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Life is one big road with lots of signs.

So when you riding through the ruts, don’t complicate your mind.

Flee from hate, mischief and jealousy.

Don’t bury your thoughts, put your vision to reality.
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Abstract

This thesis reports on experiments results and theoretical modeling of ultrafast

quantum dynamics in strongly correlated electron materials. Using ultrashort pulses

of light, the response of the 1D organic (BEDT-TTF)-F2TCNQ is probed on its funda-

mental timescale following different kinds of perturbations. From a theoretical point

of view, existing effective model Hamiltonians are extended to encompass the micro-

scopic physics. By comparing theoretical modeling and simulations with experimental

data, new physics is exposed and interpreted.

Firstly, we theoretically investigate the change of the Hubbard parameters, and of

the binding energy of the excitons, by measuring the optical conductivity while adia-

batically compressing the material. Moreover, we develop a model for the relaxation

rate of photo-induced holon-doublon pairs. In this manner, we expose the competition

between the pairs’ tendency to bind, due to the nearest-neighbor Coulomb interaction,

and to delocalize because of the electron’s kinetic energy.

In a second study, optical pulses at THz frequencies (from 0.3 to 3 × 1012 hertz),

and mid-infrared frequencies are tuned to specific vibrational resonances to modulate

the lattice along a chosen normal mode coordinate. By using optical pulses we excite

localized molecular vibrations and make the electronic interaction time-dependent.

We develop a quantum-modulated, dynamic, version of the Hubbard model to explain

the response. A third experiment, performed with phase-locked pulses, confirms the

validity of our picture. The optical conductivity is shown to undergo oscillation with a

frequency predicted by our model when a specific driven mode is used. A central con-

clusion of both these investigations is that, by combining selective modulation of one

degree of freedom while probing the electronic spectrum, it may be possible to experi-

mentally deconstruct the Hubbard Hamiltonian and expose one specific coupling that

would otherwise have a vanishingly small contribution to the equilibrium properties.

In the last part of this thesis we propose that vibrational driving can be exploited as

a tool to transiently induce magnetic order in an otherwise non-magnetic system away

from half-filling. We show that vibrational driving reduces the kinetic energy of the

holes, without affecting the exchange interaction strength, and allowing the magnetic

exchange coupling to stabilize spin order that would otherwise be disrupted.
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Zusammenfassung

Diese Arbeit berichtet über experimentelle Ergebnisse und die theoretische Mod-

ellierung von ultraschneller Quantendynamik in stark korrelierten elektronischen Ma-

terialien. Unter Anwendung von ultrakurzen Lichtpulsen wird die Reaktion von 1D

organischem (BEDT-TTF)-F2TCNQ auf der fundamentalen Zeitskala unter Einfluss

verschiedener Pertubationen untersucht. Unter einem theoretischen Gesichtspunkt

werden bereits existierende effektive Model Hamiltonoperatoren erweitert, um As-

pekte der mikroskopischen Physik zu umfassen. Durch den Vergleich von theoretischen

Modellen und Simulationen mit experimentellen Daten wird neue Physik offenbart und

interpretiert.

Als Erstes haben wir die Veränderung des Hubbard Parameters und der Bindungsen-

ergie des Exzitons theoretisch untersucht. Dabei wurde die optische Leitfähigkeit

während der adiabatischen Kompression des Materials gemessen. Außerdem haben wir

ein Model für die Relaxationsrate der fotoinduzierten Holon-Doublon Paare entwick-

elt. Auf diese Weise zeigen wir das Gegenspiel von Paarbindung durch die Nächster-

Nachbar-Coulomb-Wechselwirkung und Delokalisierung aufgrund der kinetischen En-

ergie des Elektrons.

In einer zweiten Studie wurden optische Pulse im THz Frequenzbereich (von 0.3

bis 3 × 1012 hertz) und infrarot Frequenzen im mittleren Bereich auf spezifische Vi-

brationsresonanzen eingestellt um das Gitter entlang ausgewählter Normal-Mode-

Koordinaten zu modulieren. Mit optischen Pulsen werden lokalisierte molekulare

Vibrationen angeregt und elektronische Interaktionen zeitabhängig gemacht. Wir en-

twickeln eine Quanten modulierte, dynamische Version des Hubbard Models um diese

Reaktion zu erklären. Ein drittes Experiment, durchgeführt mit phasensynchronen

Pulsen, bestätigt die Gültigkeit unseres Bildes. Die optische Leitfähigkeit erfährt Os-

zillationen mit einer Frequenz vorhergesagt von unserem Model, wenn eine spezifische

Mode getrieben wird. Eine zentrale Schlussfolgerung aus beiden Untersuchungen ist,

dass die Modulation eines ausgewaehlten Freiheitsgrades waehrend der Messung

des elektronischen Anregungsspektrums, es ermoeglichen koennte den Hubbard Hamilton-

operator experimentell zu dekonstruieren. Außerdem könnte man eine spezifische

Kopplung untersuchen, die andernfalls einen verschwindend kleinen Beitrag zu den

Gleichgewichtseigenschaften hat.

Im letzten Teil dieser Arbeit schlagen wir ein Vibrationsverfahren vor, das als

Werkzeug genutzt werden kann, um vorübergehend eine magnetische Ordnung zu in-

duzieren in einem ansonsten nicht-magnetischen System entfernt von der Halbfüllung.
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Wir zeigen, dass das Vibrationsverfahren die kinetische Energie der Löcher reduziert

ohne die Austauschwechselwirkungsstärke zu beeinflussen. Dadurch hemmt es die

Lochbewegung, während die Magnetkopplung Spinordnung schafft.
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Role of the author

This thesis features work that my colleagues and I undertook collaboratively [1,

2, 3, 4].

The theoretical modeling and numerical simulations, described in detail

in Ch. 5, were performed by the author with the helpful support of S. Clark.

The resulting physical picture was used to analyze the experimental results and

evolved in the publication [1].

The derivation of the Dynamic Hubbard Model in Ch. 6, along with the

interpretation, numerical simulation and fitting of the experiments in Ch. 7

and Ch. 8 were carried on by the author, with the help of S. Clark. These

results led to publications [2] and [3], respectively.

Among the work performed, but not reported in detail in this thesis, the

author with assistance of T. H. Johnson wrote the manuscript of [4] and orga-

nized the code for online publication at http://ccpforge.cse.rl.ac.uk/gf/

project/mlgws/.
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Chapter 1

Introduction

1.1 Ultrafast science with light

In slightly more that fifty years the laser has become one of the most ubiquitous

pieces of technology in existence [5], finding a home for itself in environments

as diverse as the research laboratory, the hospital, and the living room. Among

numerous areas of research, the probing of matter with pulsed laser light has

become a field of prominence in physics, biology and chemistry. The ability

to sculpt pulses enables the triggering and measurement of dynamical behavior

in solids on extremely fast timescales, approaching those of the microscopic

dynamics of electrons and phonons in the material itself.

In order to probe a dynamical event we need a method to capture snapshots

of the state of the system as it evolves in time. Arranging the snapshots sequen-

tially allows the reconstruction of the behavior of the system at any given time.

Each snapshot records the average of the system during the exposure time. If

the system is changing during this period, the image gets blurred: to capture a

fast dynamical event, snapshots need to be recorded on a timescale comparable

or shorter than the event taking place.

In 1878, Eadweard Muybridge performed one of the earliest time-resolved

measurements to settle the debate as to whether or not there is a time, while

a horse gallops, when all four hooves are off the ground at the same time. The

images Muybridge took are reproduced in Fig. 1.1, and were obtained by a series

1
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Figure 1.1: The horse in motion by Eadweard Muybridge. The first time re-

solved measurement consisting of a series of images of a horse in motion.

of cameras with high shutter speeds, each triggered by a trip wire.

The ultrafast dynamics that occur in solid-state systems can be measured

with similar techniques. The cameras are replaced by short laser pulses, that

“probe” the state of the system at high-speed. The dynamics is initiated by an

intense “pump” pulse, while the temporal evolution is tracked with subsequent

probe pulses which encode information about the system properties evaluated at

the probe pulse moment of arrival. Much like how Muybridge’s images captured

the horses motion at consecutive instants of time, measuring the transmitted

light as a function of delay between pump and probe pulses encodes information

on the evolution of the system.

In order to investigate how a system fundamentally responds to a prompt

photo-excitation, pulses with a duration of ∆τ ∼ ~/2∆E need to be used, where

∆E is the energy scale of the phenomena responsible for the dynamics. This

methodology is founded upon the seminal studies of Zewail et al. [6], the impor-

tance of which was recognized by the award of the Nobel Prize in Chemistry in

1999. For chemical reactions that occur at room temperature with an energy

scale of ∼ kBT , the timescale is ∆τ ∼ 100 femtoseconds (fs, 10−15 seconds).
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Processes occurring on such short timescales are referred to as “ultrafast” pro-

cesses, and are common in solid state systems, as well as in chemical reactions.

In addition to its use as probe, light can also be used to alter the phase of a

material by changing the relative strengths of the couplings and photo-inducing

phase transitions [7]. This process is often referred to as photo-doping [8], in

analogy to the more traditional chemical doping [9] that affects the material’s

carrier concentration by adding or removing electrons from the system.

The first ultrafast phase transition observed was the solid-to-liquid one in

semi-conductors [10]. The change in atomic position associated with this phase

transition was subsequently tracked with time-resolved diffraction measurement

in [11].

In this thesis we are going to apply these methods to explore the physics of

strongly correlated systems. These materials have peculiar properties which is

worth summarizing in some detail before expanding upon specific methods of

control.

1.2 Strongly correlated electron materials

Solid state physics is largely concerned with the description of the macroscopic

properties of materials, such as crystal structure, optical, magnetic, conductive

properties, all from a microscopic point of view. This is a truly daunting task,

since it can involve solving a problem with N ∼ 1023 particles. As a conse-

quence, we need to resort to approximate theories to reduce the complexity of

the microscopic interactions.

In quantum mechanics, the Hamiltonian describes the behavior of a system,

and thus governs the electrons’ properties. In the most general form, it contains

the kinetic energy of the electron, the potential energy of the nuclei, and the

Coulomb interaction among the electrons. The last aspect is by far the hardest

to deal with. Imagine the difference between a 100 m and a marathon race.

In the former, each runner has his own lane and can be considered as running

independently, while in the latter each one of the competitors has to (or try

to) avoid the others, or bumps into them. Predicting the behavior of marathon

runners is clearly more difficult than for sprinters.
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The same is true for electrons in solids: it is no surprise the first success-

ful approximation is the independent electron approximation from Drude and

Sommerfeld [12] used to describe simple metals. This technique is based on the

observation that the interplay between nuclei and electrons (and the delocal-

ization of the latter) results in very effective screening of Coulomb interactions

which also contributes to why electrons (or quasi-particles) in metals are not

very strongly interacting. The kinetic energy is assumed to dominate, and the

Coulomb interaction is included via perturbation theory. This in turn led to

band theory [13] that predicts the conduction properties of a wide variety of

condensed matter systems and has driven the electronic revolution, e.g., with

the widespread use of transistor based devices.

The pinnacle of this approach is, arguably, Fermi liquid theory [14]. Landau

showed that the properties of a system, when taking into account electronic

interactions, remain essentially similar to those of free fermionic particles. The

key observation is that macroscopic properties involve only excitations on energy

scales (e.g. temperature) small compared to the Fermi energy. The state of the

system can thus be specified in terms of its ground state (Fermi surface), and of

the low-lying elementary excitations that form a rarified gas of “quasi-particles”.

The latter are still fermions, but their dynamical properties are renormalized

by the interactions.

However, there are many materials where the electronic correlations prove to

be the dominant dominant energy scale, rather than a simple perturbation. The

Coulomb interaction among electrons is then larger than their kinetic energy,

meaning an electron remains on a given lattice site long enough to feel the pres-

ence of other electrons nearby. In these cases, the independent-electron picture

breaks down and the predictions of band theory no longer match the observed

behavior [15, 16]. This was first pointed out observing that many transition

metals compounds with only partially filled d-levels turn out to be insulators

instead of metals [17]. As a result a large number of exotic order states and

unusual phase transitions emerge. It was indeed the discovery of high-Tc super-

conductivity in cuprates [18] that triggered the interest in these compounds, to

the extent that the investigation of materials with strongly correlated electronic

behavior (also referred to as complex materials) has developed into one of the
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most exciting branches of condensed matter systems.

1.2.1 One dimension

All the effects of interactions mentioned so far are especially strong in low-

dimensional systems (e.g. materials with one-dimensional conduction prop-

erties), in which the electronic bandwidth is reduced, allowing the Coulomb

interaction to dominate the physics [19, 20].

In fact, when an electron propagates, it pushes its neighbors because there

is only one pathway of propagation. The strong electron-electron interaction

leads to peculiar collective effects. The particle-hole excitations, where an elec-

tron is taken from below the Fermi level and promoted above, have well-defined

particle-like dispersion in the long-wavelength limit. These collective density

fluctuations are bosonic in nature and may be used to construct the low-energy

phenomenology. They form the basis of the so-called Luttinger liquid, the prop-

erties of which are extensively described in [21, 22].

Another important and singular effect observed in 1D is the so-called spin-

charge separation: a single fermionic excitation splits into a collective excitation

carrying charge (like a sound wave) and a collective excitation carrying spin

(like a spin wave). In general, they have different velocities and propagate

independently. Furthermore, filling plays a more important role than in three-

dimensional compounds. When the density of carriers is commensurate with

the lattice, interactions may cause a system with fractional filling to become a

so called Mott-insulator [23].

It is the competition between single electron kinetic energy and the electron-

electron Coulomb interaction to dictate the tendency of the electrons to move

freely or localize on atomic sites. To complicate matters, also the correlation

between the electrons and the lattice may play an important role. All these

interactions compete to determine the properties of complex materials, and their

understanding is vital to interpret the macroscopic behavior of the compound

under investigation.

If several different couplings have similar energy scales, then these properties

become very sensitive to subtle perturbations and it is extremely complex to

disentangle them. It is crucial to be able to control their relative strength, caus-
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ing some to become more relevant than others. In the next section, we review

some of the experimental methods used for this purpose in the last decade.

1.2.2 Control of materials

The properties of correlated materials can be changed by photo-doping, driving

the system into a non-equilibrium yet relatively long-lived conducting state,

or by introducing mobile carriers in situ. Pioneering experiments in the field

include studies into insulator-to-metal transitions [24, 25, 26, 27, 28], melting

and recovery of charge density waves [29, 30, 31], and ultrafast dynamics induced

in magnetic materials [32, 33].

In one-dimensional materials, of particular interest in this work, photo-

induced dynamics have been measured in Refs. [24, 28]. At low photo-doping

density, Takahashi et al. [34] showed that there is a coexistence of the Mott

insulator and free carriers. When photo-doping density exceeds ∼ 10%, the

Mott gap is destroyed and a metallic state is formed. The time resolution of

these experiments was restricted to ≥ 100 fs, which is insufficient to probe the

dynamics of the formation of the metallic state. Recently, by using near-IR

ultrafast pulses of duration < 10 fs, Wall et al. [35] have been able to single

out coherent oscillations in the conductivity, occurring at high frequencies and

associated with electronic correlations. These oscillations reveal important in-

formation on the nature of charge excitations in Mott insulators when both the

on-site and inter-site Coulomb interaction is present, as we will discuss in the

following.

While photo-doping often puts the system in a highly excited state in which

the effect of correlation can be smeared, more recently much lower photon ener-

gies (in the THz range) are being used to selectively drive certain optical phonon

modes. By strongly driving a selected vibrational mode it is possible to amplify

its influence to a macroscopic level, thereby exposing information about the sys-

tem. Once more, with ultra-fast probes these phenomena can be tracked on their

fundamental timescales. This technique has been used, for example, to control

metal-to-insulator transitions [36, 37, 38] and to induce superconductivity [39].
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1.3 Model Hamiltonians

So far, we have mostly reviewed sophisticated experimental techniques, but

very little has been mentioned about theoretical models. An exact description

of complex systems is practically impossible, and effective Hamiltonians play a

central role in understanding experimental observations.

Hubbard Hamiltonians [15, 40] are believed to capture the essential fea-

tures of strongly-correlated-electron transport [41]. However, being an effective,

low-energy theory, the Hubbard model accounts for coupling of the electrons

with other degrees of freedom only through renormalized kinetic and interaction

terms. Whilst making the problem manageable, the drawback is that neglecting

degrees of freedom obscures the contributions of individual microscopic degrees

of freedom.

The main results of this thesis are closely related to the investigation of

model Hamiltonians, aimed to bridge the gap between simplified theoretical

models and complex pump-probe experiments. From one side, we want to ex-

tend existing theoretical descriptions to take into account complex phenomena

and make explicit the contributions of individual degrees of freedom; on the

other hand, we wish to find a material that allows the maximum possible con-

trol, while still showing strongly correlated electron physics. We also wish to

expose as much as possible the general physics which is not material specific.

We believe the use of accurate effective Hamiltonians is a necessary part of a

theory capable of accurately predicting and explaining the behavior of complex

materials.

1.3.1 Correlated-electrons physics in optical lattices

A great help in our physical intuition of solid state systems may come by extend-

ing concepts used in the study of ultra-cold quantum gases [42, 43]. Most of the

non-equilibrium phenomena described so far, in fact, are explained by underly-

ing models showing a striking similarity with the ones that are being realized

with cold atomic gases in optical lattices [44, 45, 46, 47]. Amazingly, despite

being a completely different class of systems, this similarity provides an ideal

realization of many-body lattice models and allows almost perfect control of
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microscopic parameters, (currently) impossible in electron systems. Cold atoms

systems are especially convenient as quantum simulators especially because of

the following reasons: (a) the length of their timescales for temporal evolution,

which is orders of magnitude longer (s - ms) with respect to that for corre-

lated electron systems (ps - fs); and (b) their almost perfect isolation from the

environment on the timescale of typical experiments. In Tab. 1.1 we compare

the most relevant time and energy scales for cold-atoms and condensed matter

experiments. It is noteworthy to notice that the ratio between the energy of

motional excitation of the electronic states, E, and the temperature, kBT , is

comparable for cold-atom and condensed matter systems at room temperature,

while being order of magnitude apart for a cooled condensed matter systems

(CMS). This suggests that the parallel works better in the former case.

Table 1.1: Relevant time and energy scales for experiments performed on cold-

atoms and condensed-matter systems.

Atoms CMS CMS cooled

Experiment time s-ms ps-fs ps-fs

Energy E/~ Hz - kHz THz THz

Temperature T nK 300 K mK

Ratio E/KBT 1 - 10 1 - 10 104 - 106

Among the examples of the usefulness of this approach, it is instructive to

mention the dynamics of doubly occupied sites (or doublons). In fact, dou-

blons generated by periodic modulation of an optical lattice [48] show the same

behavior, and can be interpreted as, the number of excited carriers in a Mott

insulator as a function of time after photo-excitation [24].

It is clear at this point that, to be able to make reliable predictions regarding

non-equilibrium phenomena, an accurate knowledge of the microscopic param-

eters is highly desirable, along with the possibility of modifying the intrinsic

properties of the compound one chooses to investigate. For cold atoms, these

parameters can be computed from the laser potentials directly [4], while for solid

state systems the task is much harder and they can only be inferred indirectly.
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1.3.2 Complex organic materials

Organic conductors serve as ideal model compounds because of their versatil-

ity and the possibility for easy tuning of electronic properties. The correlation

in the organics occurs between the delocalized electrons of the molecular or-

bitals forming the conduction band [49]. A general feature is the presence of

different electronic phases and ground states, tuned by the degree of effective

electronic correlation in the system. Moreover, the strong spatial asymmetry

in the inter-molecular interactions is such that conduction happens along pre-

ferred directions. As a consequence, electron-electron interactions are weakly

screened, and combined with electron-lattice coupling are fundamentally impor-

tant in determining the electronic behavior.

We choose the organic one-dimensional Mott-insulator ET-F2TCNQ as a

prototypical system to investigate. The properties of this material, which are

described in more detail in the following chapter, make it an ideal choice to

study the ultrafast dynamics in 1D.

The methods developed in this thesis can be extended to address the role of

vibrational, magnetic and electronic modes in any material the relevant physics

of which is believed to be captured by a Hubbard-like Hamiltonian.

1.4 Thesis overview

The layout of this thesis is divided in two parts: in Part I we review the relevant

theoretical models and experimental methods that will be used in Part II to

formulate our results.

Part I is broken down as follows.

• In Ch. 2 we expand upon the properties of organic materials in general, and

more specifically of ET-F2TCNQ, in which electronic correlations play a

crucial role. Subsequently, we introduce the Hubbard Model, since most of

the theoretical original results in this work will have the Hubbard Hamil-

tonian as the starting point in both analytic and numerical calculations.

• In Ch. 3, we describe the response of a medium when irradiated with light

within the framework of linear response theory. We detail the procedure to



10 CHAPTER 1. INTRODUCTION

compute the optical conductivity by using the current-current correlation

function for a one-dimensional Hubbard Model.

• In Ch. 4, we follow the work of Gebhard et al. [50] to obtain a analytic

result for the optical conductivity of a system described by the Extended

Hubbard Model, in the limit in which the local Coulomb interactions

among the electrons greatly overcomes their kinetic energy.

At this point, we are now in place to present our novel physical contributions

to the field in Part II.

• In Ch. 5 we study the ultrafast recombination of photo-excited holon-

doublon pairs as a function of external pressure, which is used to tune the

electronic structure. The next three chapters contain our theoretical and

experimental interpretation of a vibrationally modulated Mott insulator.

• In Ch. 6 we obtain the so-called Dynamic Hubbard Hamiltonian from

general consideration about electronic-vibration (vibronic) coupling.

• Then, in Ch. 7, we derive analytic results for the optical conductivity

in the atomic limit. We additionally use the appropriate expressions to

interpret the ultrafast response of ET-F2TCNQ to mid-infrared optical

pulses.

• To strengthen our claims, we combine the effective model derived in Ch. 5

to fit static optical conductivity measurements, with the time-dependent

U -modulation that originates in the Dynamic Hubbard Model of Ch. 6.

The ensuing theory is used to describe the results obtained by driving the

system with phase-locked (i.e. kept to a fixed value) vibrational excita-

tions.

• Finally, in Ch. 9 we study the effects of vibrational driving on the spin

degrees of freedom. To describe the low-energy physics for a system not

at half-filling, we start from a strong coupling expansion of the Dynamic

Hubbard Model and obtain a version of the t − J model that includes a

coupling to local vibrations. We show that the vibrational driving reduces

the hopping amplitude but does not change the spin exchange interaction
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strength. As a consequence, we propose it as a tool to transiently (for

as long as the driving is on) induce magnetic ordering in an otherwise

non-magnetic complex material.
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Background
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Chapter 2

Strongly correlated physics

in Organic Materials

Low-dimensional organic compounds are a relatively young class of materials

that show a rich variety of properties, such as unconventional superconductivity,

charge or spin density waves, and charge or magnetically ordered states.

The first part of this chapter gives an overview on organics in general, with

focus on a one-dimensional salt. In the second part, we discuss the fundamental

theoretical model in the physics of strongly correlated electrons: the Hubbard

model (HM).

2.1 Organic molecular salts

Organic solids are compounds that have carbon, C, as main constitutive ele-

ment. The free carbon atom has electronic configuration 1s22s2p3, but when

bound in a material the electronic configuration is rather 1s22s22p2, and thus

its valence is four. When two carbons are bound together, they form a double

bond (C = C), with sp2 hybridization. Three pairs of valence orbitals, the 2s

and two 2p orbitals, combine into degenerate orbitals lying in the same plane

of the two carbon atoms. They are disposed at an angle 120◦ relative to one

another. The chemical bonds formed in this way are called σ bonds and are

localized between the two bonding C atoms.

15
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π

p  - orbital

- bond

- bond

sp  - orbitalC C

Figure 2.1: Molecular configuration in which each carbon atom is sp2-

hybridized. In this way sp2-orbitals are generated (three for each carbon atom).

One sp2-orbital of each carbon atom by overlapping forms a sigma bond between

carbon atoms. Remaining two sp2-orbital of each atom overlap with s-orbital of

the external atoms (e.g. hydrogen in the case of ethene) to produce four sigma

bonds. pz un-hybrid orbital of each carbon atom by the parallel overlapping

form a π-bond between two carbon atoms.

The remaining 2p orbital, on the contrary, remains unchanged and is directed

perpendicular to the plane of the sp2 orbitals (and thus to the plane of the

carbon atoms). By overlapping with other p orbitals of neighboring atoms, an

additional π bond is created. As a consequence, we have a delocalized density

of electrons above and below the plane in which the carbons are disposed, as

shown in Fig. 2.1.

