistic scenariowould be that the sample

might undergo spontaneous dimensional reduction in the
applied magnetic field, as has been considered in the context
of alkali-doped fullerides before [60]. In this case, the
Lawrence-Doniach model could be used to describe such
an effectively layered sample [see Eq. (14) in Ref. [22] ]. The
expected contribution to theNernst coefficientwould then be

FIG. 9. Effect of subtracting the quasiparticle signal on the
scaling analysis. (a) Same as Fig. 5(a), but subtracting the fixed
value of N=B at 100 K instead of a temperature-dependent
function. The gray dotted line shows the theoretical prediction of
Eq. (2) but using a quadratic temperature dependence for the
conductivity. (b) Nernst coefficient N=B without any subtraction
of the quasiparticle contribution. Note that this results in some
negative values for N at higher temperatures, which do not appear
in this logarithmic plot.
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νLDSCG ¼ kBe2

6πℏ2

ξxy

σxxa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2ξz=aÞ2
p ; ðH1Þ

where a ¼ aLattice ¼ 1.42 nm is the lattice spacing, and ξxy
(ξz) denotes the correlation length transverse to (along) theB
field. In the limit of a vanishing ξz (i.e., for completely
decoupled layers), this essentially corresponds to taking the
two-dimensional result for αxy from Ref. [22] and using the
resistivity multiplied by the lattice spacing as a sheet
resistance. Compared to the 3D result for the Nernst
coefficient ν, this corresponds to multiplying by a temper-
ature-dependent coefficient of 2ξ=a.We have included a plot
of the expected signal in this scenario in Fig. 5 as a dashed
blue line.
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L. Bergé, L. Dumoulin, and K. Behnia, Length Scale for the
Superconducting Nernst Signal above Tc in Nb0.15Si0.85,
Phys. Rev. B 76, 214504 (2007).

[55] Note that the definition of the magnetic length includes a
factor of 1=

ffiffiffi

2
p

. This definition is chosen such that a
comparison of the magnetic length and the correlation
length is equivalent to a comparison of the dimensionless
field and dimensionless amplitude. See the experimental
work [54] and theoretical work [46,56] confirming this.

[56] W. J. Skocpol and M. Tinkham, Fluctuations Near Super-
conducting Phase Transitions, Rep. Prog. Phys. 38, 1049
(1975).

[57] M. Soroka, K. Knížek, Z. Jirák, P. Levinský, M. Jarošová, J.
Buršik, and J. Hejtmánek, Anomalous Nernst Effect in the
Ceramic and Thin Film Samples of La0.7Sr0.3CoO3 Per-
ovskite, Phys. Rev. Mater. 5, 035401 (2021).

[58] M. Serbyn (private communication).
[59] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I.

Larkin, and V. M. Vinokur, Vortices in High-Temperature
Superconductors, Rev. Mod. Phys. 66, 1125 (1994).

[60] S. Hoshino, P. Werner, and R. Arita, Unconventional
Orbital Ordering and Emergent Dimensional Reduction
in Fulleride Superconductors, Phys. Rev. B 99, 235133
(2019).

[61] V. J. Emery and S. A. Kivelson, Importance of Phase
Fluctuations in Superconductors with Small Superfluid
Density, Nature (London) 374, 434 (1995).

[62] V. Buntar, F. M. Sauerzopf, and H.W. Weber, Lower
Critical Fields of Alkali-Metal-Doped Fullerene Super-
conductors, Phys. Rev. B 54, R9651 (1996).

[63] I. Ussishkin and S. L. Sondhi, On the Interpretation of the
Nernst Effect Measurements in the Cuprates, Int. J. Mod.
Phys. B 18, 3315 (2004).

[64] A. L. Woodcraft and A. Gray, A Low Temperature Thermal
Conductivity Database, AIP Conf. Proc. 1185, 681
(2009).

[65] O. Klein, G. Grüner, S.-M. Huang, J. B. Wiley, and R. B.
Kaner, Electrical Resistivity of K3C60, Phys. Rev. B 46,
11247 (1992).

SUPERCONDUCTING FLUCTUATIONS OBSERVED FAR ABOVE … PHYS. REV. X 13, 021008 (2023)

021008-13

https://doi.org/10.1038/srep03390
https://doi.org/10.1038/srep03390
https://doi.org/10.1038/ncomms12843
https://doi.org/10.1038/nmat4784
https://doi.org/10.1038/361054a0
https://doi.org/10.1038/361054a0
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.1038/ncomms14467
https://doi.org/10.1103/PhysRevLett.99.117004
https://doi.org/10.1209/0295-5075/86/27007
https://doi.org/10.1103/PhysRevLett.102.067001
https://doi.org/10.1103/PhysRevLett.102.067001
https://doi.org/10.1103/PhysRevB.102.174507
https://doi.org/10.1103/PhysRevB.102.174507
https://doi.org/10.1103/PhysRevLett.69.3797
https://doi.org/10.1103/PhysRevLett.74.1637
https://doi.org/10.1103/PhysRevLett.91.066602
https://doi.org/10.1103/PhysRevLett.71.2413
https://doi.org/10.1103/PhysRevLett.71.2413
https://doi.org/10.1103/PhysRevB.59.16071
https://doi.org/10.1103/PhysRevB.59.16071
https://doi.org/10.1143/JPSJ.62.2757
https://doi.org/10.1143/JPSJ.62.2757
https://doi.org/10.1103/PhysRevB.49.655
https://doi.org/10.1103/PhysRevB.76.214504
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1103/PhysRevMaterials.5.035401
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/PhysRevB.99.235133
https://doi.org/10.1103/PhysRevB.99.235133
https://doi.org/10.1038/374434a0
https://doi.org/10.1103/PhysRevB.54.R9651
https://doi.org/10.1142/S0217979204026512
https://doi.org/10.1142/S0217979204026512
https://doi.org/10.1063/1.3292433
https://doi.org/10.1063/1.3292433
https://doi.org/10.1103/PhysRevB.46.11247
https://doi.org/10.1103/PhysRevB.46.11247