The π bonds are much weaker then the σ ones, and therefore the lowest

electronic excitations are those of π electrons. Moreover, these are exactly the

orbitals that determine the intermolecular van der Waals interactions. The

Van der Waals force is based on (weak) dipole forces between neutral molecules

with fully occupied molecular orbitals. It has a very short range and it is

mainly responsible for the cohesion within molecular solids. This has important

consequences that make the organics peculiar and different from other solids.

First of all, the molecular dimensions and the characteristic intra-molecular

frequencies of the free molecules are only slightly modified when they are held

together to form a material. Secondly, it is relatively simple to produce materials
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Figure 2.2: (a): BEDT-TTF (ET) molecule. (b): a depiction of the charge

density in the valence orbital for BEDT-TTF, calculated with the Gaussian03

code [52].

with low impurity and defect concentration, as well as to modify their properties

with minor chemical changes [49].

Over the past decades, a large variety of organic compounds have been syn-

thesized, with very different properties. A comprehensive review of their char-

acteristics goes beyond the objectives of this thesis, and we refer the reader

to the excellent books of Schwoerer [49], or Barford [51]. We are rather going

to focus on one specific variety, namely the donor-acceptor class, in which a

positively-charged ion transfers charge to a negatively-charged one. For this

reasons they are also called charge-transfer (CT) materials. By partially (or

completely) transferring the charge, the compounds are stabilized. The fraction

of charge transfer is measured by the parameter δ, e.g., δ = 0.5 means that

one-half charge per molecule is transfered, or alternatively a hole charge every

second molecule. Typically, CT crystal are arranged in such a way that donors

and acceptors are disposed in separate stacks. Conductions happens along the

stacks composed of the donor molecules, that are the basic structural unit.

Among these, a special place is undoubtedly occupied by the bis(ethylendithyo)

- tetrathiafulvalene (BEDT-TTF, or ET) molecule.

Before specializing in Sec. 2.1.2 to the compound on which all the experi-

mental work reported in this thesis was performed, it is worth to mention some

of the other materials of which the ET is the fundamental structural unit. This

highlights the fact that the results reported in the results’ chapters are not

specific to the investigated compound.
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Figure 2.3: Schematic view of the molecular arrangement of ET molecules within

the conducting plane for different structures.

2.1.1 The ET

Since the discovery of superconductivity in its iodite salts [53, 54, 55, 56], the

ET molecule, shown in Fig. 2.2 along with its charge density in the valence

orbital, has been arguably the most important structure in the field of organic

superconductors. The ET molecules as cations form salts with a larger number

of monovalent anions X of composition (ET)mXn. Since the first observation

of superconductivity, a lot of work has been performed on these compounds,

showing that they exhibit some of the same interesting physics as the cuprates

family [57].

Akin to the other famous family of organic superconductors, the Bechgaard

salts [58, 59, 60], most of them are prepared by electrocrystallization. In this pro-

cess, the donor molecules are oxidized at one electrode and then crystallize with

the monovalent anions present in the electrolyte. ET is a large planar molecule

and the different possible packing patterns are denoted by different Greek let-

ters (e.g. α, γ, κ, . . .). Some of these are shown in Fig. 2.3. Superconducting

and conducting ET donor-acceptor salts have the stoichiometry (ET)2X, where
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Figure 2.4: Layered structure of the ET charge transfer salts. The quasi two

dimensional conducting layers are separated by the insulating anion layers.

X is the monovalent anion (e.g., X=Cu[N(CN)2]). The family κ-(ET)2X is ex-

tremely interesting because it has a very rich phase diagram as a function of

pressure, temperature, and anion [61, 62, 63]. Moreover, if one replaces pressure

with doping, the diagram is quite similar to that of the cuprates.

In general, the anion layer donates electrons to the ET molecules, charging

them up to approximately +0.5e per molecule; consequently, the conductance

band is partly filled and the material is metallic. The metallic properties are

observed only within the layer, in the perpendicular direction the insulating

anion layer blocks charge transfer, as shown in Fig. 2.4. For that reason these

materials are called two-dimensional conductors.

Despite being by far the most studied, structures with two dimensional elec-

tronic character are not the only possible ones. On the contrary, very interesting

physics emerges in compounds with one-dimensional conducting properties, such

as bis(ethylendithyo) - tetrathiafulvalene - difluorotetracyano - quinodimethane,

(ET-F2TCNQ). Its properties are crucial for this work, and are the subject of

next section.
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Figure 2.5: View of the crystal structure of ET-F2TCNQ in (a) 3D along the

a-axis, and (b) along the c-axis. Molecular planes of donors and acceptors stack

on top of each other along the b-axis while donors are arranged side by side

along a-axis. Conduction happens along the a-axis and is one-dimensional.

2.1.2 ET-F2TCNQ

ET-F2TCNQ is a one-dimensional organic Mott insulator (MI). F2TCNQ is the

acceptor ion and ET the donor. Acceptors of F2TCNQ are isolated and the CT

interaction exists only between neighboring donors. The crystal is orthorhombic

with P2/m space group symmetry1, and the dimensions of the unit cell are

a = 5.79 Å, b = 8.201 Å and c = 1186.34 Å. The ET and F2TCNQ molecules

are alternatively stacked on top of each other along the b-axis, and are arranged

side-by-side along the c-axis (see Fig. 2.5). They have a greater inter-molecular

separation than most other charge transfer solids [64] and along the a-axis,

the donors and acceptors lie in single chains with the distances between ET

molecules being shorter than twice their van der Waals radius.

By analyzing the carbon double bond length in the ET molecules, one finds

that the charge transfer between ET and F2TCNQ is complete, i.e., the donor

charge is completely localized on the acceptor molecule (δ = 1). As a con-

sequence, the ET chain has one valence π electron per molecular site: this is

usually referred to as a half-filled system. The conduction happens along the ET

molecules (the structure and the charge density of which are shown in Fig. 2.2(a)

12/m indicates the monoclinic-prismatic class of the crystal shape, and P stands for prim-

itive lattice in opposition to C, the face centered lattice.
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and (b), respectively), and is completely one-dimensional (Fig. 2.5).

Generally speaking, electron-lattice (e-l) interaction plays a significant role

on the charge dynamics in one-dimensional MI [24]. In a one-dimensional chain,

if an electron-phonon interaction is introduced and the chain is distorted to shift

every other atom, the unit cell doubles in size, halving the Brillouin zone. The

previously metallic chain turns into a band insulator, and a gap opens at the

new Brillouin zone boundaries, k = π/2a. The reduction in energy at the Fermi

surface turns out to be greater than the elastic energy required for the lattice

distortion [65, 66]. However, ET-F2TCNQ is special in this respect. The Spin

Peierls (SP) instability is suppressed by the two-dimensionality of the ET sheet

and the compound shows no SP transition even at low temperature. However,

an antiferromagnetic state perpendicular to the mixed stack of ET molecules

forms below the Neél temperature TN = 30 K [67].

Even though the electrons are only weakly coupled to collective modes of the

lattice (phonons), intra-molecular vibrations are likely to play an important role.

The vibration frequencies associated with molecular vibrations are usually at

high-frequencies (∼ 103 cm−1) with respect to the ones of the phonon modes [49]

(typically <102 cm−1). In [68], a complete analysis of the vibrational dynamics

of the ET molecule has been performed through first-principle calculations. It

has also been shown that some modes are sensitive to the ionicity of the specific

molecule.

This is indeed a crucial point that has to be taken into account in the de-

scription of molecular MI, and that can help to shed light on some features of

the underlying microscopic model describing them.

2.1.3 Selective vibrational excitation

As suggested above, we expect the vibrational modes to play an important role

in explaining the electronic properties of complex solids. In the introduction,

we listed a number of methods that have been used to control specific properties

of complex materials.

In this section we specialize on a novel way of controlling a phase of mat-

ter, involving coherent excitation of a specific vibrational mode of the lattice.

Mode-selective modulation spectroscopy allows us to strongly drive a selected
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Figure 2.6: Schematic view of vibrational excitation of a manganite by angle

distortion.

vibrational mode and amplify its influence to a macroscopic level.

This technique is used in the experiments reported in Ch. 7 and Ch. 8 to

investigate the role of Coulomb interaction parameters in the Hubbard Model.

It is a powerful and versatile tool, that allowed, for example, Tobey et al. [38] to

succeed in inducing an insulator-to-metal transition in a manganite. As shown

in Fig. 2.6, the bandwidth may be controlled through the creation of a Mn-

O bonding angle distortion. Another more recent example is the experiment

performed by Fausti et al. [39], that showed that the same phonon-pumping

technique applied to a copper oxide can induce a superconducting phase.

As we are going to demonstrate in detail in Ch. 7, when applied to the organic

salt ET-F2TCNQ, mode selective driving elevates the chosen modes’ contribu-

tion, and “deconstructs” the HM by requiring that the vibrations quantum

mechanical degree of freedom is explicitly accounted for in the Hamiltonian.

Even if we are going to extensively discuss the details in the following, it is

instructive to use it as an example here and provide some details on how this

approach is implemented. We are going to selectively drive two vibrational

modes with different symmetry: an infrared (IR) active asymmetric mode at

∼ 10 µm wavelength, and a Raman active symmetric mode at ∼ 6 µm. The

situation is represented in Fig. 2.7.

The chain of ET molecules is strongly driven causing the individual molecules



2.1. ORGANIC MOLECULAR SALTS 23

b

Figure 2.7: The chain of ET molecules are shown individually aligned along the

b-axis forming a chain in the a-axis. Light polarized along the a-axis probes the

reflectivity of the system as a function of the frequency [2]. The charge density

in the valence orbital calculated with Gaussian03 code is shown in (a) non

vibrationally excited chain; (b) chain excited with a Raman active vibrational

mode; (c) chain excited with IR active vibrational mode.

to oscillate in tandem. The effect on the charge density of the valence orbital

is depicted in Fig. 2.7(b) and Fig. 2.7(c) for Raman and IR vibrational modes,

respectively. In the pump-probe experiment on ET, the pump has been tuned

resonantly on the vibrational modes, and the photo-induced reflectivity changes

have been probed at several time delays in a wide frequency range from the near-

infrared (NIR) to the Terahertz (THz), as shown in Fig. 2.8. The experiment

then examined the reflectivity response on ultrashort timescales, the results of

which will be discussed extensively in Ch. 7.

So far, the Hubbard Hamiltonian has been mentioned several times as one of

the key theoretical models to study complex materials. Nevertheless, it hasn’t

been introduced formally yet. The remaining of this chapter is dedicated to this

purpose.
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Pump

Probe

Figure 2.8: Pump probe experiment. The mid-infrared (MIR) (i.e. electromag-

netic radiation with frequency range between 37 − 100 THz) pump has been

tuned resonantly on the vibrational modes, and the photoinduced reflectivity

changes have been probed at several time delays in a wide frequency range from

the NIR (frequency range between 214− 400 THz) to the THz.
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2.2 The Hubbard Model

The physics of the HM is of interest here for two reason. Firstly, the Mott

insulating behavior underpins the physics of one-dimensional MI, realized in

ET-F2TCNQ. The Mott insulating phase is only obtained if one allows strong

interactions, as described by the Hubbard model. Secondly, within this model

it is possible to investigate metallic or insulating behavior, the metal-insulator

transition, and superconductivity depending on the electronic kinetic energy,

band filling, dimension, and obviously, on the parameters that quantify the

electronic correlations. As a consequence, all the results presented in the fol-

lowing have a much broader applicability than the specific compound we set

about to study.

The HM was originally introduced to describe transition metals and rare-

earth metals, both composed of atoms with very localized valence electrons (d

or f shells). Owing to the very high degree of localization, the local value of the

Coulomb interaction is considered to be completely dominant with respect to

the long range contributions. For this reason Hubbard, in a milestone paper [40],

wrote the model Hamiltonian as

ĤHM = −t
∑
〈ij〉,σ

ĉ†i,σ ĉj,σ + U
∑
j

n̂j,↑n̂j,↓ ≡ Ĥt + ĤU , (2.1)

that still today carries his name. The first term alone is the so-called tight-

binding model and describes the kinetic energy of the electrons (as explained in

more detail in Appendix 2.A.1), ĉ
(†)
i,σ is the annihilation (creation) operator for

an electron at site i with spin σ =↑, ↓, and n̂i,σ = ĉ†i,σ ĉi,σ is the number operator.

The symbol 〈ij〉 indicates that the sum is restricted to nearest-neighbor sites

only. In Appendix 2.A, we start from the general many-body Hamiltonian for

electrons in a lattice and obtain the HM explaining the various approximation

that lead to Eq. (2.1).

The value of the transfer integral t, Eq. (2.13), is given by the overlap of

onsite electronic wave functions connected by the potential generated by the

lattice, and dictates how ‘easy’ it is for electrons to tunnel between neighboring

sites. The strength of the Coulomb interaction is restricted to electrons on

the same lattice sites (see Eq. (2.15) in Appendix 2.A.2). In the Hamiltonian

of Eq. (2.1) it is assumed we have only a single, isotropic, atomic orbital.
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The two parameters, t and U , express two competing effects. This is seen

by considering the two extreme limits of t� U and t� U . In the former case,

the electrons are delocalized throughout the crystal with well defined k-vectors

which form bands; in the latter, the Coulomb repulsion prevents electrons from

moving onto occupied lattice sites leading to charge localization.

While the interaction causes the system to be an insulator when the number

of electrons N equals the number of lattice sites M (half-filling), as the filling

is either reduced or increased, the system becomes metallic-like, as there are

more vacant sites onto which electrons/holes can hop [17]. For transition metal

ions with an occupation n of the d-levels, the hopping transition is of the type

dni d
n
j → dn−1

i dn+1
j , thereby creating a double occupancy (doublon) on site j and

a hole (holon) on site i. The energy cost of this transition, U , can be measured

by comparing the difference between the ionization energy, I, and the electron

affinity, E, as

U = I − E.

The density of states for charge excitations displays two bands separated by the

Mott-Hubbard gap Eg, which is defined as the jump in the chemical potential,

µ, at half-filling

Eg = µ+(N = M)− µ−(N = M),

= [E(N = M + 1)− E(N = M)]− [E(N = M)− E(N = M − 1)].

The charge gap separates many-particle states to which electrons can be removed

(Lower Hubbard Band, LHB) from states to which electrons can be added (Up-

per Hubbard Band, UHB). Despite being called in the same way, in this context

the word “bands” has a very different meaning from the usual single-particle

valence and conduction bands. Hubbard bands also have very different prop-

erties from the Bloch bands. For example, as the number of electron changes,

the width of both band and gap changes accordingly. For M → ∞, Eg is also

equal to the optical gap, defined as the energy threshold of the lowest band in

the optical spectrum.

An exact expression for Eg can be found in 1D using the Bethe Ansatz [69]:

Eg =
16t2

U

∫ ∞
1

dy
√
y2 − 1

sinh(2πty/U)
,
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Figure 2.9: (a) Photoinduced reflectivity changes of ET-F2TCNQ [Taken

from [27]]. (b) Schematic explanation of the photoexcitation process and con-

sequent photo-excited state. (c) Excitation effects on the Density of States.

that for strong coupling, U � t, becomes

Eg = U − 4t+
8t2 ln 2

U
.

Clearly, optical absorption is only possible if ω ≥ Eg, therefore one might ex-

pect it to show the signature of a broad band-to-band transition for U − 4t ≤

ω ≤ U + 4t [70, 71]. By photo-exciting the system, charges can be moved to

neighboring sites, i.e., particles are excited from the LHB to the UHB. This

way, a transient conducting state is created. Experimentally, this has been re-

alized in ET-F2TCNQ by Okamoto et al. [27] who have measured the changes

in reflectivity obtained by photo-exciting the system with NIR pulses across the

Mott gap (Fig. 2.9).

It is important to mention that in some materials the gap energy is found

to be significantly lower then expected, suggesting that the electron transfer

does not happen between neighboring transition metal ions, but rather between

neighboring cations and anions [72]. Such a transition can be represented as

dni → dn+1L, where L corresponds to a hole in the anion valence band, with the

transfer process requiring a ∆ amount of energy. These systems, referred to as

charge-transfer insulators, can be regarded as impurity doped semiconductors

with the d-band acting as the impurity band and transport is due to holes in

the oxygen band.

In Fig. 2.10 we schematically compare the band structures for a Mott and



28CHAPTER 2. STRONGLY CORRELATED PHYSICS IN ORGANICMATERIALS

charge-transfer insulators, and indicate the lowest energy transitions for each

case. However, charge-transfer insulators have many properties similar to those

of MI [73], and very often one also uses for their description the Hubbard

model Eq. (2.1).

2.2.1 The Extended Hubbard Model

As detailed in Appendix 2.A, the HM is derived from a series of approxima-

tion on the general many-body Hamiltonian describing the behavior of elec-

trons and nuclei in a solid. It is assumed that the on-site Coulomb interaction,

parametrized by U , and the kinetic energy, t, are enough to describe the low

energy physics. All the other terms are considered the be irrelevant. Sometimes,

though, this approximation is too crude, and it results to be necessary to take

into account also the inter-site Coulomb repulsion. The matrix element express-

ing the strength of this term is usually called V . The resulting Hamiltonian is

known as Extended Hubbard Model (EHM):

ĤEHM = −t
∑
〈ij〉

ĉ†i,σ ĉj,σ + U
∑
j

n̂j,↑n̂j,↓ + V
∑
〈ij〉

n̂j n̂j+1, (2.2)

≡ Ĥt + ĤU + ĤV .

The electronic properties of Eq. (2.2) are substantially different from the ones of

the original HM. Arguably, the most interesting effect arising from the V term

is the creation of excitonic states. In the context of complex materials, these

consist of holon-doublon pairs, bound by an energy V .

In low dimensions, the additional term is needed to interpret the ground state

phase diagram of systems like the two-dimensional quarter-filled systems [74,

75], in which the sites are occupied just by half an electron in average. Even

more interestingly, Wall et al. [76] have shown that a ĤV term is necessary to

explain the nature of charge excitations in MI in 1D. Using NIR pulses, they

have measured coherent electronic excitations in ET-F2TCNQ and singled out

coherent oscillations in the conductivity. Time-resolved spectroscopy reveals

the quantum interference between two different excitation paths, those between

excitons and free holon-doublon states.

Non-local interactions allow us to study general features of doped systems

like copper-oxide materials [77, 78, 79], high-temperature superconductors [80,
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Figure 2.10: Band diagram of a transition metal compound, consisting of a

partially full transition metal d-level and a full 2p anion band. When t� U,∆

the Hubbard bands are not split resulting in the Fermi level lying in the middle of

the d-band. When U � t the 3d band is split into the upper and lower Hubbard

bands resulting in an insulator. If U < ∆ the material is a Mott insulator and

excitations correspond to electrons and holes in the upper and lower Hubbard

bands respectively. Whereas, if U > ∆, the anion valence band lies closer to

the Fermi level and excitations correspond to electrons in the upper Hubbard

band and holes in the anion valence band. This material is a charge-transfer

insulator.
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81], manganese compounds [82], and to describe charge ordering [83, 84, 85,

86] and phase separation [87, 88]. Our one-dimensional compound has non-

negligible non-local interactions, and these make it ideal to explore properties

which are at the heart of some of the most interesting phenomena that happen

in two- or three-dimensions.
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2.A Strongly correlated many-body systems

The aim of this appendix is to derive the Hubbard model. We are going to

focus on the approximations that will lead, in Sec. 2.A.2, from the general

many-body Hamiltonian, to Eq. (2.1). By using an approximate set of wave

functions located at each atomic site (Wannier functions), we will also obtained

the well-known tight-binding model. This arises in the limit of t � U , and it

will be used in Ch. 5 to compare the relaxation of electronic excitations in a

strongly-correlated material against the ones in metals or semiconductors.

Molecular solids are systems of molecules and electrons arranged in a three-

dimensional crystalline structure. Due to the enormous mass difference between

electrons and molecules, the latter are usually assumed to be static (Born-

Oppenheimer approximation) and the dynamics of the electronic behavior is

governed by the Hamiltonian

H =

N∑
j=1

( p2
j

2me
+ VI(rj)

)
+

∑
1≤i≤j≤N

VC(rj − rj), (2.3)

where me andN are the mass and the total number of the electrons, respectively,

VI(r) is the periodic potential of the molecules, VC(r) = e2/|r| is the Coulomb

repulsion among electrons

Historically, a very successful approach to tackle this formidable problem

has been the so-called “mean-field” single particle approximation, performed by

adding an auxiliary potential, VA(r), to the one-particle part of the Hamiltonian

and then subtracting it to the two body-part as

H =

N∑
j=1

( p2
j

2me
+ V (rj)

)
+

∑
1≤i≤j≤N

U(ri, rj),

where the effective one- and two-body potentials, V (r) and U(r1, r1), are

V (r) = VI(r) + VA(r),

U(r1, r2) = VC(r1 − r2)− 1

N − 1

(
VA(r1) + VA(r2)

)
.

The auxiliary potential is chosen in such a way that the matrix elements of the

effective two-body potential U(r1, r2) between the eigenstates of the one-particle

Hamiltonian,

h1(r,p) =
p2

2me
+ V (r), (2.5)
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become small. The idea behind this is that, if one inserts an additional electron

in a system that has a large number of electrons N , the attractive ionic potential

it will feel will be screened by the electrostatic potential which stems from the

ground state density of the other electrons.

The total Hamiltonian can be studied by using the eigenstates of the single-

particle Hamiltonian, h1. The single-particle potential is periodic, i.e., VI(r) =

VI(r + a) (a is the lattice spacing), thus the eigenstates of h1 are required to

be eigenstates of the lattice translation operator T̂ f(r) = f(r+ a). The Bloch’s

theorem [13] states that they are of the form

ϕαq(r) = eik·ruαq(r), with uαq(r) = uαq(r + a),

i.e., plane-waves with wave-vector q modulated by a function, uαq(r), with the

same periodicity of the underlying lattice. α is a band index, while q is called

quasi-momentum and has a finite range of values called the first Brillouin zone

(BZ). The functions ϕαq(r) are eigenfunctions of the single-particle Hamilto-

nian, h1,

h1ϕαq(r) = εαq(r). (2.6)

Eq. (2.6) determines the band structure [13].

These states, known as Bloch states, are typically functions that extend

over the entire system. To describe local interactions, it is convenient to use a

complementary single-particle basis for which the states are spatially localized

on each lattice site, at a distance Rj from the origin. This is the Wannier

basis [13]. Formally, we write φα(r−Rj), where φα(r) is defined as

φα(r) =
1√
M

∑
k

eik·rϕαk(r), (2.7)

and M is the number of lattice sites. The wave functions in Eq. (2.7) are the

lattice analogous of the atomic states and are mutually orthogonal for different

bands, α, and site indices, j. The Bloch states can be re-obtained from Wannier

states by Fourier inversion:

ϕαk(r) =
1√
M

∑
j

eik·Rjφα(r−Rj). (2.8)

At this point, one can introduce creation and annihilation operators, ĉ†αk,σ and
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ĉαk,σ. Correspondingly, their Fourier transforms are

ĉ†αj,σ =
1√
M

∑
k

e−ik·Rj ĉ†αk,σ, ĉαj,σ =
1√
M

∑
k

e−ik·Rj ĉαk,σ (2.9)

The creation operator ĉ†αk,σ generates the space of states of the HM by acting

on the vacuum state |vac〉. These are canonical Fermi operators satisfying the

standard anti-commutation relations

{ĉ†αj,σ, ĉ
†
αk,σ′} = {ĉαj,σ, ĉαk,σ′} = 0, {ĉαj,σ, ĉ†αk,σ′} = δjkδσσ′ ,

for j, k = 1, . . . ,M and σ, σ′ =↑, ↓. One can express the field operator which

creates an electron of spin σ at position r, Eq. (2.8), as

Ψ̂†σ(r) =
∑
αk

ϕ∗αk(r)ĉ†αk,σ =
∑
αj

φ∗α(r−Rj)ĉ
†
αj,σ. (2.10)

Here ∗ stands for complex conjugation. The general formula [89] relating first

and second quantized formalisms

Ĥ =
∑
σ=↑,↓

∫
drΨ̂†σ(r)h1Ψ̂σ(r)

+ 1
2

∑
σ,σ̄=↑,↓

∫
dr1 dr2Ψ̂†σ(r1)Ψ̂†σ̄(r2)U(r1, r2)Ψ̂σ(r1)Ψ̂σ̄(r2), (2.11)

enables us to express the Hamiltonian Eq. (2.3) in second quantized form in the

basis of Wannier states:

Ĥ =
∑
α,i,j,σ

tαij ĉ
†
αi,σ ĉαj,σ

+
∑

α,β,γ,δ

∑
i,j,k,l

∑
σ,σ̄

Uαβγδijkl ĉ
†
αi,σ ĉ

†
βj,σ̄ ĉγk,σ̄ ĉδl,σ. (2.12a)

The hopping matrix elements, tαij , and the interaction parameters, Uαβγδijkl , are:

tαij = −
∫

drφ∗α(r−Ri)h1φα(r−Rj), (2.12b)

Uαβγδijkl =

∫
dr1 dr2φ

∗
α(r1 −Ri)φ

∗
β(r2 −Rj)U(r1, r2)φγ(r2 −Rk)φδ(r1 −Rl).

(2.12c)

The Hamiltonian Eq. (2.12a) is completely equivalent to Eq. (2.3), but by choos-

ing highly localized single-particle states, it may be rendered a model dominated

by a few local terms. Any band α with energies

Eαq = 〈ϕαq|h1|ϕαq〉,
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satisfying the condition that Eαq is much bigger than the kinetic, potential,

and thermal energy for all q will not contribute to the physics and can be

ignored. If, in addition, the Fermi surface lies inside a single conduction band,

it is reasonable to assume that the interesting physics happens in that band,

while the main effect of the high energy bands is simply to change the hopping

and interaction matrix elements of the electrons in the conduction band. This

is the reason of the aforementioned single-band assumption in the Hubbard

model. Thus, from this point on, we shall assume that these conditions hold

and consequently drop the band indices.

2.A.1 The tight-binding model

The simplest model with the form of Eq. (2.11) is the so called tight-binding

model [13] (or Hückel model in a chemistry context [90]). In this model one

makes the approximation Uαβγδijkl = 0, therefore neglecting the interactions be-

tween electrons.

We take the basis to consist of orbitals centered on particular sites, an as-

sumption that we will carry on throughout this thesis. Another common simpli-

fication arises by assuming that the two-center integrals, Eq. (2.12b), are only

non-zero for electrons in the same or in neighboring orbitals, i.e.,

tj,j ≡ −εj =

∫
drφ∗α(r−Rj)h1φα(r−Rj).

t〈i,j〉 ≡ t = −
∫

drφ∗α(r−Ri)h1φα(r−Rj), (2.13)

where 〈ij〉 indicates that the sum is over nearest-neighbors only. If we consider

materials with only a single atomic species, εj = 0, yielding

ĤTB − µ
∑
j

n̂j = −t
∑
〈ij〉

ĉ†i,σ ĉj,σ − µ
∑
jσ

n̂j ,

where µ is the chemical potential. For a one-dimensional chain the sites have a

natural ordering, thus the Hamiltonian may be written as

ĤTB − µ
∑
j

n̂j = (ĉ†j,σ ĉj+1,σ + ĉ†j+1,σ ĉj,σ)− µ
∑
j,σ

n̂j,σ. (2.14)

This model can be solved exactly by Fourier transform. By using the reciprocal
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space creation and annihilation operators (Eq. (2.9)), we obtain for Eq. (2.14)

ĤTB − µ
∑
j

n̂j =
1

N

∑
jkk′σ

ĉ†k,σ ĉk′,σei(k
′−k)Rj

[
−t(eik

′a + e−ika)− µ
]
,

Using the δ function property: δ(k− k′) = 1/M
∑
j ei(k−k

′)Rj , we finally obtain

ĤTB − µ
∑
j

n̂j =
∑
k,σ

[
−2t cos(ka)ĉ†k,σ ĉk,σ − µĉ

†
k,σ ĉk,σ

]
=
∑
k,σ

(εk − µ)ĉ†k,σ ĉk,σ,

where εk = −2t cos(ka) is the dispersion relation. This equation is diagonal: it

depends only on the number operator terms. The energy is the sum of εk for

the kσ occupied states.

Changes in the chemical potential move the Fermi energy up or down the

band, and hence alter the number of electrons in the system. For an half-filled

band µ = 0: this is the case of interest in this thesis, and we will set µ = 0 from

now on.

2.A.2 The Hubbard Model

The single-band HM originates from Eq. (2.12a) when the interaction param-

eters cannot be neglected compared to the hopping matrix elements, and are

short range. Specifically, the four-center integral Eq. (2.12c) is dominated by

electrons in the same orbital,

Ujjjj ≡ U =

∫
dr1 dr2φ

∗
1(r1−Rj)φ

∗
1(r2−Rj)U(r1, r2)φ1(r2−Rj)φ1(r1−Rj).

Finally, we recover Eq. (2.1):

ĤHM = −t
∑
〈ij〉

ĉ†i,σ ĉj,σ + U
∑
j

n̂j,↑n̂j,↓.

The space of states of the HM for N electrons can be constructed from the

creation operators once an ordering on the operators is imposed as

|r, ~σ〉 = ĉ†r1,σ1
ĉ†r2,σ2

· · · ĉ†rN ,σN |vac〉,

where electrons of spin σj are located on lattice sites rj , j = 1, . . . ,M . We also

define the row vectors of electrons and spin coordinates, r = (r1, r2, · · · , rN )

and ~σ = (σ1, σ2, · · · , σN ) (rj = {1, . . . ,M}) and impose that the elements of
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r are arranged in ascending order so that rj ≤ rj+1, and if rj = rj+1 (some-

thing clearly only permitted if the spin configurations differ) then ↑<↓. Thus,

associated to each lattice site there are four states

|vac〉 =|0〉j , holon

ĉ†j,↑|vac〉 =| ↑〉j , singlon

ĉ†j,↓|vac〉 =| ↓〉j , singlon

ĉ†j,↑ĉ
†
j,↓|vac〉 =| m〉j , doublon

corresponding to an empty site (holon), a single occupied site with a spin up or

down electron (singlon), or a doubly occupied site (doublon).



Chapter 3

Computing Optical

Properties

Physical and chemical systems are characterized by their natural frequencies and

energy scales. The effects of strong correlation are reflected in the response of

solids to small amplitude perturbations at their natural frequencies. In complex

solids, these natural frequencies span an enormous range range from zero Hz to

beyond x-ray energies. Large regions of such energy scales can be studied with

various photon spectroscopies.

In this chapter, we concentrate on absorptive and conductive properties, and

more specifically on the frequency-dependent conductivity, σ(ω), or alternatively

on the dielectric constant, ε(ω). We will start by introducing the complex optical

constants and their most important properties. Despite being well known, this

part is necessary because it will be widely used in the analysis of the experiments

of the next chapters.

In the second part of the chapter, we will focus on the calculations of the

optical conductivity for a quantum system described by the Hubbard Hamilto-

nian.

37
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3.1 The complex optical constants

The optical properties of a medium are described by the dielectric constant ε,

the optical conductivity σ, and the refractive index. They are all, in general,

complex quantities:

ε(ω) = ε1(ω) + iε2(ω),

σ(ω) = σ1(ω) + iσ2(ω),

n(ω) = n(ω) + iκ(ω),

where n is the complex refractive index, κ the absorption coefficient [91], and we

use the subscripts 1 and 2 to denote real and imaginary part, respectively. The

complex refractive index is related to the complex dielectric constant by [92]

n2(ω) = ε(ω). The general relation between the dielectric function and complex

conductivity may be shown to be [92]

ε(ω) = ε̃(ω) + i
σ̃(ω)

(ω)
ωε0, (3.1)

where ε0 is the vacuum permittivity, ε̃ describes the motion of bound charges,

and σ̃ describes that of free charges, in the limit of a very low frequency or

DC field. However, at higher frequencies, especially optical frequencies, the

response of free and bound charges to the rapidly varying field changes dra-

matically from the low frequency case, and the distinction between bound and

free charges becomes one of convention [13]. It is therefore possible to redefine

ε̃ using an arbitrary function of frequency, so long as σ̃(ω) is correspondingly

redefined and satisfies Eq. (3.1). The relation between the dielectric constant

and complex conductivity is redefined to place the response of all electrons into

the conductivity term [93]

ε(ω) = 1 + i
σ(ω)

ωε0
.

This definition is well justified so long as the conductivity remains greater than

unity. It also allows easy conversion between ε and σ, since the real and imagi-

nary parts of ε(ω) = ε1(ω) + iε2(ω) and σ(ω) = σ1(ω) + iσ2(ω) can be now be

expressed as

σ1(ω) = ωε0ε2(ω), σ2(ω) = ωε0(1− ε1(ω)).
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All the optical constants outlined so far determine the response of a medium to

an external electromagnetic wave.

3.1.1 Linear response

When a linear relationship is assumed between the applied field E and the

response of the polarization, P , or of the current, J , one finds [94]:

P = ε0χeE, J = σE. (3.2)

The electric susceptibility χe is related to the dielectric function as ε = (1+χe)ε0.

The response functions ε and σ connect the field E at time τ and position r

with the field D and current, respectively, at some later time and position as

D(r, τ) =

∫ τ

−∞

∫
ε(r, r′, τ, τ ′)E(r′, τ ′) d3r′ dτ ′, (3.3a)

J(r, τ) =

∫ τ

−∞

∫
σ(r, r′, τ, τ ′)E(r′, τ ′) d3r′ dτ ′. (3.3b)

To compare with experimental optical spectra, we need the to Fourier transform

Eqs. 3.3a and 3.3b, into the momentum- and frequencies-dependent quantities

σ(q, ω) and ε(q, ω). How to explicitly calculate these quantities is discussed at

length in Sec. 3.3.

Due to the great mismatch between the velocity of light and the typical

velocity of electrons in solids, it is a good assumption to study Eq. (??) in the

q = 0 limit. In other words, we shall adopt a local relationship between the

quantities in Eq. (3.2) valid over a microscopic distance.

3.1.2 Kramer-Kronig relations

Exploiting the principle of causality [95], one can obtain a fundamental connec-

tion between the real and imaginary part of linear complex optical functions.

From causality, the conductivity memory function satisfies σ(τ, τ ′) = σ(τ−τ ′ <

0) ≡ σ(∆τ < 0) = 0, so that the current becomes

J(τ) =

∫ τ

−∞
σ(τ − τ ′)E(τ ′) dτ ′,

and its Fourier transform

σ(ω) =

∫ τ

0

σ(∆τ)eiω∆τ d(∆τ).
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We can perform the integral in the complex frequency plane by substituting

ω → z = ω1 + iω2:

σ(ω) =

∫ ∞
0

σ(∆τ)eiω1∆τe−ω2∆τ d(∆τ).

The second exponent is bound in the upper (lower) half of the complex plane

for ∆τ > 0 (∆τ < 0). Since σ(∆τ < 0) = 0, σ(ω) is analytic in the upper half

of the complex plane in which we can apply Cauchy’s theorem [96]:∫
σ(ω′)

ω′ − ω0
dω′ = P

∫ ∞
−∞

dω′
σ(ω′)

ω′ − ω
− iπσ(ω) = 0,

where P denotes the principal part. Using the fact that in time domain Im[σ(τ)] =

0, then σ(−ω) = σ∗(ω), and the Kramers-Kronig (KK) [97, 98] relations follow

as

σ1(ω) =
2

π
P
∫ ∞

0

dω′
ω′σ2(ω′)

ω′2 − ω2
, (3.4a)

σ2(ω) =− 2ω

π
P
∫ ∞

0

dω′
ω′σ1(ω′)

ω′2 − ω2
, (3.4b)

The KK relations describe a fundamental connection between the real and imag-

inary part of linear complex optical functions: σ1(ω) and σ2(ω) are connected

by a special form of Hilbert transforms. Physically, this means that it is possi-

ble to perform the so-called inversion of optical data, i.e., to acquire knowledge

on dispersive phenomena by measurements of absorptive phenomena over the

whole spectrum (e.g., with transmission spectroscopy) or vice versa.

3.2 Drude-Lorentz classical conductivity

The simplest model of charge conduction we can imagine is of a single charge

e, driven by an electric field E, subject to a viscous damping force that relaxes

momentum on a timescale τR, and to a harmonic restoring force −Kr, where r

denotes its average position. The equation of motion is

me(r̈ +
ṙ

τR
+ ω2

0r) = −eE,

where w2
0 = K/me. We assume harmonic motion, so that x = x0e−iωτ and

E = E0e−iωτ . If we consider an ensemble of charge with density n, the maximum
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current density is J0 = neẋ0. Using the relation J = σE, the relation for the

optical conductivity is [13]

σ(ω) =
Ne2

me

ω

i(ω2
0 − ω2) + ω/τR

. (3.5)

Strictly speaking, this model describes quite accurately only the low frequency

features of simple metals (for a metal there is no restoring force, i.e. the ω0 = 0).

Despite its classical nature, the Drude-Lorentz model can anyway be used to

quantify finite frequency absorptions [99] in complex materials. Since any line-

shape can be fitted arbitrarily well using a large enough number of oscillators,

and because the imaginary part of the response can be extracted by KK trans-

formation of the real part, it is perfectly feasible to parametrize the response

using Eq. (3.5). This is indeed the way the experimental results in the following

chapters were fitted.

However, if we wish to use the optical conductivity to extract physical in-

formation about the underlying microscopic physics, a quantum mechanical

treatment is required. This is what we set about to discuss in the next section.

3.3 Quantum optical conductivity

The most commonly used method for quantum mechanical calculation of the

electronic response is the Kubo formalism [100]. It is based on the fluctuation-

dissipation theorem, which relates the spontaneous fluctuations of a system

at equilibrium described through its correlation functions to its driven linear

response [101]. The Kubo formula is a very general equation, and its applica-

tion spans from the computation of charge and spin susceptibilities of electron

systems due to external electric or magnetic field, to responses to external me-

chanical forces or vibrations.

In the remaining of this chapter, we are going to specialize to the case of inter-

est for this thesis, namely how the one-band Hubbard model in the tight-binding

approximation has to be modified in the presence of an external eletro-magnetic

field. This way, the sought formula for the conductivity of a periodic Hubbard

chain is found. Let us remark that this is the central quantity investigated in

the results chapters, hence it is worthwhile to show its derivation in detail.
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3.3.1 Hubbard Hamiltonian in an external field

In a typical optical experiment, an electric field impinges on a system and light

creates a localized disturbance at some point r at some time τ . The response

of the system is then measured at some later time τ ′ > τ .

As mentioned above, we consider a one-dimensional system with periodic

boundary conditions 1, i.e., a ring of radius R with M lattice sites. We are

interested in the electronic response to a spatially homogeneous, time-dependent

electric field, E(r, τ) = −E(ρ, τ)eϕ. eϕ is the unit vector along the ring and

ρ is the distance of the point r from the axis perpendicular to the ring plane

through the center of the ring, that we take to be the z-axis.

We work in the Weyl gauge, where the scalar potential Φ is set zero: Φ(r, τ) =

0. The electric field E(r, τ), and the vector potential A(r, τ), become

E(r, τ) = −1

c
∂tA(r, τ), A(r, τ) = −A(ρ, τ)eϕ.

The field affects only the individual momenta p of the electrons, and thus the

single-particle part of the Hamiltonian, Eq. (2.5), is

h1(τ) =
1

2me

(
p +

eA(r, τ)

c

)2

+ V (r). (3.6)

The magnetic field B = ∇×A couples only to the spin part of the wave func-

tion [102], and can be treated separately. We disregard this effect here, but it

can be introduced in the calculation at any stage. The general hopping ma-

trix elements, Eq. (2.12b), for a single-band Hamiltonian with nearest-neighbor

terms only, are modified by Eq. (3.6) as

tj,j+1(τ) =−
∫

drφ∗(r−Rj)h1(τ)φ(r−Rj+1),

=

∫
drφ∗(r−Rj)

[
1

2me

(
p +

eA

c

)2

+ V (r)

]
φ(r−Rj+1),

=

∫
drφ∗(r−Rj)e

−ieλ(r,τ)/c

[
1

2me

(
p +

e(A− ∂λ(r, τ)

c

)2

+ V (r)

]
× eieλ(r,τ)/cφ(r−Rj+1). (3.7)

1We are interested in the bulk properties, therefore the choice of boundary conditions

should not change the physics. We choose periodic boundary conditions for convenience. In

this section, we are going work in Gaussian units.
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The third equality holds for any differentiable complex valued function λ(r, τ).

The terms e±ieλ(r,τ)/c are called Peierls phases and we choose them as

λj,j+1(τ) =
e

c

∫ Rj+1

Rj

drA(r, τ) =
ea

c
A(R, τ),

where the lattice spacing for the ring is a = 2πR/M . The electric field is related

to λ(τ) as

E(τ) = −1

c

∂A(τ)

∂τ
= − 1

ea

∂λ(τ)

∂τ
.

The current flowing through the system is determined by measuring the current

operator

Ĵ = −it
∑
j,σ

(ĉ†j,σ ĉj+1,σ − ĉ†j+1,σ ĉj,σ),

which satisfies the continuity equation for the total number of electrons. In the

presence of external field, Ĵ is modified similarly to the hopping operator to

obtain

Ĵ(τ) = −it
∑
j,σ

(eiλ(τ)ĉ†j,σ ĉj+1,σ − e−iλ(τ)ĉ†j+1,σ ĉj,σ). (3.8)

The corresponding electric current is Ĵel(τ) = −eaĴ(τ), while the electric cur-

rent density2 is given by

jel(τ) = − e

a2
Ĵ(τ).

If the Wannier functions φ(r−Rj) are strongly localized around Rj , and if the

vector potential Aα varies slowly with respect to a, the full Extended Hubbard

Hamiltonian, Eq. (2.2), becomes

ĤEHM(τ) =− t
∑
j

(eiλj,j+1(τ)ĉ†j,σ ĉj+1,σ + e−iλj,j+1(τ)ĉ†j+1,σ ĉj,σ) + U
∑
j

n̂j,↑n̂j,↓

+ V
∑
j

n̂j n̂j+1 ≡ Ĥt(τ) + ĤU + ĤV . (3.9)

Moreover, if the electric field is weak as it customarily is for a probe, we can take

into account its effects by retaining only linear terms in Eq. (3.9) and Eq. (3.8):

ĤEHM(τ) = Ĥt + ĤU + ĤV + λ(τ)Ĵ ,

Ĵ(τ) = Ĵ − λ(τ)Ĥt, (3.10)

where Ĥt and Ĵ are the hopping and current operators in zero external field

(λ(τ) = 0), respectively.

2The electric current is conventionally normalized to a 3D unit volume, even in 1D systems.
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3.3.2 Optical Conductivity Kubo formula

At this point, we have all the elements to obtain an expression for the optical

conductivity, that is the linear response function connecting the induced electric

current density, ∆jel(τ) = 〈jel(τ)〉 − 〈jel(−∞)〉0, to the applied electric field

E(τ):

∆jel(τ) =

∫ ∞
−∞

dτ ′σ(τ − τ ′)E(τ ′).

With 〈·〉 = tr(· ρ(τ)) we denote the expectation value with respect to the time-

evolved state, and 〈·〉0 = tr(· ρ0).

We start from a general stationary initial state of the unperturbed Hamil-

tonian, ĤEHM, with density matrix ρ0, and compute the expectation value of

Ĵ(τ) with respect to the time evolution of ρ0 under the influence of the small

perturbation λ(τ).

In the distant past (τ →∞), ρ0 is taken to be in a statical mixture possessing

the diagonal form

ρ0 =
∑
n

pn|ψn〉〈ψn|, (3.11)

where we assume that ĤEHM =
∑
n εn|ψn〉〈ψn|, and |ψn〉 is an eigenstate of

energy εn. In time, it evolves according to ρ(τ) = V̂ (τ,−∞)ρ0V̂
†(τ,−∞), where

V̂ (τ,−∞) is the full time-ordered propagator of ĤEHM(τ):

V̂ (τ,−∞) = T

{
exp

[
−i
∫ τ

−∞
dτ ′ĤEHM(τ ′)

]}
. (3.12)

By using Eq. (3.10), we obtain

〈Ĵ(τ)〉 = tr
[
V̂ †(τ,−∞)Ĵ(τ)V̂ (τ,−∞)ρ0

]
(3.13)

Seeing that we are interested in the linear response of ĤEHM to a small pertur-

bation, it is sufficient to consider V̂ in the so-called Born approximation:

V̂ (τ,−∞) = Û(τ,−∞)− i
∫ τ

−∞
dτ ′Û(τ, τ ′)Ĵ Û(τ ′,−∞)λ(τ ′),

where Û(τ, τ ′) = Û(τ−τ ′) is the propagator of the unperturbed time-independent

Hamiltonian, ĤEHM. Inserting this back into 〈Ĵ(τ)〉 yields the Kubo formula

for ∆Ĵ(τ) = 〈Ĵ(τ)〉 − 〈Ĵ〉0:

∆Ĵ(τ) = −tr(ĤEHMρ0)λ(τ)− i
∫ τ

−∞
dτ ′tr

(
[ĴH(τ), ĴH(τ ′)]ρ0

)
λ(τ ′). (3.14)
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Here the suffix H specifies that the current operator is time evolved in the

Heisenberg picture ĴH(τ) = Û†(τ,−∞)Ĵ Û(τ,−∞). Eq. (3.14) is our starting

point to compute the optical conductivity.

We have chosen ρ0 to be exactly stationary, thus it commutes with Û(τ, τ ′).

This allows to simplify Eq. (3.14) to a form which is translationally invariant in

the time domain, i.e., is a function only of the time interval τ − τ ′:

∆Ĵ(τ) = −tr(ĤEHMρ0)λ(τ)− i
∫ ∞
−∞

dτ ′Θ(τ − τ ′)〈[ĴH(τ − τ ′), ĴH(0)]ρ0〉0λ(τ ′).

(3.15)

The Heaviside function

Θ(τ − τ ′) ≡

 0, τ − τ ′ < 0

1, τ − τ ′ ≥ 0

enforces causality within the integral. The central quantity in this expression is

the causal unequal time current-current correlation function

χJJ(∆τ) = Θ(∆τ)tr
(
ĴH(∆τ)ĴH(0)ρ0

)
= Θ(∆τ)〈ĴH(∆τ)ĴH(0)〉0, (3.16)

where ∆τ = τ − τ ′. Using χ∗JJ(∆τ) = Θ(∆τ)〈ĴH(0)ĴH(∆τ)〉0, Eq. (3.15)

becomes

∆J(τ) = −〈ĤEHM〉λ(τ)− i
∫ ∞
−∞

dτ ′
(
χJJ(∆τ)− χ∗JJ(∆τ)

)
λ(τ ′).

Notice that the relation χJJ(∆τ)−χ∗JJ(∆τ) = 2Im{χJJ(∆τ)} ensures that, de-

spite χJJ(∆τ) being complex valued, the current response is real overall. Using

the diagonal decomposition of both ρ0 and ĤEHM we can evaluate χJJ(∆τ) as

χJJ(∆τ) = Θ(∆τ)
∑
m

pm〈ψm|U†(∆τ)ĴU(∆τ)Ĵ |ψm〉,

= Θ(∆τ)
∑
m

pm〈ψm|eiεm∆τ Ĵ
∑
n

|ψn〉〈ψn|e−iεn∆τ Ĵ |ψm〉,

= Θ(∆τ)
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2e−iωnm∆τ ,

where ωnm = εn − εm are the eigenstate transition frequencies. We have also

assumed here that 〈ψm|Ĵ |ψm〉 = 0 vanishes for all eigenstates |ψm〉. Inserting

this into Eq. (3.15), yields

∆J(τ) =

∫ ∞
−∞

dτ ′
[
i
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2
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×(eiωnm∆τ − e−iωnm∆τ )Θ(∆τ)− 〈Ĥt〉EHMδ(∆τ)
]
λ(τ ′).

To identify σ(∆τ), we need to link ∆J(τ) to the electric field E(τ), rather than

to λ(τ). By using ∫ τ

−∞
dτ ′

∂λ(τ ′)

∂τ ′
= λ(τ)− λ(−∞) = λ(τ),

where λ(−∞) = 0, and by integrating by parts as∫ t

−∞
dτ ′λ(τ ′)e±iω∆τ = ∓λ(τ)

iω
±
∫ t

−∞
dτ ′

∂λ(τ ′)

∂τ ′
e±iω∆τ

iω
,

we obtain

∆J(τ) =

∫ ∞
−∞

dτ ′Θ(∆τ)

[
− 〈ĤEHM〉0 − 2

∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

+ 2
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm
cos(ωnm∆τ)

]
∂λ(τ ′)

∂τ ′
.

Finally,

σ(∆τ) =
2e2

a
Θ(∆τ)

[
− 1

2 〈ĤEHM〉0 −
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

+
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm
cos(ωnm∆τ)

]
,

where we used ∆jel(τ) = −(e/a2)∆J(τ) and E(τ) = −(1/ea)∂λ(τ)/∂τ .

Transport experiments measure the Fourier transform of the optical conduc-

tivity, σ(ω), rather than σ(∆τ). Moreover, we want to distinguish between real

and imaginary part, as they give different (but complementary), physical infor-

mation. Typically, for a linear response, the real part of the response function

gives the in-phase reactive response, and the imaginary part gives the out-of-

phase delayed response [103]. However, in our case the probe perturbation

within the Hamiltonian couples to E(ω) = iωA(ω)/c. Thus, the out-of-phase

response is actually Re{σ(ω)}, proportional to the optical absorption.

We can obtain real and imaginary part by using the identity∫ ∞
−∞

d(τ − τ ′)Θ(τ − τ ′)ei(ω±ωn)τ−τ ′ = πδ(ω ± ωn) + P
(

i

ω ± ωn

)
.

The real part becomes

σ1(ω) =
2πe2

a

{−〈ĤEHM〉0
2

−
∑
m

pm
∑
n6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

 δ(ω)
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+
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

2ωnm
[δ(ω + ωnm) + δ(ω − ωnm)]

}
,

This expression has the general form

σ1(ω) = Dδ(ω) + σreg
1 (ω),

where the zero-frequency contribution is called Drude weight, D, and equals

D = −2πe2

a

 1
2 〈ĤEHM〉0 +

∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

 ,

and the regular finite-frequency part, σreg
1 (ω), becomes

σreg
1 (ω) =

πe2

a

∑
m

pm
∑
n6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

(
δ(ω − ωnm) + δ(ω + ωnm)

)
,

=
πe2

a

∑
m

∑
n 6=m

(pm − pn)

ωnm
|〈ψm|Ĵ |ψn〉|2δ(ω − ωnm).

Up to this point, we have computed σ1(ω) by diagonalizing ĤEHM and con-

structing the sequence of appropriately weighted δ at each eigenfrequencies ωnm.

However, in numerical simulation, σreg
1 (ω) is computed directly from χJJ(τ−τ ′).

By taking the real part of the Fourier transform of χJJ(∆τ), we have

σreg
1 (ω) =

e2

aω
Re {χJJ(ω)− χJJ(−ω)} .

Thus,

σreg
1 (ω) =

e2

`ω
Re

{∫ ∞
−∞

dτ eiωτΘ(τ)Tr
(

[ĴH(τ), ĴH(0)]ρ0

)}
.

Similarly one can obtain the imaginary part, σ2(ω) = Im{σ(ω)}, as

σ2(ω) =
2e2

a

{− 1
2 〈ĤEHM〉0 −

∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

ωnm

P ( 1

ω

)

+
∑
m

pm
∑
n 6=m

|〈ψm|Ĵ |ψn〉|2

2ωnm
P
(

ω

ω2 − ω2
nm

)}
.

Nonetheless, it is not strictly necessary to compute σ2(ω) explicitly, as σ1(ω) and

σ2(ω) are connected via the KK transformations [94], Eq. (3.4a) and Eq. (3.4b).
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3.3.3 Two-time correlation functions

As we shall see in Ch. 6, on-site molecular vibrations can cause the Coulomb in-

teraction matrix-elements, and hence the Hamiltonian, to become time-dependent

3. The current-current correlation functions Eq. (3.16) of a system which is

not in an initial steady state is not simply a function of the time difference

∆τ = τ − τ ′, but rather dependent on two time coordinates, τ and τ ′. In the

most general form

χJJ(τ, τ ′) = Θ(τ − τ ′)tr
(
ĴH(τ)ĴH(τ ′)ρ0

)
= Θ(τ − τ ′)〈ĴH(τ)ĴH(τ ′)〉0.

The time at which the two-current operators are individually applied now be-

comes relevant: the Hamiltonian has a different value at different instants of

time. The relevant quantity to compute in the Kubo formula, is then (with

τ > τ ′)

χJJ(τ, τ0)− χ∗JJ(τ, τ0) =〈
[
ĴH(τ + τ0), ĴH(τ0)

]
〉0,

=〈
[
Û†(τ + τ0)Ĵ Û(τ + τ0), Û†(τ0)Ĵ Û(τ0)

]
〉0, (3.17)

where now in the time evolution operator the Hamiltonian is explicitly time

dependent: Û(τ0) = exp(−iĤEHM(τ0)τ0). To distinguish χJJ(τ, τ0), Eq. (3.17),

from χJJ(∆τ), we will refer to it as two-time correlation function.

3.4 Summary

In this chapter, we have discussed the experimentally observable quantities that

characterize the response of a material to an applied electromagnetic field. We

have focused in particular on the optical conductivity, and obtained the Kubo

formula that permits theoretical and numerical calculations within the frame-

work of linear response theory.

3The energy is obviously not conserved anymore, due to the external driving pulse.



Chapter 4

Hubbard Model in the

Strong Coupling Limit

4.1 Exact solutions in one dimension

Despite its apparent simplicity, exact solutions for the Hubbard Model (HM)

exist only in one or infinite dimensions [20, 102]. In 1D, the Bethe Ansatz

provides very elegant expressions for the eigenvalues and eigenstates of the HM.

The thermodynamics of the one-dimensional HM has been investigated for both

nearest-neighbor [104, 105, 106, 107] and long-range [108] hopping.

Unfortunately, integrability is a fragile property: adding extra terms to an

integrable Hamiltonian will in general break it. This is a crucial point for us:

in Ch. 2 we mentioned that the original Hubbard Hamiltonian doesn’t cap-

ture completely the physics of ET-F2TCNQ, and a nearest-neighbor interaction

needs to be added [76]. Therefore, an Extended Hubbard Hamiltonian has

to be considered. For general values of the hopping t and interaction param-

eters U and V , the Extended Hubbard Model (EHM) is known to be non-

integrable [109]. Moreover, even for the “simple” Hubbard Model, the exact ex-

pressions for eigenstates and eigenvalues are impossible to exploit for practical

calculations of correlation functions, and only allow to express local properties.

The aim of this chapter is to explore in some detail two limits in which

solutions for the EHM exist, and allow for exact expression for the optical

49
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conductivity, σ(ω): the atomic limit, and the strong coupling limit. We will

make extensive use of both results. Specifically the atomic limit will serve

as a starting point to estimate σ(ω) in Ch. 7; while the strong-coupling limit

expansion will help us to extract the values of the Hubbard parameters from

experimental data both in Ch. 5 and Ch. 8.

4.2 Atomic limit

Figure 4.1: A schematic of the half-filled Extended Hubbard model spectrum

in the atomic limit. The ground state manifold H0 is spanned by spin con-

figurations in the Mott Insulator (MI). The first excited Hubbard band H1 at

an energy U − V above this is spanned by MI states with an adjacent holon-

doublon pair. The second excited Hubbard band H2 at an energy U above the

ground state is spanned by MI states with a non-adjacent holon-doublon pair.

Representative for each manifold of eigenstates are illustrated in the figure.

The difficulties in extending solutions for the HM to models including long-

range Coulomb interactions have led to the investigation of the so-called narrow

band, or atomic, limit, where t can be neglected with respect to the interac-

tion coupling U and V . Even with this simplification, this model has many

interesting features and a very rich phase diagram with multicritical behav-

ior [110, 111, 112, 113].

Given the wide separation between the ground state energy and the lowest

excited state, it is often sufficient for studying optical properties to focus on
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three lowest subspaces: (a) H0, where all the sites are are singly occupied the

eigenstates have energy 0, (b) H1, with a single adjacent doublon-holon pair

excited from H0 (energy U − V ), and (c) H2 where the doublon and the holon

are non adjacent (energy U). This is schematically represented in Fig. 4.1. We

will use the atomic limit to investigate the effects of onsite molecular vibrations

on the optical response of ET-F2TCNQ in Ch. 6 and Ch. 7.

An additional advantage of this approach is that the results for the atomic

model can be used as a starting point for a perturbation expansion in powers of

the hopping t, thereby giving information beyond the zero-bandwidth limit [114].

This strategy has allowed Gebhard et al. [50] to describe the optical properties

of the Extended Hubbard Model (EHM) in the limit U � V, t, by mapping it

onto the Harris-Lange model. This specific model can be solved exactly in 1D,

as will be shown in the next section.

4.3 Strong coupling limit

As already mentioned in a few occasions now, the EHM in the strong coupling

limit (t, V � U) reproduces the electronic properties of ET-F2TCNQ [76]. In

this regime, it is possible to obtain the exact spectrum and eigenstates for the

model, and interpret the results in terms of two parallel bands for the charges.

When the system is at temperatures large compared to the spin exchange en-

ergy, no magnetic ordering is expected and all the spin configurations can be

assumed to be equally probable in the thermal state. In this instance, the op-

tical absorption in the presence of a nearest-neighbor interaction between the

charges can be exactly computed. This is the main advantage of the Harris-

Lange model with respect to the Bethe Ansatz [20]: the latter does not allow

the direct calculation of transport properties at finite frequencies.

We have already seen in Sec. 2.A.2 that, when V = 0, a charge excitation

from the LHB to the UHB creates an unbound particle-hole pair, and the ener-

gies of the pair creates a band that we will call the “particle-hole continuum”.

When V 6= 0, a holon and a doublon are attracted with an energy V , creating

an exciton. In molecular crystals, these neutral excitation states may have long

lifetimes [115, 50, 116, 117], and an excitation energy which is smaller than the
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energy required to excite an electron from the valence band into the particle-

hole continuum. Therefore, when the quantum energy of the photons is not too

great, the photo-excitation in molecular crystals does not produce free charge

carriers, but rather bound electron-hole pairs.

4.4 Harris-Lange model

In the extreme limit t/U → 0, the charge and spin degrees of freedom completely

decouple [118, 119]. For N ≤ M and U = ∞, the eigenenergies are the same

as those of a Fermi gas of with Nh = M − N holes, with dispersion ε(k) =

−2t cos(ka).

Following [50], we can map the HM onto a problem for which the number

of double occupancies is conserved. Thus, we can decompose the operators into

those which act solely in the upper or lower Hubbard band, and eliminate the

parts which couple the two bands. The resulting effective Hamiltonian, to lowest

order in t/U , is called “Harris-Lange” model. The kinetic energy operator, Ĥt,

may be split into four terms

Ĥt = ĤUHB
t + ĤLHB

t + Ĥ+
t + Ĥ−t ,

where

ĤLHB
t = −t

∑
j,σ

(1− n̂j,−σ)
(
ĉ†j,σ ĉj+1,σ + ĉ†j+1,σ ĉj,σ

)
(1− n̂j+1,−σ),

ĤUHB
t = −t

∑
j,σ

n̂j,−σ

(
ĉ†j,σ ĉj+1,σ + ĉ†j+1,σ ĉj,σ

)
n̂j+1,−σ,

Ĥ+
t = −t

∑
j,σ

[
n̂j,−σ ĉ

†
j,σ ĉj+1,σ(1− n̂j+1,−σ) + n̂j+1,−σ ĉ

†
j+1,σ ĉj,σ(1− n̂j,−σ)

]
,

Ĥ−t = (Ĥ+
t )†.

ĤLHB
t and ĤUHB

t describe holons and doublons moving in the Lower Hubbard

Band (LHB) and Upper Hubbard Band (UHB), respectively, while conserving

their number. On the contrary, Ĥ+
t (Ĥ−t ) increases (decreases) the doublon

number and can be eliminated to lowest order in t/U by performing a canonical

transformation [120, 121], ĉj,σ = exp{iŜ(c̃)}c̃j,σ exp{−iŜ(c̃)}, with
(
Ŝ(c̃)

)†
=

Ŝ(c̃) and

Ŝ(c̃) =
it

U

(
Ĥ c̃,+
t − Ĥ c̃,−

t

)
.
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Using [ĤU/U, Ĥ
±
t ] = ±Ĥ±t , the Hubbard Hamiltonian for the transformed

fermions, c̃, becomes the Harris-Lange model

Ĥ c̃
HL = Ĥ c̃,LHB

t + Ĥ c̃,UHB
t + Ĥ c̃

U .

The energies obtained from the Harris-Lange model agree with those of the HM

with a second order error. Thus, at this level of approximation, there is no

distinction between c̃j,σ and ĉj,σ. The hopping term acting within the Lower

Hubbard Band ĤLHB
t , can be mapped onto its UHB counterpart ĤUHB

t , by

exploiting particle-hole symmetry [50]: this allows for an exact solution of the

model since there is no difference in the motion of double occupancies in the

UHB and holes in the LHB.

Crucially, when the nearest-neighbor Coulomb interaction is included (V 6=

0) in the HM, the Harris-Lange picture still holds. The Hamiltonian simply

becomes

Ĥext
HL = ĤLHB

t + ĤUHB
t + ĤU + ĤV .

The doublon and the holon in the excited states now experience a nearest-

neighbor attraction.

We are now ready to compute the optical conductivity, σ1(ω).

4.5 Optical conductivity in the Strong Coupling

limit

Let us begin with the simplest case, namely V = 0. An optical absorption pro-

cess excites one hole in the LHB that has dispersion relation εLHB = −U/2+ε(k),

and one double occupancy in the UHB, with εUHB(k) = U/2−ε(k), as schemat-

ically depicted in Fig. 4.2. Here ε(k) = −2t cos(ka) is the usual dispersion re-

lation for electrons in the tight-binding approximation (see Appendix 2.A.1).

The two charge excitations have total energy and momentum equal to ω and q,

respectively.

For high temperatures, all the states with no double occupancy are possible

ground states in the Harris-Lange model at half-filling. Instead of looking at the

optical absorption for a specific ground state, it is more reasonable to calculate
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Figure 4.2: Mott transition ET+ET+ → ET2+ET0 and expected density of

states (DOS).

the average absorption. This would be a formidable calculation, if the spin-

charge separation property of one-dimensional system wouldn’t come to our

aid.

In particular, Gebhard et al. [50] showed that the spin contribution to the

current-current correlation function boils down to a multiplicative factor. More

specifically, this factor is momentum-dependent, and reads:

gq = 2〈0|Ẑ†r,r+1(q)

(
1

4
− ŜrŜr+1

)
Ẑ†r,r+1(q)|0〉, (4.1)

Ẑ†r,r+1(q) =
1

M

∑
j

e−iqjT (j−r)
S T −(j−r)

S′ ,

where TS shifts all spins by one site and TS′ performs the same operation on

the lattice with sites r and r + 1 removed. The spin operators Ŝ are, in terms

of fermionic operators:

Ŝ ≡ (Ŝ+
i , Ŝ

−
i , Ŝ

z
i ) = (ĉ†j↑ĉj↓, ĉ

†
j↓ĉj↑, (n̂j↑ − n̂j↓)/2), (4.2)

A very difficult problem has thus been “hidden” in the form factor gq. The

exact result for gq is very involved, but one can argue (and confirm with nu-

merical simulations [116]) that the dominant contributions come from its value

at q = 0 and q = π/a. This approximation is called “no-recoil approximation”,

and retains the vertical transitions between two parallel bands for q = 0, i.e.,

εLHB(k) → εUHB(k), and between two anti-parallel bands for q = π/a, i.e.,

εLHB(k) → εUHB(k + π). The values of gq in Eq. (4.1) have been estimated by

means of numerical DMRG simulations [122, 123]. The results, gq=0 ≡ g0 = 2.65

and gq=π/a ≡ gπ = 0.05± 0.03, suggest that it is the transition between parallel

bands that dominates the optical transition. Physically, this reflects the fact
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that states with antiferromagnetic spin correlations are best suited to optical

absorption since they contain many neighboring single pairs.

When a finite nearest-neighbor Coulomb repulsion (V � U) is introduced,

the doublon and holon mutually attract. They behave like spinless hard-core

bosons and, if the value of V exceeds a critical threshold (Vc = 2t), an exciton

peak appears in the expression for the reduced optical conductivity, σ1 [116]:

ωσ1 =πgπt
2e2δ(ω − ω2) + g0t

2

{
Θ(V − 2t)π

[
1−

(2t

V

)2]
δ(ω − ω1)

+ Θ(4t− |ω − U |)
2t
√

1− [(ω − U)/4t]2

V (ω − ω1)

}
. (4.3)

where Θ(x) is the Heaviside step function. We can see that there are two δ-peaks

corresponding to two different Mott-Hubbard excitons: (a) one at energy

~ω1 = U − V − 4t2

V
,

and (b) one at energy

~ω2 = U − V,

with the Θ(V − 2t) factor expressing that the ω1 exciton exists only when

V > VC . The peak associated to ω1 in the optical conductivity is sometimes

called charge-transfer (CT) resonance. Seeing that q0 � qπ, ω2 carries very

little spectral weight and doesn’t affect the physics too much, we thus drop it

from now on. Hence, the q = π/a exciton dominates over the q = 0 exciton

for V > VC . The final term represents the continuum of states associated with

unbound particle-hole (PH) excitations, centered at U and with bandwidth of

8t.

4.6 Summary

Summarizing the results obtained so far, ultrafast pump-probe techniques ap-

plied to a one-dimensional organic salt, ET-F2TCNQ, enable us to explore the

physics of the Extended Hubbard Model in a room temperature, macroscopic

material. The central experimental observable we are going to study is the opti-

cal response, which can be numerically computed in linear response theory, and

for which exact analytic expressions exist.

We are now in place to present our novel results.
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Chapter 5

Tuning the Hubbard

parameters with pressure

5.1 Pressure control of the coherent parameters

The aim of this chapter is twofold.

• Firstly, we want to study how the Hubbard parameters, and the bind-

ing energy of the excitons, change in conjunction with an adiabatic com-

pression of the material. We are going to investigate how the on-site

and nearest-neighbor Coulomb interaction, U and V respectively, and the

bandwidth W = 4t change as a function of the pressure P . As an ex-

perimental reference, we shall analyze the results of measurements of the

optical conductivity as a function of pressure of the organic Mott insulator

ET-F2TCNQ.

• Secondly, we argue that the relaxation of holon-doublon pairs can expose

the competition between the pairs’ tendency to bind, due to V , and to

delocalize because of the hopping amplitude t. We will develop and test a

model for the relaxation rates by comparing predictions with the measured

femtosecond relaxation of pairs of photo-excited holon-doublon pairs.

Before dealing with complex materials, it is instructive to analyze how the

recombination rate depends on microscopic parameters with reference to two

59
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well known situations: metals and direct band semiconductors.

5.1.1 Non-equilibrium electron relaxation in metals

For metals, the Two-Temperature Model (TTM) [124] describes the state that

results after photo-excitation. Anisimov et al. [125] focused on the particular

case of a metal been exposed to a ultrashort (femto-second) laser pulse, with the

pulse provoking a non-equilibrium distribution. At room temperature, the heat

capacities of the electrons and lattice, Ce and Cl, respectively, differ consider-

ably. As a result of the fact that Cl � Ce, the lattice temperature is essentially

unchanged.

Over a time scale of hundreds of femto-seconds, the non-equilibrium electrons

redistribute their energies among themselves and return to a local equilibrium at

some temperature Te > T . Then, this excited thermalized electron gas relaxes

(or cools) via electro-phonon interactions giving up the excess energy to the

phonon bath. The large difference between the time scales on which these two

processes happen motivates the TTM.

With these approximations in place, it is possible to obtain [126] coupled

differential equations to describe hot electron cooling. The one governing the

relaxation of the electronic temperature reads

dTe
dτ

= − G

Ce
(Te − T ),

where the bosonic phonon distribution is taken at ambient room temperature,

T , and G is the electron-phonon interaction coefficient.

The specific heat of an electron gas is proportional to the density of states

at the Fermi level εF [13]: Ce ∼ g(εF ). We want to compare theoretical pre-

dictions with experimental observations in the 1D (half-filled) Mott insulator

ET-F2TCNQ. To draw an analogy, we describe the metallic electronic band as

a one-dimensional tight-binding model with hopping amplitude t and lattice

spacing a. As explained in Appendix 2.A.1, the energy-dispersion relation for

periodic boundary (PB) conditions is ε(k) = −2t cos(ka), hence the general

density of states is readily obtained as:

g(k) =
4

|2t sin(ka)|
, g(εF ) =

2

t
, (5.1)
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where we used the general relation g(ε) = g(k) dk/ dε.

To summarize, we expect the decay time τR for metals to vary as

τR ∼
1

t
,

i.e. to accelerate linearly with the bandwidth.

5.1.2 Direct band semiconductors

For direct band semiconductors, the recombination rate, R, between electrons

excited in the conduction band and holes in the valence band, is proportional

to the product of the density of electron in the conduction bands, nc, and of

holes in the valence band, pv [13]:

R = Kncpv, K = constant. (5.2)

The number of carriers present at a temperature T is given by

nc(T ) =

∫ ∞
εc

dεgc(ε)
1

e(ε−µ)/kBT + 1
,

pv(T ) =

∫ εv

−∞
dεgv(ε)

1

e(µ−ε)/kBT + 1
, (5.3)

where gc(ε) and gv(ε) are the density of states in the conduction and valence

band, respectively. To determine the value of the chemical potential µ, the exact

knowledge of the impurity levels is required. Nevertheless, there is a large class

of values of the energy gap Eg = εc−εv (εc and εv are the energies at the bottom

of the conduction band and at the top of the valence band, respectively) and

temperature, for which the following conditions are satisfied:

εc − µ� kBT, µ− εv � kBT.

In this case, Eq. (5.3) reduces to

nc(T ) = Nc(T )e−(εc−µ)/kBT , pv(T ) = Pv(T )e−(µ−εv)/kBT ,

where

Nc(T ) =

∫ ∞
εc

dεgc(ε)e
−(ε−εc)/kBT , Pv(T ) =

∫ εv

−∞
dεgv(ε)e

−(εv−ε)/kBT .

We are interested in the rate, R, hence simply in the product ncpv (Eq. (5.2)).

Notably, the µ dependence disappears from the product of the two densities:

ncpv = NcPve
−Eg/kBT ,
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where

Nc =

∫ ∞
εc

dεgc(ε), Nv =

∫ εv

−∞
dεgv(ε).

From this result, sometimes called “law of mass action”, we deduce that the

number of electrons and holes is a function of the integral of the density of

states. With the help of the general relation g(ε) = g(k) dk/ dε, R is found to

be proportional to both ∝ ∂gc(k)/∂k and ∝ ∂gv(k)/∂k.

Once again, we want to draw a comparison with ET-F2TCNQ. This time we

use a two one-dimensional tight-binding models, one to describe the conduction

band, and one for the valence band, separated by an energy gap Eg. The

energy-dispersion relation for periodic boundary (PB) conditions turns out to

be: εc(k) = Eg− 2t cos(ka) and εv(k) = −2t cos(ka). With the help of Eq. (5.1)

we predict that the recombination rate for direct band semiconductors will be

R ∼ t−2, and consequently the decay time

τR ∼ t2.

In conclusion, the recombination is expected to slow down with the square of

the bandwidth.

5.2 Fitting to static conductivities

With external hydrostatic pressure, P , we can adiabatically tune the microscopic

parameters of ĤEHM by slowly reducing the lattice spacing between molecular

sites. Generally, the π-orbitals governing the conduction properties of organic

salts are well described by hydrogenic wave functions [49]. In this case, t depends

exponentially on the lattice spacing, a, as t(a) ∼ (1 + αa)e−αa, where α is a

constant depending on the specific compound. Simultaneously, V also increases

as V (a) ∼ 1/a [103]. On the contrary, we assume that the reduction of lattice

spacing doesn’t change the on-site properties of the model, so that U(a) ∼ U .

The first part of the experiment that we are about to describe measures the

static reflectivity of the material for different values of pressure. The fits to

the data are performed by recalling that the reflectance of a material at normal

incidence is given by Fresnel formula [127] as

R(ω) =

∣∣∣∣∣1−
√
ε̃(ω)

1 +
√
ε̃(ω)

∣∣∣∣∣
2

,
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Figure 5.1: (a) Static reflectivity at ambient pressure of the ET-F2TCNQ, mea-

sured with the electric field parallel to the a axis . (b) Real part of the optical

conductivity, σ1(ω) at ambient pressure. (c) Steady state reflectivity of the ET-

F2TCNQ along the a axis for selected pressures. (d) Pressure dependence of

the optical conductivity σ1(ω).
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where ε̃(ω) is the complex dielectric function of the material. This quantity

may be analyzed according to the Drude-Lorentz model introduced in Sec. 3.2,

a phenomenological model using a set of N uncoupled harmonic oscillators to

describe the response as a sum of Lorentzian line shapes [128],

ε̃(ω)

ε0
= 1 +

N∑
i=1

A2
i

ω2
0i − ω2 − iγiω

,

where Ai is the oscillator strength, ω0i is the natural frequency of the resonance

and γi the damping constant. These equations were used to fit the static reflec-

tivities shown in Fig. 5.1(a)-(c). From these, the optical conductivity has been

extracted and is shown in Fig. 5.1(b)-(d). For details about the measurements

and setup, see Appendix 5.B and the Supplementary Material of [1].

At ambient pressure, the optical conductivity exhibits a prominent Charge

Transfer (CT) peak near 700 meV. We observe that it red-shifts at a rate of 70

meV/GPa, as well as broadening towards high frequencies. Moreover, the lack of

observation of any Drude response confirms that the material remains insulating

for all measured photon energies (> 75 meV), and at any applied pressure

(0−2 GPa). The vibrational peaks at frequencies below 400 meV, associated to

vibrational modes, show no dependence on pressure. This excludes significant

intra-molecular structural rearrangement, that would provoke changes in the

intensity and/or position of these peaks. As hinted in Sec. 2.1, the latter is a

well known feature of organic crystals, where the weakness and the short range

of the Van der Waals bonding is such that individual molecules retain their

individual properties to a much greater extent than those of the bonding units

observed in other material classes.

In order to analyze the data, we want to use the analytic results for the

optical conductivity based on the strong coupling expansion of the EHM. As

detailed in Sec. 4.5, we can use a strong coupling expansion in 1/U to achieve

this goal. We showed that one can obtain an analytic expression for the reduced

optical conductivity (Eq. (4.3)), as

ωσ1 =πgπt
2e2δ(ω − ω2) + g0t

2

{
Θ(V − 2t)π

[
1−

(2t

V

)2]
δ(ω − ω1)

+Θ(4t− |ω − U |)
2t0
√

1− [(ω − U)/4t]2

V (ω − ω1)

}
.
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Since the experiment has finite resolution, the sharp theoretical features

(i.e. the δ peaks and the Θ functions) in Eq. (4.3), have been convolved with

a Lorentzian of finite width η, of the order of the hopping amplitude. The

subsequent best-fit with free parameters V and t, focuses on the features near

the CT resonance and provides the results shown in Fig. 5.2. In Fig. 5.2(a)-(c)

we report a comparison of measured and fitted ωσ1(ω), normalized to the peak

value of the spectrum measured at ambient pressure. In grey we find the curves

based on the conductivity predicted by Eq. (4.3), whereas the measured data

are in black. Both V and t are observed to increase with pressure, ranging from

120 to 203 meV and from 40 to 203 meV, respectively (see Fig. 5.2(e)).

The fit highlights the two dominant contributions to ωσ1(ω). As explained

in Sec. 4.5, the first peak is the Mott-Hubbard exciton composed of a bound

holon-doublon (HD) pair; the second broad feature is the continuum of states

associated with unbound particle-hole (PH) excitations [116, 129]. These two

types of excitations are visualized in Fig. 5.2(d). As a function of pressure, the

exciton peak shifts to the red, whereas the continuum remains centered at U ,

thus confirming our hypothesis that U is not affected by pressure.

We already mentioned, in Sec. 1.3.1, how tools used to study the physics

of optical lattices could be of great help to develop a physical intuition of the

behavior of much more complex systems. In next section we want to estimate

how the parameters of the Hubbard model would change following a reduction

of the lattice parameters, if the system under consideration was a perfect lattice.

This procedure will help us to confirm the basic picture for a well understood

lattice system.

5.3 Pressure in optical lattices

In Ref. [4] we developed a code that allows to estimate the Hubbard parameters

for any kind of optical lattice geometry. The method allows to find a set of

highly localized basis states (or Wannier states), and thereby systematically

derive the parameters of a generic HM realized using cold atoms and optical

lattice. The general features of the procedure are discussed in Appendix 5.A.

The MATLAB code was made freely available online at http://ccpforge.cse.

http://ccpforge.cse.rl.ac.uk/gf/project/mlgws/
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Figure 5.2: (a)-(c) Normalized reduced optical conductivity for selected pres-

sures (black solid line), with corresponding fit (grey solid line). The contribu-

tions of the holon-doublon pair (red) and of the PH continuum (blue) are shown

as dashed lines. (d) Sketch of a holon-doublon pair (top) and of a typical PH

continuum excitation (bottom). (e) Pressure dependence of the EHM parame-

ters V (squares) and t (circles) extracted from the fit of the steady state ωσ1(ω).

U is assumed to be fixed to 845 meV. Filled and empty symbols identify mea-

surements performed with different setups (see Supplementary Material of [1]

for details).

http://ccpforge.cse.rl.ac.uk/gf/project/mlgws/
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Figure 5.3: (a) Two counter-propagating lasers along the z-axis create a 1D

optical lattice, and constrain the motion of the atoms to one of a set of xy

planes. (b) With an additional pair of counter-propagating lasers along the x-

axis, one creates a 2d optical lattice where the motion of atoms is constrained to

one of a set of tubes along the y-axis. (c) A further pair of counter-propagating

lasers along the y-axis generates a full 3d optical lattice which localizes the

atoms to of the lattice sites [130].

rl.ac.uk/gf/project/mlgws/, and several examples were reported.

In this section, we are going to use the code to estimate on how U , V

and t would change if we wished to simulate an adiabatic reduction of the

lattice parameter in a one-dimensional optical lattice. Let us recall that an

optical lattice potential can be formed by interfering a set of lasers to create

a standing wave intensity pattern [131]. For example, we take two counter-

propagating beams of amplitude E0, described by plane-waves with wave-vectors

k1 = (0, 0, k) and k2 = (0, 0,−k) and both polarized in the x-direction, i.e.,

e1 = e2 = i with i = (1, 0, 0). The sum of the fields is given by

E(z, τ) = E0ie
i(ωτ+kz) + E0ie

i(ωτ−kz),

which has an intensity I(z) = |E(z)|2 = 4|E0|2 = cos2(kz) independent of

time. The potential experienced by the atom due to the interaction with the

field is VOL(x) ∝ cos2(kx). We introduce the potential strength Ṽ expressed

in units of the recoil energy ER = ~2k2/2µ [132], where µ is the mass of the

atom. We set it equal to the full energy range of the optical lattice potential

so that Ṽ = max[VOL(r)]. The potential becomes VOL = Ṽ cos2(kx), with “av-

http://ccpforge.cse.rl.ac.uk/gf/project/mlgws/
http://ccpforge.cse.rl.ac.uk/gf/project/mlgws/


68CHAPTER 5. TUNING THE HUBBARD PARAMETERSWITH PRESSURE

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Figure 5.4: Relative change of (a) U , (b) t, and (c) V , as a function of the

change in the optical lattice depth. Here we took V0 = 2.7 ER.

eraged” wavevector k1. We are going to consider a one-dimensional lattice as

in Fig. 5.3(a): periodic potentials in 1D can be created by superimposing addi-

tional laser beams to the setup for higher dimensions, as illustrated in Fig. 5.3(b)

for a 2d square and Fig. 5.3(c) for a 3d cubic lattice.

In this system, the lattice parameter is a = λ/2. Typical values for the

potential depth are 1 − 30 ER [133]. The fact that Ṽ ∼ Er = 2π/(2µλ2) =

2π/(8µa2) suggests that it might be possible to qualitatively mimic the reduction

of the lattice spacing, a by increasing the lattice depth.

To evaluate U , V and t as a function of the adiabatic change of the lattice

spacing we proceed as follows. Firstly, we find the maximally localized gen-

eralized Wannier states by tuning the initial value of Ṽ so to reproduce the

experimentally observed ratio at room temperature, U/t ∼ 21. Consequently,

we increase the lattice depth of 10% and recompute the Wannier states at each

step to obtain the changes in U , V and t.

The results are shown in Fig. 5.4(a)-(c) and qualitatively confirm the ex-

pected trend. Both t and V increase as anticipated, while U is slightly reduced.

Obviously, it would have been unreasonable to look for a quantitative agree-

ment, given the enormous simplification implicit in assuming such a complex

system to be reproduced by a simple cosinusoidal potential.

1The word “averaged” here acknowledges that the wavevectors of the lasers used to produce

the lattice must be slightly detuned from each other to avoid unwanted interference
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5.4 Modelling holon-doublon decay

At this point, we are ready to move to the second task of this chapter, namely

understanding the dynamics of holon-doublon pairs. To this end, we focus on

the time-resolved reflectivity changes when the applied pressure is adjusted.

In Sec. 5.4.1 we report the measurements of decay times as a function of pres-

sure. We are going to model the energy dissipation of the electronic excitations

via a coupling to a bosonic reservoir mimicking molecular vibrations (Sec. 5.4.2).

We find that the dissipation process taking place via holon-doublon recombi-

nation into two singlons is in competition with hopping processes that tend to

separate the holon and the doublon, thus slowing down the recombination pro-

cess. Finally, in Sec. 5.4.3 we obtain an effective model that encompasses all of

these features.

5.4.1 Experiments

Time resolved pump-probe experiments were carried out2 by using excitation

pulses of duration 100 fs and average photon energy of 1.5 eV. Renormalized

time-resolved reflectivity changes, (∆R)/R, have been measured as a function

of pressure. Subsequently, we have extracted the pressure-dependent holon-

doublon recombination lifetimes, τ .

The experiments have been performed in two different ways: (i) the central

frequency of the femtosecond pulses has been tuned in such a way so as to

match the maximum of the charge-transfer (CT) resonance for each pressure

(Fig. 5.5(a)-(b)), (ii) both pump and probe wavelength have been kept fixed

on the center of the pressure-independent PH continuum band (Fig. 5.5(a)-

(b)). The main reason to perform these two separate measurements was to

investigate the possible difference of behavior between the two main features of

the optical conductivity: (i) the holon-doublon (HD) bound pair, and (ii) the

PH continuum.

The renormalized time-resolved reflectivity changes for of both cases are

reported in Fig. 5.5(a) and (c). They show a prompt reduction of the holon-

doublon band and particle hole continuum following photo-excitation, followed

2All the measurements in this section were performed by M. Mitrano with two different

setups as explained in Supplementary Material of Ref. [1]
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Figure 5.5: (a) Normalized (∆R)/R time domain curves on the holon-doublon

pair peak (HD) for selected pressures (solid lines). Black dashed lines are guides

to the eye showing the bi-exponential decay, straight lines on a log scale. (b)

Holon-doublon recombination lifetimes extracted from a fit to the data of (a).

Filled and empty symbols identify distinct experimental runs. (c) Normalized

(∆R)/R time domain curves on the PH continuum peak (HD) for selected pres-

sures (solid lines). (d) Holon-doublon recombination lifetimes extracted from a

fit to the data of (c).
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Figure 5.6: (a) Holon-doublon pair, and (b) PH continuum contributions to the

optical conductivity as a function of pressure. The blue thick line is the ambient

pressure initial value, the blue red line the highest pressure (2 Gpa) value.

In general terms, electrons can couple both to low-frequency, collective lattice

modes (phonons), and higher frequency intra-molecular molecular vibrations.

Nevertheless, ET-F2TCNQ shows very weak electron-phonon coupling so it is

reasonable to assume that high-frequency molecular modes are the primary

scattering partner for the observed rapid decay.

by a recovery of the signal with a time dependence that is well described by a

double exponential function [76, 67]. Thus we have two decay times, one fast

and one slow, but only the fast one shows pressure dependence, while the second

2.5 ps time constant is independent of pressure.

Both excitation channels exhibit a similar dependence on pressure. This

behavior can be interpreted as a proof of significant intermixing of the HD

and PH upon photo-excitation from the earliest time scales. This conjecture

is validated by the static fitting results, showing that the ratio V (P )/t(P ) is

reduced from ∼ 3.0 to ∼ 2.4. This latter value is close to the critical V/t = 2 in

which case the exciton peak cannot be isolated from the continuum. In Fig. 5.6

we show that with increasing pressure the exciton peak indeed becomes less and

less relevant.
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Figure 5.7: (a) Recombination of the holon-doublon configuration into a singlon-

singlon pair is pictured as a two level systems separated in energy by U − V .

The electron density is in turn coupled to a dissipative bath. (b) The bath

is completely characterized by the spectral function J (ω) which combines the

frequency of the oscillators with their coupling. We show the relevant energies of

our system: the bias U −V , much higher in energy than phonons and molecular

vibrations, as well as t and V . The picture is a schematic, and not derived from

a real calculation.

5.4.2 Holon-doublon decay in the spin-boson model

The recombination of a holon and a doublon within a pair should involve a

dissipation of an energy in excess of order ∼ U − V by coupling to a bath. In

the range explored in the experiment, the signal scales linearly with the laser

fluence (i.e., the radiative flux integrated over time), but the relaxation rates

are independent from it. This strongly indicates that different holon-doublon

pairs do not interact with each other (sparse regime) and that the relaxation

occurs locally between each pair.

To model this process we apply a generic, still well-established, description

based on the celebrated spin-boson model [134]. We take a dimer of sites and

label the singlon configuration as ground state, |g〉, and the holon-doublon con-

figuration as excited state, |e〉: thus, we obtain an effective two-level system

where the potential energy gap (or bias) between |g〉 and |e〉 is U − V . This

model describes exclusively on-site decay process, hence it is necessarily in-

complete since it neglect inter-site effects due to V and t. It is nevertheless

convenient to introduce and study it on its own as a start. We are going to add

the additional features in the following section, Sec. 5.4.3.

By coupling the electron density linearly to a continuum of bosonic modes,
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the following spin-boson Hamiltonian is obtained:

ĤF = −t (|0〉〈g|+ |g〉〈0|) + (U − V )|0〉〈0|+
∑
n

λn
(
â†n + ân

)
|0〉〈0|

∑
n

ωnâ
†
nân,

where ân is the bosonic annihilation operator of the bath. This process is

schematically illustrated in Fig. 5.7(a).

The environment is completely characterized by the spectral function

J (ω) = π
∑
n

λ2
nδ(ω − ωn),

which combines the frequencies of the oscillators, ωn, with their couplings, λn.

This kind of description of the electron transfer in a dissipative environment

is the quantum mechanical equivalent [135] of the classical electron transfer

encountered in chemistry, physics and biology [136, 137, 138, 139], used to model

a wide variety of processes such as chemical redox processes, charge transfer in

semiconductors, and the primary steps of photosynthesis. In condensed polar

environments one observes strong electron coupling to the underlying nuclear

motion, and the process is usually dominated by the nuclear reorganization that

accompanies the charge rearrangement. The spectral function, J (ω), is in fact

the quantum version of the reorganization energy.

Depending on the particular form of J (ω), the spin-boson model can have

solutions which exhibit non-Markovian behavior, as well as Markovian [140].

We do not have precise knowledge of J (ω), but we can approximate its form as

J (ω) ∼ ωse−ω/ωc .

The parameter s is likely to be in the regime s > 1 for the most relevant intra- or

inter-molecular vibrations [141], and its cut-off frequency, ωc, obeys the relation

t < ωc < U −V . This implies that the bath is non-adiabatic with respect to the

hopping. Furthermore, the condition U −V � t means that the model operates

in the “large-bias” regime.

The super-ohmic and large-bias regime of the spin-boson model is known to

exhibit overdamped behavior [134]. This causes non-Markovian memory effects

(such as recurrences and oscillations in the populations due to the back-action of

the environment [142]) to be highly suppressed. The dynamics of the large-bias

super-ohmic regime is therefore effectively Markovian [143, 144], although not
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necessarily weak-coupling. This conjecture is confirmed by the experimentally

measured short-time decay of the reflectivity (Fig. 5.5). This quantity is an

approximate measure of the carrier density and displays a monotonic profile

that is highly indicative of a Markovian process.

Within these limits, the decay rate Γ for an initial state |e〉 to arrive in |g〉

due to its interaction with the environment is

Γ = 1
2

( t

U − V

)2

J (U − V ).

Only the value of the spectral function at the bias energy U − V to be dis-

sipated is relevant. This value is above the cut-off energy: the closest high

frequency modes are intra-molecular vibrations which, as observed in Sec. 5.2,

are unaffected by pressure to leading order (see Fig. 5.7(b)). This wide energy

separation makes the exact form of the spectral function not-relevant to our

purposes, so that the (unknown) pressure independent value of J (U − V ) can

be taken as constant. This feature allows us to predict the recombination rate

scaling with pressure P as

Γ(P )

Γ0
=
( t(P )

t0

)2( U − V0

U − V (P )

)2

, (5.4)

where the suffix 0 stands for ambient pressure. We remark that U is assumed

to be independent of pressure. The scaling of the rate sensibly encodes: (i) an

increase in the decay rate Γ with increasing hopping t (which is the process

ultimately responsible for recombination), and (ii) an increase with decreasing

bias U − V between the levels.

It is important to notice that the introduction of a bath (i.e. of a dissipative,

bosonic, decay channel) is necessary to explain the fact that the decay process

becomes faster with increasing pressure. Let us assume, for sake of argument,

that the only channel of holon-doublon recombination is the purely electron one.

The EHM has three main energy scales: the energy of double occupancies, given

by the Hubbard repulsion U−V , the kinetic energy given by the tunneling t, and

the superexchange scale Jex = 4t2/(U − V ), which governs the spin dynamics.

For large values of (U − V )/t, these three energy scales are well separated from

each other: U � t� Jex. In order for the pair to recombine, it has to dissipate

the energy U − V in other excitations of the system. If we denote a typical

energy of an accessible excitation to be ε0, this can be either ∼ t or ∼ Jex
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depending on the background state that the doublon is propagating through.

As a results of the separation of energy scales, ε0 � U , a large number n ∼ U/ε0
of excitations must be created for doublon decay to satisfy energy constraints.

For this reason, Sensarma et al. [145] argued that the scaling of doublon decay

rate, due exclusively to dissipation via electronic excitation, is exponential which

leads to a small recombination rate.

In particular, the matrix element for a doublon decay process can be calcu-

lated in n-th order perturbation theory as

M ∼ t

ε0
× t

2× ε0
× · · · × t

n× ε0
.

The decay rate, expressed in units of t, is ∼ M2. Using Stirling’s formula, and

the fact that nε0 = U − V , one finds that for large n the decay rate scales as

Γ ∼ t
(

t

U − V

)U−V
t

∼ t exp

{
−κ(U − V )

ε0
log

(
t

U − V

)}
,

where κ is a constant to be extracted from experimental data. When the system

is a homogeneous Mott insulator at half-filling, the only possible candidate for

transfer energies are spin excitations with bandwidth ε0 ∼ Jex. This leads to

the decay rate scaling as

Γ ∝ exp

{
−κ(U − V )2

t2
log

(
t

U − V

)}
, (5.5)

This conjecture has been confirmed by DMRG simulations [146] demonstrating

that the decay mechanism of the holon-doublon pair to spin excitations is very

inefficient. By applying Eq. (5.5) to the pressure dependent Hubbard parameters

found previously, we find that (U − V (P ))/t(P ) decreases from ∼ 18 to ∼ 7.5.

Thus we would expect the decay time to increase with pressure and thus the

decay time to get slower. This is exactly the opposite of what has been found

in the experiments reported here in real materials.

5.4.3 Dissociation of the Holon-Doublon beyond the Spin-

Boson picture

In the light of the results obtained so far, we integrate the two site model

of the previous section with an effective model that takes into account the



76CHAPTER 5. TUNING THE HUBBARD PARAMETERSWITH PRESSURE

...

... ...

2t

0 1 L

U-V

V

Γ

2g

2t 2t 2t 2t

0 0 0 0

Figure 5.8: Effective model describing holon-doublon dynamics in the strong-

coupling limit. The state |g〉 is the ground state containing no holon-doublon

states, whereas the state |0〉 represents an adjacent holon-doublon pair. The re-

maining states |l〉 represent the holon and doublon being separated by l sites. In

the limit L→∞ these unbound states form the PH continuum. The relaxation

to |g〉 at a bare rate Γ only occurs from state |0〉.
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competition between the decay mechanism, the tendency of the holon-doublon

pair to separate due to hopping amplitude t, and to bind owing to V .

As already shown in previous time resolved spectroscopy experiments, at

least three sites are necessary to account for the photo-response [76]. This takes

into account the possibility for the bound holon-doublon pairs to tunnel into

a configuration of the type, |0, ↑,m, ↓, . . .〉 (of course, in adherence to a sine

qua non condition: the pairs should be placed next to singly occupied sites,

as |0,m, ↑, ↓, . . .〉). This separation occurs at a rate which is determined by the

hopping amplitude t and limited by a barrier V . Since we have a local decay

process, the configuration |0, ↑,m, ↓, . . . , 〉 has a lower probability to recombine

than |0,m, ↑, ↓, . . .〉, as two hopping event are necessary.

In Sec. 4.3 we used a well known procedure [147, 50] that, via a unitary trans-

formation S, renders the effective double occupation a good quantum number

provided that one neglects terms ∼ t/U . In this limit, exact eigensolutions to

the EHM can be found [148] and it is possible to define spinless fermionic op-

erators, âj and â†j which act only on the ~n ≡ (n1, . . . , nM ) indices in the basis

kets, where nj counts the number of particles at site j. Charge excitations of

such a system are described by a spinless fermion Hamiltonian

Ĥexc = U − V
M∑
j=1

n̂j n̂j+1 −
M∑
j=1

(
â†j âj+1 + â†j+1âj

)
,

where nj = 0 or 1.

A convenient basis for the description of these charge excitations (or exci-

tons) is in terms of a centre-of-mass coordinate, R, and a relative coordinate, r,

between holons and doublons with the form

|ΨHD〉 =
∑
rR

∣∣R+
r

2
, R− r

2
〉,

where |R + r/2, R − r/2〉 = â†R+r/2âR−r/2|0〉 is the vacuum of the two-body

problem. The exciton is a two-particle bound state, so we look for a solution

as a function of r and R. The scalar product 〈R + r/2, R − r/2|Ĥexc|ΨHD〉

gives a difference equation for the exciton wave function [51]. We can take the

center-of-mass momentum K, equal to K = 0 without loss of generality. The

Schrödinger equation becomes

2t[2ψn(r)− ψn(r − a)− ψn(r + a)]− 4tψn(r)− V δra = Eψn(r).
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Seeing that the reduced mass of the double occupancies and vacancies is roughtly

the same, the effective hopping of the “particle” described by the relative coor-

dinate will be double the one of holon and doublon individually. Eventually, we

obtain a single particle effective Hamiltonian defined on a single-infinite tight-

binding chain:

Ĥeff = −2t

L∑
α=1

(â†αâα+1 + â†α+1âα) + U

L∑
α=1

n̂α − V
L∑
α=1

δα0n̂α. (5.6)

The ground state configuration, |g〉, of all singly-occupied sites has zero poten-

tial energy and is not connected by hopping to any other configuration. The

configuration with adjacent holon-doublon pair, |0〉, has energy U − V , and all

the more distant holon-doublon configurations, |n〉 (n = 1, . . . , L), have energy

U and hopping amplitude 2t. The current operator in this picture can be taken

as Ĵ ∝
(
|g〉〈0|+|0〉〈g|

)
, which mimics the optical photo-excitation of |g〉 through

the creation of an adjacent (bound) holon-doublon configuration |0〉.

The optical conductivity of the model, σ1(z) = 〈g|Ĵ(z − Ĥ)−1Ĵ |g〉, is then

equivalent to the Green function G(z) = 〈0|(z − Ĥ)−1|0〉 [103], with complex

frequency z. In the limit L→∞

G(z) =
2

z − U + 2V ±
√

(z − U)2 − 4t2
. (5.7)

By expanding the imaginary part of Eq. (5.7), and by extracting the residue of

the poles, it is possible to reproduce the dominant ω1 Mott-Hubbard exciton

δ peak and the PH continuum we had previously found in the strong-coupling

analytic result, Eq. (4.3). In other words, apart from the small term proportional

to g0, we can reproduce the analytic results of Eq. (4.3) via this much simpler

effective model. The value of the hopping amplitude equal to 2t proves to play

a crucial role so as to get a bandwidth of 8t for the PH continuum.

We account for the recombination in the strong-coupling effective model, Eq. (5.6),

by introducing a local Markovian quantum dissipation process which incoher-

ently drives |0〉 → |g〉 as described in Sec. 5.4.2. In more specific terms, a

Lindblad mater equation [149] describes the evolution of the density matrix ρ

as

d

dτ
ρ(τ) = −i[Ĥeff, ρ(τ)] + Γ

(
Ĉρ(τ)Ĉ† − 1

2 Ĉ
†Ĉρ(τ)− 1

2ρ(τ)Ĉ†Ĉ
)
,
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where Ĉ = |g〉〈0| is the jump operator. The resulting dynamics describe the

competition between the local dissipation of a bound holon-doublon and the

coherent evolution which acts to unbind the pair.

The addition of even one ionized holon-doublon state |1〉 (i.e. L = 1) which

is unaffected by the decay, causes the suppression of the actual decay rate Γeff

to |g〉 to the bare rate Γ as

Γeff =
Γ

2

(
1 +

V√
V 2 + 16t2

)
.

Analytic expressions for more then L = 1 become increasingly cumbersome,

and difficult to interpret. Nevertheless, the simplicity of the model presents

the advantage of making numerical calculations straightforward and easy to

compare to experimental data, as we will see in the next section.

5.5 Results

We compute the population ng(τ) = tr(ρ(τ)|g〉〈g|) in the ground state as a

function of time up to 4 ps. This way, we realize that it fitted well with a

trial function ng(τ) = A(1 − e−Γeffτ ), thereby allowing a determination of the

effective quasi-particle decay rate Γeff for each value of V and t.

The bare rate Γ is fitted to reproduce the experimentally measured zero

pressure decay rate. Subsequently, we obtain the values of the decay rate for

all other pressures by using the values for t, V , as they are reported in Fig. 5.2.

This calculation is repeated for different sizes L. As L increases, we notice

that the suppression of Γeff becomes more pronounced. This happens because

the ionized holon-doublon pair can ballistically separate to larger distances,

but remain immune to the decay. Thus, we observe that with reference to

more than two sites (accounting for the ionization of the holon-doublon pair)

coherent dynamics compete and slow down the relaxation caused by the local

decay process.

In Fig. 5.9 we plot HD and PH continuum decay rates normalized to the

ambient pressure decay rate τ0 as a function of (U−V )/t, against the calculated

HD lifetimes with the effective L-site model. The value of L = 20 physically

expresses the fact that there is a finite number of double occupancies excited in
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Figure 5.9: Empty circles: Experimental relaxation times for both HD and

PH resonant excitation. Filled circles: Calculated holon-doublon lifetimes as

function of (U − V )/t using an L-site model (L = 20) based on a numerical

solution of the time dependent one-dimensional Hubbard Hamiltonian. Dashed

Curve: Calculated holon-doublon lifetimes as function of (U − V )/t using a

two-site model based on the spin boson model.

the system. In other words, after L sites the propagating doublon encounters

another doublon, represented here by a hard-boundary.

Notice that the two-site model developed in Sec. 5.4.2 alone is not able to

reproduce the experimentally measured scaling. The dashed line in Fig. 5.9

shows the change in the relaxation rate obtained using Eq. (5.4): it gives more

than five-fold increase at the largest pressure.

5.6 Summary

In this chapter, we have investigated the pressure dependence of hot holon-

doublon recombination in a one-dimensional Mott insulator. By fitting the

steady state IR properties with a model based on the extended Hubbard Hamil-
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tonian, we have extracted the pressure dependence of the Hubbard parameters

t and V up to 2.0 GPa, and correlated them to the recombination rates. A

key inference made by comparing the experimentally determined dependence to

theory is that the decay of quasi-particles is likely connected to the coherent evo-

lution of holon-doublon pairs immediately after excitation. Based on this idea,

it may be possible in the future to accelerate or decelerate the photo-induced dy-

namics of correlated electron systems by pulse shaping and by coherent optical

control techniques.
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5.A Maximally localized Wannier states

Repulsive fermions in an optical lattice allow one to realize an ideal and tunable

version of the HM [44]. The perfect control and tunability of the interactions

in these systems provide a “quantum-simulator” [150] for studying problems in

many body physics [45, 46]. It is then crucial to be able to justify the description

of a system in terms of a HM dominated by a few local terms, in order for the

simulation of a complex system via an optical lattice to be ideal. The aim of

this section is to discuss how to choose a set of Maximally Localized Wannier

States in an optical lattice framework.

When deriving the HM in Appendix 2.A, we assumed that all the physics

happened in a single band, and the effects of the others were simply to change

the value of U , V and t. Here we are going to consider a more general case,

in which we focus solely on a small number J ≥ 1 of the lowest-energy bands.

They may be degenerate amongst themselves but are separated in energy from

the others. We shall see that considering more than one band can help the

localization of the orbitals’ wave functions.

To describe local interactions within this J-band subspace, a good choice of

basis are states of the form

|Rα〉 =
Υ

(2π)D

∫
BZ

dke−ik·R
J∑
α=1

Uαβ,k|ϕβk〉, (5.8)

where |Rα〉 =
∫

drφα(r − R)|r〉, Υ is the volume of the primitive cell of the

D-dimensional direct lattice. In the case Uαβ,k is diagonal, i.e., there is no band

mixing, these states are exactly those first considered by Wannier [151]. The

states appearing in Eq. (5.8) are commonly referred to as generalized Wannier

states.

The separation in energy of the J lowest bands from the others ensures

that some states |Rn〉 exist with mode functions φαR(r) that are exponentially

localized at lattice site R in coordinate space [152, 153, 154, 155, 156]. This

exponential localization occurs if and only if the Bloch superpositions

|ϕ̃α,k〉 =

J∑
α=1

Uαβ,k|ϕβ,k〉,

are analytic (infinitely differentiable) in k across the whole Brillouin zone [157].

This is a rigorous way of saying that only smoothed-out Bloch superpositions will
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lead to localization when Fourier transformed. When there are no degeneracies

between bands can one simply use the phases of elements of a diagonal Uk

(representing the freedom in the phase of each |ϕβ,k〉) to ensure the smoothness

of the Bloch states |ϕ̃α,k〉. Hence simple Wannier states provide an exponentially

localized basis.

This is no longer the case when degeneracies and crossings in the band struc-

ture lead to non-analytic |ϕβ,k〉. In this situation band mixing (and therefore

a non-diagonal Uk) are required to obtain smooth Bloch superpositions and an

exponentially-localized basis. Even when exponential localization is possible

using simple Wannier states, generalized Wannier states may still significantly

improve the localization. Generalized Wannier states therefore have the po-

tential to provide a well-localized basis for the derivation of a HM. In [4] we

calculate the maximally localized generalized Wannier basis by implementing

an algorithm originally proposed by Marzari and Vanderbilt [158]. We also

show how to derive ab initio local Hubbard models for several optical-lattice

potential in one and two dimensions. This is very important because justi-

fies the simulation of local Hubbard models, used to describe many condensed

matter phenomena, using cold atoms in optical lattices.

5.B High-pressure pump-probe measurements

In this appendix we wish to give some information on how to perform pump-

probe measurements on samples under pressure. In this chapter we reported

the results of Ref. [1], aimed to measure the pressure-induced changes of the

holon-doublon ”quasiparticle” in ET-F2TCNQ. Notable examples of previous

ultrafast experiment have been performed under high pressure conditions, are

the experiments of Hess et al. [159] and Trigo et al. [160].

The application of pressure on a solid results in a change of its lattice param-

eters, and in turn the electronic properties [161]. Pressure has the advantage of

allowing continuous changes of both structural and electronic changes in a more

gradual and flexible way with respect to chemical doping. The range of pres-

sures routinely used in condensed matter experiments varies from ∼ 0.1 GPa to

∼ 300 GPa.
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Figure 5.10: (Left) Diamond Anvil Cell scheme. (Right) Zoom of the sample

chamber inside the gasket. [Image courtesy of Matteo Mitrano]

There are two ways of applying pressure to a sample: quasi-static or dy-

namic. In the former case, the sample is compressed using presses, anvils or

diamond anvil cells (DAC, shown in Fig. 5.10); in the latter one uses shock

waves. In a DAC, in order to obtain a high pressure P , instead of increasing

the applied force (hydraulic press approach), one shrinks the area where the

force is exerted. In this way, a modest force applied on the supporting plate

where the diamond anvil sits, generates high pressures thanks to the sharpness

of the diamond tip (∼ 100 − 500 µm) with multiplication factors with respect

to the actual pressure applied of the order ∼ 103. The diamond transparency in

a wide photon energy range (far IR, near IR, visible and hard X-rays) makes it

an ideal tool for equilibrium spectroscopy experiments. Nevertheless, especially

regarding the investigation of far IR optical properties, extreme care is required:

on one hand the generation of high pressures requires the smallest possible di-

mension, one the other the specimen needs to be much larger than the photon

wavelengths to avoid diffraction effects.



Chapter 6

Origin of the Dynamic

Hubbard Model

6.1 Missing physics in the Hubbard model

As is well known in atomic physics, double occupancy of an atomic orbital gives

rise to electronic angular correlations. The orbital expands, thereby reducing

the Coulomb repulsion between the electrons that in turn acquire angular cor-

relations as they try to avoid each other. Thus, a fundamental problem arises

within the Hubbard Hamiltonian since it implicitly assumes that the state of

two electrons in a molecular orbital is represented by a Slater determinant of

the singly occupied orbital [162]. Yet, in a doubly occupied atomic orbital, ac-

tual values of Coulomb repulsion between two electrons are smaller than those

predicted from a Slater determinant wave function [162, 163]. This observation

suggests that molecular orbitals are not infinitely rigid.

The ordinary single band Hubbard Model (HM) may be adequate to explain

systems with low filling, as the electrons can avoid each other. In contrast, when

the band occupation equals or exceeds half-filling, the dynamics of the system

will necessarily involve doubly occupied molecular orbitals. As a consequence,

the large cost in Coulomb energy cannot be avoided. Thus, it is precisely the

existence of the electron-electron interaction, which the Hubbard U attempts

to model, that makes it somewhat questionable to describe the doubly occupied

85
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orbital by using a single Slater determinant.

Attempting at overcoming this deficiency, Hirsch [164] has introduced the

so-called Dynamic Hubbard Model (DHM): this includes, in the most minimal

way, the physics of orbital relaxation by coupling the on-site interaction term

(Hubbard U) with an auxiliary degree of freedom modeled either as an addi-

tional orbital, spin or boson mode. This model appears to resemble closely the

standard Holstein model [165], where the electron density couples linearly to

phonons, leading to the formation of polarons. However, in a DHM the vi-

brational modes couple to the double occupancy, rather than to the electron

density. The terms coupling the electronic degrees of freedom to the oscillator

position, q̂, will be of the form ∼ (n̂↑n̂↓)q̂, rather then the conventional Holstein

coupling: ∼ (n̂↑ + n̂↓)q̂. This way, the bosons dress the electron double occu-

pancies alone, causing an intrinsic electron-hole asymmetry [166] and leading to

an unconventional mechanism of superconductivity [167, 168].

Apart from including crucial physics, the DHM also points to new ways

in which solid state systems can be measured and manipulated by means of

ultrafast optical techniques. In this and the next two chapters, we shall advo-

cate mode selective modulation spectroscopy as a mean of exposing information

about the nature and strength of coupling to a given local vibrational mode.

In the previous chapter, we took into account all the local vibrational modes

together, and modeled their effects simply as a bath used by the electronic

excitations to dissipate energy. Here we use a completely different approach:

we strongly drive just one selected mode as explained in Sec. 2.1.3, and amplify

its influence on macroscopic observables.

Our goal is to show that mode selective driving elevates the contribution

of the chosen modes beyond a simple scalar renormalization of U . This way

it deconstructs the HM by requiring the vibrations’ quantum mechanical DOF

to be explicitly accounted for in a DHM. Such information, previously hidden

within an effective renormalized Hubbard description, can reveal missing physics

which proves to be relevant to the out-of-equilibrium and dynamical properties.

We are going to start by developing a model able to capture the essential features

of the coupling between valence electron orbitals and molecular vibrations with

different symmetries.
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Figure 6.1: Minimal three-ion toy model describing the BEDT-TTF (ET)

molecule. The outer ions have a charge q0 < 0, whereas the central ion has

a charge qc > 0 and is separated from the outer ones by a distance a. The

expected polarity is shown.

6.2 Toy model for intramolecular vibrations

The “toy” model developed in this section focus on reproducing some of the

basic symmetries which are expected for real vibrations, and the difference of

their coupling to valence electrons. In the case of ET-F2TCNQ, the ET molecule

acts as the electron donor and therefore dictates the conduction properties of

the material. As explained in Sec. 2.1.2, there is one single valence π-electron

per molecular site.

The complex charge distribution of the molecule is assumed to be contained

within a region of radius R. We suggest a minimal model describing the back-

bone of the molecule as an effective system of 3 point charges which are located

at the origin and at ±a of the z-axes taken as reference (Fig. 6.1). The va-

lence electron located at a radius r > R sees only the backbone because of the

screening of inner electrons, and has a symmetrical extended charge distribution

about the origin. The donor molecule, ET, possesses an overall positive charge,

say ∆q, that we model by assigning a charge qc to the central ion, and q0 to the

two outer ions. This way, the distribution is symmetric and once the valence

electron is included, the total charge is qc + 2q0 − 1 = ∆q.

We wish to explore the properties of a valence electron mostly determined

by the part of the electrons’ wave function lying outside the charge distribution.

The valence orbital needs to be modeled so that its value is significant over

distances r � a and r > R. We are going to consider the effects of both
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Figure 6.2: (a1) Vibrational IR active mode excited in the ET molecule and

(a2) its implementation in our three-ion model. (b1) Vibrational Raman active

mode excited in the ET molecule and (b2) its implementation in our three-ion

model.

antisymmetric (Fig. 6.2(a1)) and symmetric (Fig. 6.2) driving, motivated by the

fact that they can be realized via IR and Raman excitations, respectively [2].

The former is akin to an oscillating dipole breaking the initial symmetry of the

molecule; the latter is instead captured by an oscillating quadrupole leaving

the initial symmetry intact. We model the IR antisymmetric excitations by

displacing the central charge of a quantity b along the axis of the three charges

(Fig. 6.2(a2)). Then we mimic the Raman symmetric driving by displacing the

outer two charges by +b and −b (b < a) as shown in Fig. 6.2(b2), respectively.

To lowest order in b, the resulting perturbation to the potential energy function

for the valence electron is ∆VIR ∼ b/r2 for an IR excitation and ∆VRa ∼

ab/r3 for a Raman one. To analyze the influence of vibrations on the electronic

system we work in the Born-Oppenheimer (BO) approximation, in which the

motion of the ions is assumed to be much slower than the electron motion in the

valence orbital.1 The vibrational perturbation, then, causes adiabatic mixing of

unperturbed valence states with higher-lying excited states. The effects of this

mixing can be computed with time-independent perturbation theory.

In general a spin-independent coupling between a local harmonic oscillator

1Notice that this BO approximation refers to rearrangement of the valence electron within

the orbital, and has nothing to do with the relation between inter-orbital dynamics (dependent

on t and V ) and vibrations.
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and the electronic configuration of a site can be written in terms of n̂j = n̂j↑+n̂j↓

and n̂j↑n̂j↓ only, as the number operator n̂j is fermionic. We assume that this

coupling can be expressed as n̂jf(q̂j) + n̂j↑n̂j↓g(q̂j), where f(q̂j) and g(q̂j) are

two functions of the local mode coordinate that are not known a priori. By

expanding the functions f and g into a Taylor series we obtain

ĤI =
∑
j

n̂j(A1q̂j +A2q̂
2
j + . . .) + n̂j↑n̂j↓(B1q̂j +B2q̂

2
j + . . .),

with coupling constants Ai, Bi which are constrained by the symmetry of the

molecular modes [169]. An antisymmetric infrared vibration causes admixing

of the valence orbital with higher-lying excited state of differing parity and

induces an energy shift that is an even function of q̂j , meaning e.g. that A1 = 0.

This already precludes that such a vibration can be described by a conventional

Holstein-Hubbard type interaction. In contrast, a symmetric Raman vibration

admixes higher-lying states of the same parity and causing a linear energy shift

with non-zero A1.

The second term in the expression for ĤI , which includes coupling to the

double occupancy, is determined by computing the Coulomb repulsion arising

from both electrons occupying the admixed vibrational orbital

|ψ(b)〉 = |g〉+ c(b)|e〉+ . . . .

Here |g〉 and |e〉 denote the bare unperturbed valence orbital and the higher-lying

excited states, respectively, while c(b) is a displacement dependent admixing

coefficient. The variation in U is then given by

U(b) = 〈ψ(b)|1〈ψ(b)|2
( 1

r12

)
|ψ(b)〉1|ψ(b)〉2,

where r12 = |~r1 − ~r2| is the modulus of the distance between the two electrons.

Retaining these terms is crucial to properly describing how vibrations modify

the on-site Hubbard U interaction.

For the infrared vibration the differing parity of the states in the admixture

causes U(b) to again vary, to lowest order, quadratically with displacement q

(implying B1 = 0), while the Ramain vibration retains a linear dependence. It

is found that B2 < 0 for the infrared mode because the admixed vibrational

orbital spatially expands for any non-zero displacement in this simple mode, as
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Figure 6.3: (a) Contour plot of the charge distribution in z−y plane of an orbital

composed of an admixture of 4d and 3p states with a |g〉 = |4s〉, as it adiabat-

ically follows the underlying vibration. The plots show from left to right a

displacement of the central ion with charge qc > 0 by c(b) = −0.2, c(b) = 0, and

c(b) = 0.2. (b) Snapshot of the electron charge distribution computed within the

frozen phonon approximation for large normal mode displacement. The normal

displacement leads to an effectively enlarged molecular orbital distribution in

time average.

illustrated in the caricature of the ET orbital (Fig. 6.2). This conjecture has

been confirmed by approximating the eigenstates of the 3 ion system by hydro-

genic states and by computing the charge distribution of an orbital composed of

an admixture of states with opposite parity. The orbital is taken to adiabatically

follow the underlying vibration. An example of this is shown Fig. 6.3.

We remark that the inclusion of these interaction terms accounts only for

the energy changes caused by |ψ(b)〉, but it neglects any change to the valence

orbital itself. The DHM therefore retains the standard Hubbard electronic state

for double occupancy as the Slater determinant of |g〉, but models the energetics

of orbital relaxation.
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6.3 Forming a Dynamic Hubbard model

In this section, we use the intuition developed so far with our toy model to

formally obtain a Dynamic Hubbard Hamiltonian. We have shown that a local

molecular vibration is sensitively dependent on the electronic configuration of

the site. Thus, we shall allow local electron-oscillator coupling to holon, singlon

and doublon states which can be either linear of quadratic in q̂j based on the

symmetry of the vibrational model.

This situation is intrinsically different from a lattice phonon, which consists

of the collective motion of many molecules in the solid and is extremely heavy in

comparison to a single electron. It is therefore customary to neglect the effects

of the electronic configuration on the phonon frequency itself. Likewise, one

considers the coupling between them to take place via the electron density and

phonon displacement.

We are going to introduce formally the the oscillator’s degrees of freedom

(DOF) and their coupling to the electronic DOF. By using a generalized Lang-

Firsov transformation [170], we will subsequently show that the spectrum of the

Hamiltonian can be obtained in the atomic limit. Owing to the very different

physics emerging for the linear and quadratic coupling, the two cases will be

studied separately.

With reference to a vibration localized on a single molecule this assumption

is no longer valid and different forms of back-action, or coupling, between the

oscillators are expected. Let us take as reference oscillator the one determined

for the singlon state and assign it a “free” Hamiltonian for an oscillator of mass

m and frequency Ω for site j as

Ĥs,j =
p̂2
j

2m
+ 1

2mΩ2q̂2
j = Ω

(
â†j âj + 1

2

)
,

where â†j and âj are the oscillators raising and lowering operators. We shall

denote the eigenstates of this reference oscillator as |nj〉 with an energy εs(nj) =

Ω(nj + 1
2 ). The corresponding harmonic oscillator length scale is the Bohr

radius a0 = 1/
√
mΩ, and the entire chain has a free oscillator Hamiltonian

Ĥs =
∑
j Ĥs,j . The singlon states are decoupled relative to this oscillator, while

the holon and doublon states for any site will experience additional coupling

terms.
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6.3.1 Raman mode - linear coupling

Following the discussion in Sec. 6.2, for the symmetric Raman mode the doublon

and holon coupling terms are linear and of the form Ĥd
R,j = gdRP

d
j q̂j , and Ĥh

R,j =

ghRP
h
j q̂j , respectively, so that in total

ĤR,j =
(
gdRP

d
j + ghRP

h
j

)
q̂j .

Here gdR and ghR are coupling parameters, and Phj = 1j − n̂j↑n̂j↓, Psj = n̂j↑ −

2n̂j↑n̂j↓, P
d
j = n̂j↑n̂j↓ are the local projectors on site j on to the holon, sin-

glon, and doublon states, respectively. The full interaction, ĤR =
∑
j ĤR,j , in

combination with the free evolution, gives the total oscillator terms for site j as

Ĥs,j + ĤR,j =Ω(â†j âj + 1
2 )Psj +

[
Ω(â†j âj + 1

2 ) + ghR
a0√

2
(â†j + âj)

]
Phj

+

[
Ω(â†j âj + 1

2 ) + gdR
a0√

2
(â†j + âj)

]
Pdj .

=Ĥs,jP
s
j + Ĥh,jP

h
j + Ĥd,jP

d
j .

New oscillator Hamiltonians arise for the holon and doublon due to the cou-

plings, generically denoted as Ĥh,j and Ĥd,j , respectively. As it is well known, a

linear coupling means that when the local electronic state is a holon or doublon,

the oscillator behaves as a displaced version of the reference singlon oscilla-

tor [171]. Formally the oscillators are related by the unitary displacement trans-

formation D̂j(χ) = exp
[
χ(â†j − âj)

]
, where for holon and doublon we choose

the real dimensionless scalars χh = ghRa0/Ω
√

2 and χd = gdRa0/Ω
√

2. We obtain

the energy shifts: Ĥh,j = D̂†j(χh)Ĥs,jD̂j(χh) and Ĥd,j = D̂†j(χd)Ĥs,jD̂j(χd).

As a result, the complete on-site oscillator Hamiltonian is

Ĥs,j + ĤR,j =Ω(â†j âj + 1
2 )Psj +

{
Ω
(
D̂†j(χh)â†j âjD̂j(χh) + 1

2

)}
Phj

+
{

Ω
(
D̂†j(χd)â

†
j âjD̂j(χd) + 1

2

)}
Pdj . (6.1)

Eq. (6.1) shows that the eigenstates of the holon and doublon oscillator are

related to those of the reference singlon oscillator via |nj〉h = D̂†j(χh)|nj〉 and

|nj〉d = D̂†j(χd)|nj〉, with nj ∈ {0, 1, 2, · · · } being the phonon occupation of the

reference singlon oscillator for each site. The energies of these eigenstates are

εh(nj) = Ω(nj + 1
2 ) − Ωχ2

h and εd(nj) = Ω(nj + 1
2 ) − Ωχ2

d, respectively. Aside

from an energy shift, they are identical to the singlon oscillator spectrum.
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By including the linear coupling we have finally obtained a DHM describing

the full electronic-oscillator Hamiltonian

ĤDHM = ĤEHM + Ĥs + ĤR, (6.2)

where ĤEHM = −t
∑
j(ĉ
†
j,σ ĉj+1,σ + ĉ†j+1,σ ĉj,σ) + U

∑
j n̂j,↑n̂j,↓ + V

∑
j n̂j n̂j+1

is the EHM Hamiltonian, Ĥs =
∑
j Ĥs,j and ĤR =

∑
j ĤR,j . Notice that the

overall oscillator state depends explicitly on the electronic configuration.

The effects of the coupling on the Hamiltonian become much more clear

if we decouple the two contributions. In the atomic limit, this is achieved by

performing a Lang-Firsov transformation [170] on each site of the form

X̂j = exp
[
−χh(âj − â†j)P

h
j

]
exp

[
−χd(âj − â†j)P

d
j

]
,

=
[
(1j −Phj ) + D̂†j(χh)Phj

] [
(1j −Pdj ) + D̂†j(χd)P

d
j

]
=Psj + D̂†j(χh)Phj + D̂†j(χd)P

d
j .

While X̂j has no effect on a local singlon state, it performs an inverse dis-

placement transformation D̂†j(χh) and D̂†j(χd) on the holon and doublon states,

respectively. The overall effect on site j, by using the identity 1j = Phj +Psj+P
d
j ,

is

X̂†j

(
Ĥs,j + ĤR,j

)
X̂j =Ω(â†j âj + 1

2 )Psj +
[
Ω(â†j âj + 1

2 )− Ωχ2
h

]
Phj+[

Ω(â†j âj + 1
2 )− Ωχ2

d

]
Pdj .

=X̂†j

(
Ĥs,j + ĤR,j

)
X̂j = Ĥs,j − Ωχ2

hP
h
j − Ωχ2

dP
d
j .

Considering that both Coulomb terms, Un̂j,↑n̂j,↓ = UPdj and V X̂†j n̂j n̂j+1X̂j =

V n̂j n̂j+1, commute with this transformation, the electronic system is completely

decoupled from the oscillators, and n̂j is a good quantum number. We have

therefore managed to remove the configuration dependence on the oscillator

part of the eigenstates for the total Hamiltonian.

6.3.2 Infrared mode - quadratic coupling

The analysis for the quadratic coupling is less straightforward. In Sec. 6.2

we have found that an antisymmetric IR vibration leads to a quadratic term
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coupling to the electronic density and double occupancy as

∆Ĥ1 = −
∑
j

C1(n̂j,↑ + n̂j,↓)q̂
2
j −

∑
j

C2n̂j,↑n̂j,↓q̂
2
j ,

respectively, where C1 and C2 are two positive constants. The total interaction

term at site j can be written in a more transparent way as

Ĥh,j + Ĥs
I,j + Ĥd

I,j =

[
p̂2
j

2m
+ 1

2mΩ2
hq̂

2
j

]
Phj +

[
p̂2
j

2m
+ 1

2m

(
Ω2
h − 2

C1

m

)
q̂2
j

]
Psj q̂

2
j

+

[
p̂2
j

2m
+ 1

2m

(
Ω2
h − 2

C2 + 2C1

m

)
q̂2
j

]
Pdj q̂

2
j ,

so that we can identify how the frequencies of the oscillators depend on the

electronic configuration. The positivity of C1 and C2 implies that Ωh > Ω > Ωd,

where the suffices h and d denote holon and doublon, respectively.

The full interaction term ĤI =
∑
j ĤI,j can be further simplified by defining

two positive coupling constants gdI = C2 + 2C1 and ghI = C1, so that doublon

and holon interaction terms become Ĥd
I,j = −gdIPdj q̂2

j , and Ĥh
I,j = ghIP

h
j q̂

2
j ,

respectively. In total,

ĤI,j =
(
ghIP

h
j − gdIPdj

)
q̂2
j . (6.3)

The signs in Eq. (6.3) highlight a very important property: an empty site will

vibrate with a frequency Ωh > Ω, whereas a doubly occupied site will perform

harmonic motion with frequency Ωd < Ω.

In combination with the free evolution of the singlons this interaction gives

the total oscillator terms for site j as

Ĥs,j + ĤI,j =Ω(â†j âj + 1
2 )Psj +

[
Ω(â†j âj + 1

2 ) + 1
2g
h
I a

2
0(â†j + âj)

2
]
Phj

+
[
Ω(â†j âj + 1

2 )− 1
2g
d
Ia

2
0(â†j + âj)

2
]
Pdj .

=Ĥs,jP
s
j + Ĥh,jP

h
j + Ĥd,jP

d
j .

Encouraged by the results of the linear coupling analysis, we wish to find a

transformation that decouples the electronic and oscillators’ terms.

The oscillators for holons and doublons are related to the singlon ones by

the unitary squeezing transformation [172, 173, 174]

Ŝ(ξ) = exp
[

1
2ξ(â

† 2
j − â

2
j )
]
,
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Figure 6.4: A schematic of the DHM used here for the IR mode. Each site has

an electronic and harmonic oscillator DOF associated to it. In the thermal state

of the system each site is singly occupied and the frequency of the oscillator is Ω.

If an electron hops to its neighbor via probing or fluctuations, a holon-doublon

pair is created. As a consequence the electronic state is in the first excited

Hubbard band. In the doublon-site the corresponding oscillator slackens with

an abrupt frequency reduction to Ωd < Ω, whereas in the hole site the oscillator

tightens with a frequency increase to Ωh > Ω.

as ĥj = Ŝ†(ξh)âjŜ(ξh) and d̂j = Ŝ†(ξd)âjŜ(ξd), with real squeezing parameters

ξh = log(
√

Ωh/Ω) and ξd = log(
√

Ωd/Ω), respectively. The holon and doublon

frequencies are defined as Ωh = Ω
√

1 + 2ghI a
2
0/Ω and Ωd = Ω

√
1− 2gdIa

2
0/Ω.

The corresponding oscillators are the squeezed versions of the reference singlon

oscillator, as schematically illustrated in Fig. 6.4. Once more, in the atomic

limit the explicit dependence on the electronic configuration can be removed by

means of a generalized Lang-Firsov transformation on each site of the form

X̂j = exp
[
− 1

2ξh(â† 2
j − â

2
j )P

h
j

]
exp

[
− 1

2ξd(â
† 2
j − â

2
j )P

d
j

]
,

=Psj + Ŝ†(ξh)Phj + Ŝ†(ξd)P
d
j .

The operator X̂j does not affect the local singlon state, while implementing an

inverse squeezing transformation, Ŝ†(ξh) and Ŝ†(ξd), on the holon and doublon
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states, respectively. Locally on-site j we find

X̂†j

(
Ĥs,j + ĤI,j

)
X̂j = Ω(â†j âj + 1

2 )Psj + Ωh(â†j âj + 1
2 )Phj + Ωd(â

†
j âj + 1

2 )Pdj .

The eigenstates of the holon and doublon oscillator are related to those of the

reference singlon oscillator via |nj〉h = Ŝ†(ξh)|nj〉 and |nj〉d = Ŝ†(ξd)|nj〉. Their

energies are εh(nj) = Ωh(nj + 1
2 ) and εd(nj) = Ωd(nj + 1

2 ), respectively.

We can immediately notice one crucial difference with the linear case: the

frequency of the oscillators changes depending on the electronic configurations,

causing the holon and doublon spectra to be different from the one of the singlon

oscillator. This is schematically shown in Fig. 6.5. In the next chapter, we shall

see that this has very deep consequences on the optical response.

Figure 6.5: (a) A depiction of the singlon and holon oscillator energy ladder

with frequencies Ω and Ωh, respectively, where Ωh ∼ Ω. The holon ladder

energy includes the −V electron interaction energy below the singlon ladder.

This reflects its binding to the adjacent doublon. (b) A depiction of the singlon

and doublon oscillator energy ladder with frequencies Ω and Ωd, respectively,

where Ωd 0.3Ω. The doublon ladder includes the U electron interaction energy

above the singlon ladder. In both (a) and (b) some of the possible transitions

are highlighted.

6.4 Stationary and excited states of the system

In the previous sections, we have introduced the DHM to take into account the

effects of local vibrations on the energy of the system. Since our aim is to apply
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this model to compute observable quantities, we also need to characterize the

initial state of our system. All the experiments we are going to consider in this

thesis are performed at room temperature, T ∼ 300 K. Let us recall that the

ET-F2TCNQ is a half-filled Mott insulator (MI), with one-dimensional transport

properties described by the EHM with U/t ∼ 21 [1]. At this temperature, the

system does not display any long-range Neél order. In the strong coupling limit

U � t > kBT , and electron double-occupancies are highly suppressed.

These observations suggest that the thermal state of the electron system is

well approximated by the half-filled “hot” spin MI state:

ρs =
1

2M

∑
~σ

|~σ〉〈~σ|, (6.4)

where |~σ〉 is a spin configuration space, e.g., | ↑↓ . . . ↓↑↑〉. The state in Eq. (6.4)

models an infinite temperature spin configuration (that is kBT � t2/U), and a

zero temperature motional configuration (consistent with kBT � t).

The oscillators, in turn, are assumed to be initially in their ground state, |0〉:

the condition kBT < Ω is satisfied for either vibrational mode2, so that higher

vibrational states of the localized molecular oscillator are essentially unoccupied

at room temperature. The full thermal state of the electron-oscillator system

can be expressed ρT = ρs ⊗
∏M
j=1 |0〉〈0|.

When the initial state is vibrationally excited, we can assume each free

singlon oscillator as prepared instantaneously in an identical coherent state |α〉,

where α = |α|eiφ. If the excitation pulse has no carrier-envelope-phase stability,

we average over φ which is equivalent to using a Poissonian statistical mixture

of singlon vibrational number states, |n〉,

ρα = e−|α|
2 ∑

n

|α|2n

n!
|n〉〈n|. (6.5)

The total vibrationally driven initial state of the system is, finally

ρex = ρs ⊗
M∏
j=1

ρα. (6.6)

2At 300 K, kBT ∼ 200 cm−1, while the two vibrational modes we use in the experiment [2]

are ≥ 1000 cm−1.



98 CHAPTER 6. ORIGIN OF THE DYNAMIC HUBBARD MODEL

6.5 Finite hopping

Up to this point, we have analyzed the DHM in the atomic limit. This is

motivated by the fact that, as we will detail in the next chapter, by neglecting

the hopping term it is possible to compute the optical conductivity analytically.

Physically, the atomic limit is a good approximation for our system, in which

the Coulomb interaction is dominant U � t. Nonetheless, it is worth studying

more carefully how the local vibrations act on the hopping amplitude. We will

find that molecular vibrations further reduce the hopping amplitude. This sug-

gests the interpretation of the transformed operator as creation and annihilation

of a quasi-particle, known as polaron [165]. Physically, the vibrations cause the

coherent part of the hopping amplitude to a neighboring site to reduce, since the

particle has to drag its vibrationally-induced deformation in order to move. The

atomic limit is thereby justified as plausible approximation. In other words, we

wish to determine how the coherent band-like motion of electrons is is modified

by the local vibrational coupling.

We want to use the Lang-Firsov transformation introduced in the previous

section to account for electron-oscillator coupling. Special care is needed in this

case though, since the transformation may have two undesired effects on the

electron motion: (i) enable energy to be exchanged between the electrons and

oscillators (leading the energy dissipation), (ii) correlate electronic configura-

tions and oscillator occupation numbers (leading to dephasing). Both of these

processes do not preserve electron coherence, and hence should be dealt with

in combination with other incoherent processes not considered here. Thus, we

shall truncate the transformed hopping as H̃t → H̃◦t , by retaining only a subset

of transitions which preserve electron coherence.

The full DHM is composed of two parts,

H̃DHM = H̃a
DHM + H̃t. (6.7)

We have already studied the effects of the Lang-Firsov transformation on the

atomic part, H̃a
DHM = X̂†Ĥa

DHMX̂. The hopping operator is transformed as

H̃t = −t
∑
jσ

X̂†j X̂
†
j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
X̂jX̂j+1, (6.8)

where H̃t induces transitions between electron-oscillator eigenstates, written
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as (electron) (oscillators), as |xi, ~σi〉, |~ni〉 → |xf , ~σf 〉, |~nf 〉 (i and f stand for

“initial” and “final”, respectively).

It is noteworthy that the canonical transformation does not alter the initial

driven state Eq. (6.6), ρ̃ex = ρex. The equality holds due to the lack of holons

and doublons in the initial state.

6.5.1 Linear coupling

The canonically transformed Hamiltonian, Eq. (6.7), with X̂h = D̂(χh) and

X̂d = D̂(χd), becomes

H̃DHM = H̃t + Ĥa
DHM −

∑
j

(Ωχ2
h + Ω2

d)P
d
j +

∑
j

Ĥs,j ,

after dropping terms proportional to the conserved total number of electrons,

∼
∑
j n̂j , that lead to a global phase or a constant energy shift. The coupling

has dressed the hopping via a displacement transformation, which was applied

while decoupling electrons and oscillators decouple.

In order to extract the resulting coherent motion, we use an approach in-

spired by the seminal work of Holstein [165]. We distinguish between transitions

in which the number of vibrational quanta is changed during the hop (inelastic

scattering), and processes where they do not change. The former processes lead

to loss of phase coherence during the absorption and emission of a phonon, and

to non-coherent electron motion, since they correlate electrons and oscillators.

Again we focus only on coherent contribution. On the other hand, the latter

(called “diagonal” transitions), |xi, ~σi〉|~n〉 → |xf , ~σf 〉|~n〉, leave the vibrational

occupation numbers |~n〉 unchanged by the hopping process. We shall focus on

these ones, which preserve phase coherence.

In order to estimate the amplitudes 〈~n|〈xf , ~σf |〈~n|H̃t|xi, ~σj〉|~n〉, we trace out

(i.e., average over) the bosonic operator by dressing the hopping with each local

oscillator stationary states. We have separate amplitudes depending on the

electronic occupation of the sites involved. Specifically, we get

t̃hx = t tr
[
D̂(χh)ρα

] [
D̂†(χh)ρα

]
= te−χ

2
hJ 2

0 (2χh|α|),

for holon-singlon exchange,

t̃dx = t tr
[
D̂(χd)ρα

] [
D̂†(χd)ρα

]
= te−χ

2
dJ 2

0 (2χd|α|),
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for doublon-singlon exchange, and

t̃hd = t tr
[
D̂†(χh)ρα

] [
D̂†(χd)ρα

]
= te−

1
2 (χ2

h+χ2
d)J0(2χh|α|)J0(2χd|α|),

for holon-doublon creation and annihilation. Here J0 is the Bessel function of

the first kind. By averaging over the phases of the coherent states, the effective

translationally invariant holon-doublon antisymmetric hopping becomes

H̃t =
∑
jσ

[
t̃hxPhxj,j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
+ t̃hdPhdj,j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
+t̃dxPdxj,j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)]
,

where we have defined projectors for the allowed hopping processes as

Phxj,j+1 = PhjP
s
j+1 +PsjP

h
j+1, holon-singlon exchange

Pdxj,j+1 = PdjP
s
j+1 +PsjP

d
j+1, doublon-singlon exchange

Phdj,j+1 = PhjP
d
j+1 +PdjP

h
j+1 +PsjP

s
j+1, holon-doublon creation/annihilation.

6.5.2 Quadratic coupling

For quadratic coupling, Xh = Ŝ†(ξh) and Xd = Ŝ†(ξd), so that Eq. (6.7) trans-

forms into

H̃DHM = H̃t +
∑
j

(ΩPsj + ΩhP
h
j + ΩdP

d
j )(â

†
j âj + 1

2 ).

Coherent hopping transitions must neither correlate the electronic and oscilla-

tor configurations, nor exchange energy between them. This implies that there

can be no coherent contributions from holon-doublon creation and annihilation

processes, since they result in two oscillators having their frequencies to switch

from Ω ↔ Ωh and Ω ↔ Ωd. The total energy changes, even if the vibrational

occupation numbers do not change (see Fig. 6.6(a1)-(c1)): as a result, these pro-

cesses are prohibited regardless of the vibrational state in the effective coherent

Hamiltonian.

As for holon-singlon and doublon-singlon exchange, we observe that if the

vibrational occupations of the oscillators before and after the transitions are dif-

ferent, even diagonal transitions are not allowed. Non-diagonal transitions that

preserve energy, like the ones in Fig. 6.6(b2) and (c2), are prohibited because
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Figure 6.6: A diagram of some hopping transitions. Left : the vibrational occu-

pation numbers in these transitions is identical for both oscillators, thus they

are all diagonal. The oscillator occupation is not the same: they are forbidden

since they are not pair-wise diagonal. (a1) Holon-doublon creation and anni-

hilation, (b1) singlon-doublon exchange, (c1) singlon-holon exchange. Center :

Non-diagonal transitions where the vibrational quanta numbers are exchanged.

(a2) Holon-doublon creation and annihilation, (b2) singlon-doublon exchange,

(c2) singlon-doublon exchange. (a2) is prohibited because the energy of the oscil-

lators changes, (b2) and (c2) because they correlate the electronic configuration

with the vibrational occupation number resulting in dephasing. Right: pair di-

agonal transitions where the vibrational occupation numbers are unchanged and

identical for both oscillators. (a3) Holon-doublon creation, (b3) singlon-doublon

exchange, (c3) singlon-doublon exchange. (a3) is prohibited because the energy

of the oscillators is changed, (b3) and (c3) are allowed: they are both energy

conserving and occur without changing any vibrational occupations. These

latter processes are the only ones permitted in the effective coherent hopping

Hamiltonian.

they lead to dephasing. The only permitted ones are what we call pair-wise

diagonal transitions (like the ones shown in Fig. 6.6(b3) and (c3)), in which the

occupancy numbers of the neighboring oscillators are identical.

Once more, we need to estimate the quantity 〈~n|〈xf , ~σf |〈~n|H̃t|xi, ~σj〉|~n〉, in

which an electron of spin σ hops from site j+1 to j and has occupation number

nj = nj+1. By averaging over the local oscillator stationary state, we obtain a
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translationally invariant amplitude

t̃hx =t

∞∑
nj=0

pnj

∞∑
nj+1=0

pnj+1

[
〈nj |Ŝj(ξh)|nj〉〈nj+1|Ŝj+1(ξh)|nj+1〉

]
δnj ,nj+1

,

=

∞∑
n=0

p2
n|〈n|Ŝ(ξh)|n〉|2,

where we used that the local oscillator stationary state ρα with a Poisson number

distribution pn is independent on the site. An identical calculation reveals that

t̃dx =

∞∑
n=0

p2
n|〈n|Ŝ(ξd)|n〉|2.

After taking t̃hd = 0, the effective coherent hopping takes the form

H̃t =
∑
jσ

[
t̃hxPhxj,j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
+ t̃dxPdxj,j+1

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)]
.

By eliminating the coherent dynamical creation or annihilation of holon-doublon

pair, we have obtained a Harris-Lange-like model [50]. In its original formula-

tion, we have already used it in Ch. 5 to compute the optical conductivity of the

EHM. The crucial difference here is that the lower and upper Hubbard bands

have different bandwidths.

6.6 Summary

In this chapter we have demonstrated how to modulate individual parameters

of the HM by selectively driving localized vibrational states of the molecule. We

have developed a toy model to build a physical intuition about the coupling of

local molecular vibration to valence electrons. The Dynamical Hubbard Hamil-

tonian has been shown to be the appropriate minimal model to account for these

vibrations, and a suitable basis state has been obtained.

In the next chapters, we shall look for experimental signatures of the physics

described here.



Chapter 7

Dynamic Hubbard Model:

optical properties

Control of phases in correlated-electron systems is typically achieved by applying

physical or chemical pressure [175]. In Ch. 5 we studied an example of this

procedure: by applying hydrostatic pressure we manipulated the inter-molecular

distance, and therefore the intermolecular parameters of the Hubbard model.

On the other hand, on-site correlations parameters are molecular properties that

descend from the electronic structure itself, and cannot be easily affected with

any static perturbation.

The goal of this chapter is to demonstrate a new type of optical control, act-

ing directly on the electronic structure and on the on-site correlation, U . In Ch. 6

we explained how intra-molecular vibrations directly influence the wave function

and the on-site energies of molecular crystals. The effective U = UC − Us on

a molecular site is given by the bare Coulomb repulsion of the electrons (UC)

reduced by the screening effects of the lower orbitals of the molecule (quantified

by US). A resonant excitation of an intra-molecular vibration of the molecular

wave function changes the screening of the orbital and therefore changes the

effective on-site U .

Experimentally, mid-infrared (MIR) optical pulses have been used to ex-

cite localized molecular vibrations in ET-F2TCNQ, while a broadband ultrafast

probe interrogates the resulting optical spectrum. After reporting the results of

103
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the measurements in Sec. 7.1, the response is compared to computations based

on the Dynamic Hubbard Model (DHM) introduced in Ch. 6. Among the main

results of this comparison, we are going to find that the coupling to holon and

doublon are asymmetric, and that the doublons strongly squeeze the vibrational

mode.

7.1 Experimental results

Figure 7.1: (a) Equilibrium reflectivity of the ET-F2TCNQ for light polarized

along the ET chains. (b) Black curve: equilibrium optical conductivity ex-

tracted from the optical conductivity. Red curve: numerical simulation of the

optical conductivity with Hubbard parameters: t ∼ 40 meV, V ∼ 120 meV and

U ∼ 850 meV. These values are in agreement with the ones obtained in Ch. 5.

A quantitative match with the experimental conductivity is achieved by adding

a Lorentzian oscillator centered at 8000 cm−1, which takes into account contri-

butions by higher-lying transitions (blue dashed curve).

Pump-probe experiments were performed with two optical parametrical am-

plifiers (OPAs)1. Excitation was achieved via MIR pulses from difference fre-

quency mixing of signal and idler in AgGaS2, resonant with two different intra-

molecular vibrations: an asymmetric, IR active mode [176] at 10 µm and a

symmetric, Raman active mode [177] at 6 µm. The latter is highly coupled to

1The experimental measurements reported in this section were carried out by S. Kaiser,

D. Nicoletti and R. I. Tobey.
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the electronic system via e-mv-coupling that leads to a symmetric break and

makes the IR mode active [178, 179].

The probe was tuned to several wavelengths around the charge transfer (CT)

resonance at 700 meV = 1.77 µm to trace the shift and the changes of the band

as direct evidence of control of the on-site U . The measurements were taken

in reflection geometry and the system was probed along the direction of the

largest overlap of the one-dimensional conductors, i.e., along the chain of ET

molecules. A time resolution of about 80 fs was achieved.

The results of the static measurements are reported in Fig. 7.1. One observes

a charge-transfer (CT) resonance at photon energies ∼ 5500 cm−1. This feature

reflects the existence of a correlation gap and corresponds to excitations of the

type (ET+ET+) → (ET2+ET0). The broadband reflectivity spectra was fitted

with a Drude-Lorentz model [180], and transformed in optical conductivity using

the Kramers-Kronig relations (Sec. 3.1.2). In Fig. 7.1(b) we have used the

procedure developed in Ch. 5 to reproduce the static measurement of optical

conductivity. We were able to obtain a very good agreement once a background

contribution from a high frequency oscillator (dashed blue curve) was added.

The excitation of the molecular vibrations induces changes on the charge

transfer band. The reflectivity changes along the ET molecules were probed at

frequencies in the mid (1800-3000 cm−1) and near-infrared (4000-7000 cm−1).

The vibration-induced absolute reflectivity is shown Fig. 7.2(a) for the mode

at 10 µm wavelength, selectively excited by light pulses with a 10% bandwidth

and field strengths up to 10 MV/cm. One observes: (a) a red-shift of the

CT band from its equilibrium position at ω ' 5500 cm−1 toward 5000 cm−1;

(b) a new band approximately at 4200 cm−1; (c) a mid-gap resonance and a

weaker peak at ∼ 3000 cm−1 and ∼ 2000 cm−1, respectively. No change in the

reflectivity signal above the CT resonance was detected.

When the excited modes relax, the vibrational oscillations are reduced, and

the CT band shifts back to its equilibrium, while the the peaks inside the gap

reduce substantially. The relaxation back to to ground state can be described

with a double-exponential function. The two time-decay values are τ1 = 230 fs

and τ2 = 4.5 ps. We interpret the first time constant, τ1, as the direct relaxation

of the system in the vibrational excited state. On the other hand, we explain
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the second long time constant, τ2, with a thermalization of the “hot” mode with

the crystal lattice, i.e., with low frequency phonon modes. This interpretation

is confirmed by the value of τ2 in the ps region, typical of phonon modes at

THz frequencies. It is noteworthy that the response is mode selective: when

the excitation was tuned away from the frequency of the selected vibration, the

MIR resonances disappeared.

Figure 7.2: (a) Time and frequency dependent reflectivity after selective mod-

ulation of the IR active molecular mode at 1000 cm−1. (b) Frequency de-

pendent reflectivity at equilibrium (black) and at the peak of the modulating

IR field (red). Full circles indicate experimental data, whilst the dashed like

is a Lorentzian fit to the data to extract the optical conductivity. In the low-

frequency range (below 100 cm−1), the full lines indicate the equilibrium (black)

and transient (red) reflectivity measured with single-cycle THz-pulses. The two

peaks are phonon modes of the molecular crystal.

The same measurement, performed by exciting the molecule with the to-

tally symmetric, Raman active, mode at 6 µm, gives the response reported

in Fig. 7.2(b). In this case, one observes a reduction of the spectral weight

at the charge resonance but, importantly, there is neither a shift of the CT

resonance nor any significant response at other wavelengths.

It is important to mention that in both cases there has been no detection

of metallic response in the THz range; the reflectivity remained low and the

phonon resonances stayed unscreened. We can clearly state that the results are

not a consequence of the photo-induced formation of a metallic state. Actually,
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if an optical excitation above gap had taken place, one would have observed a

Drude-like metallic response [27].

Figure 7.3: (a) Time and frequency dependent reflectivity after modulation at

ω ∼ 1670 cm−1. (b) Frequency dependent reflectivity at equilibrium (black)

and at the peak of the modulating field (red). Full circles indicate experimental

data whilst the dashed line is a Lorentz fit to the data.

To analyze the experimental data, we are going to compute the real part

of the optical conductivity σ(ω) of the Dynamic Hubbard Model (DHM) via

the unequal time current-current correlation function. The narrow hopping

bandwidth of ET-F2TCNQ, as well as the strong binding of holon-doublon pairs,

justifies σ(ω) being calculated analitically in the atomic limit. In the final section

of the chapter we are going to show that the latter approximation holds even

more so when vibrational driving is on.

7.2 Optical conductivity in the Atomic Limit

As discussed in Sec. 6.4, when U � kBT � t2/U , we can approximate the initial

electronic state by a half-filled completely spin-mixed state ρs = 1
2M

∑
~σ |~σ〉〈~σ|.

With regard to the vibrationally driven state, we assume that each oscillator

is prepared instantaneously in a phase-averaged coherent state, ρα. Let us

recall that this assumption is motivated by the following considerations: (i)

higher vibrational states of the localized molecular oscillators are essentially

unoccupied at room temperature since kBT < Ω; (ii) despite the phase of the

oscillator on each site being expected to be identical across the sample, it is not
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controlled shot-to-shot in the experiment. We shall use the total initial state:

ρex = ρs ⊗
M∏
j=1

ρα,

to compute the optical conductivity of the system, σ(ω).

In Ch. 3 we studied the optical conductivity. Let us recall here briefly

the key facts. The optical conductivity σ(ω) is defined as the linear response

function connecting the finite frequency electrical current in the system, J(ω),

to the applied electric field, E(ω), via Ĵ(ω) = σ(ω)E(ω) [103]. The real part of

σ(ω) describes the out-of-phase response of the system and is proportional to

optical absorption (see Ch. 3). It has the general form Re {σ(ω)} = Dδ(ω) +

σreg
1 (ω), where D is the Drude weight, and σreg

1 (ω) is the regular finite frequency

optical conductivity which is the focus of our calculation. The central quantity

determining σreg
1 (ω) is the unequal time current-current correlation function

χJJ(ω), defined in real time (∆τ = τ−τ ′) as χJJ(∆τ) = Θ(∆τ)〈ĴH(∆τ)ĴH(0)〉.

If the we apply the first current operator at time 0, τ ′ = 0, so that ∆τ = τ .

ĴH(τ) is the time evolved current operator in the Heisenberg picture with respect

to the atomic limit Dynamic Hubbard Hamiltonian.

The regular part of the optical conductivity, σreg
1 (ω), is related to χJJ(ω)

as [102]

σreg
1 (ω) =

e2

ωa
Re {χJJ(ω)− χJJ(−ω)} .

In the atomic limit, for a system withM lattice sites, the Fourier transform of

the current-current correlation function of the DHM assumes for both vibration

modes the general form (see Appendix 7.B for a full derivation)

χJJ(ω) =
t2M

4π2

∫ +∞

−∞

∫ +∞

−∞
G0(ω′′)Gh(ω′ − ω′′)Gd(ω − ω′) dω′ dω”. (7.1)

That is, a convolution of the bare atomic limit HM Green’s function

G0(ω) =

∫ ∞
−∞

Θ(τ)ei(U−V )τeiωτ dτ,

with the vibrational Green’s function for a site with a holon, Gh(ω), and dou-

blon, Gd(ω), present. These functions are identical for any site j and have the

general form

Gx(ω) =

∫ ∞
−∞

tr
[
eiĤs,jτe−iĤx,jτρα

]
eiωτ dτ, (7.2)
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where x = {h, d} labels holons and doublons, Ĥx,j .

In other words, the oscillator Green’s functions are a Fourier transform of the

overlap of the driven coherent state when evolved in the presence of a singlon,

with the evolution of the same state in the presence of a doublon or holon. The

bare Hubbard contribution G0(ω) is responsible for a single CT peak U −V . In

the presence of a vibrational coupling, but absence of any excitation, Gh(ω) and

Gd(ω) cause the bare σreg
1 (ω) response to shift slightly. Correspondingly, once

the vibrational modes are driven, the effects on the conductivity are entirely

contained in Gh(ω) and Gd(ω), as we will study in detail in the next sections.

7.3 Classical “heavy” oscillator limit

A good starting point to understand the influence of vibrations on σ1(ω) is to

consider the molecular modes as infinite mass classical oscillators. This limit

embodies the physical situation in which the mass of the molecular oscillator far

exceeds the mass of a valence electron either lost or gained: its motion remains

essentially unchanged and independent of the electronic configuration. We thus

ignore any “back-action” on the oscillators and consider them as having a posi-

tion coordinate described by a scalar qj(τ), oscillating as qj(τ) = Q cos(Ωτ+φj).

Q is the maximum displacement (identical for all the oscillators), and φj is the

initial phase. χJJ(τ) is obtained by replacing the operator q̂j by the scalar

coordinate qj(τ) within the DHM. In turn this causes the Coulomb interaction

U to become time-dependent.

With regard to the linear Raman mode (see Appendix 7.A) we obtain the

oscillator Green’s functions

Gx = 2π

∞∑
n=−∞

J 2
n (νx)δ(ω − nΩR),

where Jn is the order n Bessel function of the first kind, and νx = gxRQ/Ω is a

dimensionless measure of the driving energy. Let us recall that gxR (x = h, d) is

a positive coupling parameter. The optical conductivity for the Raman mode is

then

σreg
1 (ω)

t2
=
πMe2

aω

∞∑
m,n=−∞

J 2
n (νh)J 2

m(νd) [δ(ω − ωmn)− δ(ω + ωmn)] , (7.3)
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where ωmn = U−V +(n+m)ΩR. The excitation of the Raman vibrations results

in additional δ-peaks at integer multiples of ΩR either side of the stationary CT

peak at U − V .

Pertaining to the IR mode, the oscillator Green’s functions are

Gx(ω) = 2π

∞∑
n=−∞

J 2
n (ηx)δ[ω ± 2ΩI(n+ ηx)],

where ηx = gxIQ
2/4ΩI is a dimensionless measure of the driving energy, and the

′−′ sign applies to holons. Again, gxI is a positive coupling parameter with units

of Jm−1. The resulting optical conductivity for the IR mode is then

σreg
1 (ω)

t2
=
πMe2

aω

∞∑
n,m=−∞

J 2
n (ηh)J 2

m(ηd) [δ(ω − ωmn)− δ(ω + ωmn)] , (7.4)

where ωmn = U−V +2ΩI(n−m)+2ΩI(ηh−ηd). Once more, the IR vibrations

result in additional peaks at higher and lower frequencies than the main reso-

nance. We observe two main difference between Eq. (7.3) and Eq. (7.4): (a) as

a result of the quadratic coupling, in Eq. (7.4) the peaks appear at multiples of

2ΩI rather then ΩI ; (b) the central band at U − V is now shifted by a driving

dependent frequency (ghI − gdI )Q2/2.

In both cases, the appearance of additional peaks arises because of the

time-dependence of the interaction U . These resonances are the sidebands ex-

pected from classical frequency modulation caused by the oscillating interaction

strength U in the dynamical phase of the time-evolution. If the driving or the

coupling goes to zero then the optical conductivity reduces to the one of the

bare Extended Hubbard Model in the atomic limit, as expected.

7.4 Quantum limit

Having developed an intuition for the expected physics in the limit of infinitely

heavy oscillators, we shall now treat both the electrons and the oscillators quan-

tum mechanically. In this limit, the ectrons can cause a back-action on the

oscillators, and Eq. (7.2) gives (see Sec. 7.B)

Gx(ω) = 2π
∑
nm

pn|〈n|D̂(χx)|m〉|2δ(ω − ωxmn),

in Raman limit. As before, D̂ is the oscillator displacement operator, with

χx = gxRa0/ΩR
√

2, and ωxmn = ΩR(m − n) − ΩRχ
2
x (x = h, d). The driving
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dependence now appears exclusively through the Poisson distribution of the

phase averaged driven oscillator state: pn = exp(−|α|2)|α|2n/n!.

The optical conductivity for the Raman mode optical conductivity is then

σreg
1 (ω)

t2
=
πMe2

aω

∑
n,n′,m,m′

|〈n|D̂(χd)|m〉|2|〈n′|D̂(χh)|m′〉|2

× [δ(ω − ωmm′nn′)− δ(ω + ωmm′nn′)] , (7.5)

where

ωmm′nn′ = U −V +ωdmn+ωhmn = U −V +ΩR(m+m′−n−n′)−ΩRχ
2
h−ΩRχ

2
h.

The “oscillator strengths” |〈n|D̂(χd)|m〉|2 appearing in Eq. (7.5) are Franck-

Condon factors describing the overlap of vibrational eigenstates for the oscillator

Hamiltonian when a singlon is present, with the eigenstates when a holon or

doublon is present. They are called the photon-number distribution of number

displaced states [181] and have a known analytic form (Eq. (7.12)).

We can proceed in a similar way for the IR case. The oscillator Green’s

functions are

Gx(ω) = 2π
∑
nm

pn|〈n|Ŝ(ξx)|m〉|2δ(ω − ωxmn).

Here Ŝ is the oscillator squeezing operator, with ξx = log(
√

Ωx/ΩI) (x = h, d).

The optical conductivity for the IR mode in the quantum limit is then

σreg
1 (ω)

t2
=
πMe2

aω

∑
n,n′,m,m′

|〈n|Ŝ(ξd)|m〉|2|〈n′|Ŝ(ξh)|m′〉|2

× [δ(ω − ωmm′nn′)− δ(ω + ωmm′nn′)] . (7.6)

We have defined the frequencies ωmm′nn′ = U −V +ωdmn +ωhm′n′ which expand

to

ωmm′nn′ = U − V + ΩdIm− ΩIm+ ΩhIm
′ − ΩIn

′ + 1
2 (ΩhI + ΩdI − 2ΩI).

In this case the “oscillator strengths” |〈n|Ŝ(ξx)|m〉|2 are again Franck-Condon

factors describing the overlap of vibrational eigenstates of the singlon with the

holon and doublon. Once more, the latter have a known analytic formula

(Eq. (7.12)), and are known as photon-number distribution of number squeezed

states [173]. In conclusion, we can compute the optical conductivity for all

drivings in the atomic limit.
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Figure 7.4: A schematic of the Franck-Condon principle for (a) linear coupling

and (b) quadratic coupling. In the vibrational mode is modified by the local

electronic configuration making a transition from a singlon to a doublon state

with a ground state energy difference of U − V . In the case of linear coupling

the doublon oscillator is displaced from the singlon one by an amount χd. In the

case of quadratic coupling the doublon oscillator has a lower frequency Ωd < Ω.

In either case the vibronic (vibrational-electronic) transitions are weighted by

the overlaps of the oscillator states of these two oscillators.

7.4.1 Vibrational sidebands

The most striking effect found in the conductivity is that exciting the vibrational

mode causes the CT peak to acquire sidebands. Physically, they indicate that

the CT transitions can occur at frequencies above and below the stationary

value by either absorbing energy from the oscillator or emitting energy into

it. Thus, by exciting the vibrational mode, thereby pumping energy into this

degree of freedom, it becomes possible for the probe at a lower frequency of

U − V to transfer enough energy from the oscillator to become resonant with

the CT peak. Likewise, a probe at a frequency higher than the CT peak can

emit excess energy into the oscillator through the electron-oscillator coupling,

again becoming resonant.
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In other words, a system coupled to a local vibrational mode has numerous

CT transitions. Upon driving, the oscillator transitions from higher vibrational

eigenstates become more probable and represent energy exchange between the

electronic and vibrational degrees of freedom initiated by the probe.

In both the classical and quantum limit the origin of transition strengths

is the Franck-Condon principle: during an electronic transition, a change from

one vibrational energy level to another will be more likely to happen if the two

vibrational wave functions overlap more significantly. Indeed, both the Bessel

functions Jn found in the classical limit, as well as the weights |〈n|D̂(χx)|m〉|2

and |〈n|Ŝ(ξx)|m〉|2 determined in the quantum limit, are Franck-Condon factors.

A schematic representation of the Franck-Condon principle for both linear and

quadratic coupling is shown in Fig. 7.4.

7.5 Results and fitting

We are now ready to use the analytic expression for σreg
1 (ω) obtained above to

interpret the detailed structure of the optical conductivity when the IR mode is

vibrated. The key effects of vibrational excitation are revealed by considering

the infinitely heavy oscillator limit of Sec. 7.3, where the optical conductivity

is given by Eq. (7.4). The classical displacement varies harmonically in time

as q(τ) = Q cos(Ωτ), with amplitude Q and frequency of the driven molecular

vibration Ω = 1000 cm−1.

The modulation of the on-site interaction matrix element U by (ghI − gdI )q2

results in two crucial features. First, the q2 ∝ Q2[1+cos(2Ωτ)] dependence pre-

dicts a shift of the CT resonance, by an amount that depends on the amplitude

Q of the driven mode. The CT resonance is observed to red-shift: this implies

that the doublon coupling exceeds that of the holon, therefore reducing the time

averaged U . Second, the classical frequency modulation generates sidebands at

multiples of ±Ω on each side of the shifted CT resonance. Indeed, in Fig. 7.2

one sees a shift of the CT resonance, along with the emergence of a mid-gap

peak at 2Ω below CT.

In addition to these effects, we notice that in the experiment we see only one

sideband, and some additional sub-structure that emerges. These features can
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Figure 7.5: (a) Schematic representation of the vibrational transitions assuming

for simplicity Ωh = Ω. The doubly-occupied site has a significantly renormalized

vibration Ωd, which results in new transitions in the optical conductivity. In

grey we represent the occupation of the driven lower vibrational ladder. (b)

Theoretical optical conductivity at equilibrium (as in Fig. 7.1(b), represented

in black), and upon coherent excitation of the local vibrational mode. The

green and red curves represent two different driving amplitudes. The various

peaks are labeled according to the transitions in (a). The dashed line represents

the case in which the asymmetry between holons and doublons inverted, i.e.,

in where the holons are stiffened by a factor of 4 are the doublons remain

almost unperturbed. (c) Optical conductivity calculated via Drude-Lorentz fit

to the reflectivity spectra of Fig. 7.2, at two selected pump-probe delays. The

background oscillator of Fig. 7.1(b) has been subtracted.
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be explained by taking into account full quantum result, Eq. (7.6). As described

in Sec. 7.4, the electronic configuration applies a back-action on a finite mass

oscillator. Specifically, the oscillator “stiffens” on the holon site (Ωh > Ω) and

“slackens” on the doublon one (Ωd < Ω).

In Fig. 7.5(b) and (c) we show the comparison between the optical conduc-

tivity extracted from the reflectivity data and a calculation with strong coupling

and strong holon-doublon asymmetry. We obtain a driving strength Q/a0 ∼ 2,

a doublon oscillator that suffers a significant frequency reduction to Ωd ∼ 0.26

Ω, and a holon’s Ωh ∼ 1.10 Ω that is only marginally increased. The additional

sub-structure seen in Fig. 7.5(b) can be attributed to the “slackening” of the

doublon oscillator as schematically shown in Fig. 7.5(a). Crucially, the reduced

spacing between energy levels of the doublon oscillator causes the transition

frequencies to move into the gap, an effect that is significant only if the vibra-

tional mode is appreciably populated. This finding is in agreement with the

strong experimental excitation of the molecular oscillator. The remnants of the

classical sidebands are now located only at low frequencies and are split into

multiples of Ω− Ωd.

The 10% modulation of the holon frequency is in agreement with the expec-

tations [182, 68] for a thermal molecular state. The charge distribution of double

occupancies lies predominantly near the the central bond C = C [183, 184] of

the ET molecules. This is exactly the place where the driven oscillation takes

places, which may explain the reason why the doublons frequency is far more

affected (about a factor of 4) then the holon one.

Finally, let us shortly comment on the lack of response seen when tuning the

pump wavelength to 6 µm. This vibrational mode is expected to have a linear

coupling, and thus exhibit the features obtained in Eq. (7.5). Nevertheless, we

do observe only a slight reduction of the CT peak without any shift, or any

response at other frequencies. This is consistent with a weak linearly coupled

model which suggests that the totally symmetric vibration plays a minor part

in the renormalization of the effective parameters of the HM.
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7.5.1 Effect of finite hopping

In order to reproduce experimental results, we used the results for the opti-

cal conductivity in the zero-bandwidth limit, where σreg
1 (ω)/t2 can be obtained

exactly. This is justified by the parameters of ET-F2TCNQ, and by the suppres-

sion of the hopping amplitude with driving, analogous to polaronic effects [180].

The former indicate that, once optically excited, an adjacent holon-doublon pair

is bound. Thus, when driven the contributions of the oscillators at the initial

holon and doublon locations will be dominant.

To estimate the suppression of t caused by driving, we use the results

of Sec. 6.5. We need to compute t̃hx and t̃dx for the parameters used to fit

the data in Fig. 7.5:

t̃hx = tr
[
Ŝ(ξh)ρα

]
tr
[
Ŝ(ξh)ρα

]
t, and t̃dx = tr

[
Ŝ(ξd)ρα

]
tr
[
Ŝ(ξd)ρα

]
t.

The traces of the squeezing transformation and phase averaged-coherent state

can be computed using some of the SU(1,1) disentangling theorems discussed

in Appendix 7.D. We obtain,

tr
[
Ŝ(ξ)ρα

]
=

∫ 2π

0

dφ

2π
〈|α|eiφ|Ŝ(ξ)||α|eiφ〉,

=
e|α|

2[sech(ξ)−1]/2√
cosh(ξ)

∫ 2π

0

dφ

2π
eiξ|α|

2 sin(2φ) =
e|α|

2[sech(ξ)−1]/2√
cosh(ξ)

J0(ξ|α|2).

Owing to the phase averaging, Ŝ†(ξ) has the same expression, apart from the

sign of the exponential of sin(2φ). Finally,

t̃hx = t
e|α|

2[sech(ξh)−1]/2√
cosh(ξh)

J 2
0 (ξh|α|2), and t̃dx = t

e|α|
2[sech(ξd)−1]/2√

cosh(ξd)
J 2

0 (ξd|α|2).

For both results the cosh(ξ) in the denominator describes the stationary reduc-

tion in the coherent hopping amplitude, while the numerator exponential and

Bessel function explain the further suppression caused by the driving.

Using the fitting parameters gdIa
2
0 = 1.12 t, ghI a

2
0 = 0.250 t, we have that

ξh = 0.0473, ξd = −0.0677, Ωd = 0.26 Ω, while Ωh = 1.10 Ω. Using the

fitted value of the maximum driven displacement Q/a0 = 2.14, we obtain t̃dx =

0.051 t0 and t̃ = 0.19 t. Therefore, driving the vibration mode dramatically

quenches the coherent hopping amplitude of both the doublon and holons. The

atomic limit is indeed an appropriate approximation for the driven system. Let
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us also add that, because the oscillator coupling here is to a local molecular

mode on each site, as opposed to a collective bath of lattice phonons typical

for a conventional Holstein model, the vibrational excitation makes the hopping

amplitudes disordered through the chain, which further inhibits holon-doublon

motion via Anderson localization [185].

We conclude that the effects of a finite t are simply to broaden the dominant

contribution to the optical conductivity already captured by on-site vibrational

dynamics. To account for these mechanisms, as well as the spectral limitations

of the measurement itself, we have introduced an artificial broadening of 0.5 t

to the results presented in Fig. 7.5(b).
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7.A Optical conductivity - Classical

In the classical derivation of σ1(ω), we treat each oscillator by tracking its

position and momentum coordinates q(τ) and p(τ). The motion of these coor-

dinates for each oscillator is governed by an unchanging rigid classical oscillator,

with mass m and frequency Ω. Namely, we have qj(τ) = Q cos(Ωτ + φj) and

pj(τ) = −mΩQ sin(Ωτ + φj), where Q is the maximum displacement, identical

for all oscillators, and φj is the initial phase of the jth oscillator.

7.A.1 Raman mode

In the subspace H0 ⊕ H1 (see Sec. 4.2), the DHM becomes a time-dependent

Hubbard Hamiltonian

Ĥcl(τ) = 1
2MmΩ2Q2(P0 +P1) + (U − V )P1

+
∑
j

{
Phdj,j+1

[
ghRqj(τ) + gdRqj+1(τ)

]
+ Pdhj,j+1

[
gdRqj(τ) + ghRqj+1(τ)

]}
.

In the atomic limit, Ĥcl(τ) commutes with itself at different times τ : the prop-

agator in this subspace is Ûcl(τ) = exp(−i
∫ τ

0
Ĥcl(τ

′)dτ ′). After defining the

integration over position as∫ τ

0

qj(τ
′)dτ ′ =

Q

Ω
[sin(Ωτ + φj)− sin(φj)] ≡

Q

Ω
Υj(τ),

and the total energy of all the oscillators as E = 1
2MmΩ2Q2, we get

Ûcl(τ) = e−iEτP0 + e−iEτe−i(U−V )τ

×
∑
j

{
Phdj,j+1e−i[νhΥj(τ)+νdΥj+1(τ)] +Pdhj,j+1e−i[νdΥj(τ)+νhΥj+1(τ)]

}
.

Here νd = gdRQ/Ω and νh = ghRQ/Ω. By using these propagators we can com-

pute the phase averaged current-current correlation function in the classical

limit via

χJJ,cl(τ) =
Θ(τ)

2L

∫ 2π

0

dφ1

2π
· · ·
∫ 2π

0

dφL
2π

∑
~σ

〈~σ|Û†cl(τ)Ĵ Ûcl(τ)Ĵ |~σ〉.

The essential part of this correlation stems from the scalar product of two states

which depends on the configuration ~σ: |Φ~σ(τ)〉 = Ûcl(τ)Ĵ |~σ〉 and |Ψ~σ(τ)〉 =
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Ĵ Ûcl(τ)|~σ〉. With regard to the state |Ψ~σ(τ)〉 we have

|Ψ~σ(τ)〉 = −it e−iEτ

 ∑
(j<k)∈x(~σ)

|~σjk〉 −
∑

(j>k)∈x(~σ)

|~σjk〉

 , (7.7)

while |Φ~σ(τ)〉 reads

|Φ~σ(τ)〉 = −it e−iEτe−i(U−V )τ

 ∑
(j<k)∈x(~σ)

e−i[νhΥj(τ)+νdΥj+1(τ)]|~σjk〉

−e−i[νdΥj(τ)+νhΥj+1(τ)]
∑

(j>k)∈x(~σ)

|~σjk〉

 .

Upon computing the overlap 〈Φ~σ(τ) |Ψ~σ(τ) 〉, the global phase arising from E

cancels and leaves

χJJ,cl(τ) = t2
Θ(τ)

2M
e−i(U−V )τ

∑
~σ

∑
(j,k)∈x(~σ)

×
∫ 2π dφj

2π
e−iνdΥj(τ)

∫ 2π

0

dφk
2π

e−iνhΥk(τ)

= t2MΘ(τ) e−i(U−V )τGd(τ)Gh(τ).

We have defined the oscillator correlation functions as

Gp(τ) =

∫ 2π

0

dφ

2π
e−iνpΥ(τ),

where p = {h, d} designates the holon and doublon functions which differ only

by the dimensionless driving energy νp. To evaluate these functions we use the

Jacobi-Anger expansion

e±iz sin(θ) =

∞∑
n=−∞

Jn(z)e±inθ,

and the identity ∫ 2π

0

dφ

2π
e±i(m−n)φ = δmn.

In this way, the oscillator correlation functions reduce to

Gp(τ) =

∫ 2π

0

dφ

2π
e−iνp[sin(Ωτ+φ)−sin(φτ)]

=

∞∑
n=−∞

Jn(νp)e−inΩτ

∫ 2π

0

dφ

2π

∞∑
m=−∞

Jm(νp)ei(n−m)φ,

=

∞∑
n=−∞

J2
n(νp)e−inΩτ .
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Putting this altogether yields the classical Raman current-current correlation

function as

χJJ,cl(τ) = t2Θ(τ)L e−i(U−V )τ
∞∑

n=−∞

∞∑
m=−∞

J2
n(νh)J2

m(νd)e
−i(n+m)Ωτ .

We can finally obtain the expression for the classical Raman mode optical con-

ductivity, Eq. (7.3):

σreg
1,cl(ω) =

πt20Le
2

`ω

∞∑
n=−∞

∞∑
m=−∞

J2
n(νh)J2

m(νd)

× [δ(ω − ωmn)− δ(ω + ωmn)] ,

where ωmn = U−V +(n+m)Ω. If either of the coupling strengths goes to zero,

i.e., νd → 0 and/or νh → 0, the optical conductivity reduces to the standard

HM atomic limit (J0(0) = 1, while Jn(0) = 0 for |n| > 0).

7.A.2 IR mode

The analysis can be repeated for the IR case. In this case we have the Hamil-

tonian

Ĥcl(τ) =
(

1
2MmΩ2Q2

)
(P0 +P1) + (U − V )P1

+
∑
j

{
Phdj,j+1

[
ghI q

2
j (τ)− gdI q2

j+1(τ)
]

+Pdhj,j+1

[
−gdI q2

j (τ) + ghI q
2
j+1(τ)

]}
,

taking note of the signs of the interaction for the holon and doublon couplings

as discussed earlier. In order compute the propagator Ûcl(τ) we again define

the position integration as∫ τ

0

q2
j (τ ′)dτ ′ =

Q2

4
[sin(2Ωτ + φj)− sin(2φj) + 2τ ] ,

=
Q2

4Ω
Υj(τ) + 1

2Q
2τ.

This leads to the expression for the propagator, Ûcl(τ):

Ûcl(τ) =e−iEτ
(
P0 + e−i[U−V+Ω(ηh−ηd)]τ×

∑
j

{
Phdj,j+1e−

1
2 i[ηhΥj+1(τ)−ηdΥj(τ)] +Pdhj,j+1e−

1
2 i[ηhΥj+1(τ)−ηdΥj(τ)]

} ,
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where ηd = gdIQ
2/2Ω and ηh = ghIQ

2/2Ω are dimensionless measures of the

driving energy. We are now ready to compute the current-current correlation

function χJJ,cl(τ):

χJJ,cl(τ) =
Θ(τ)

2L

∫ 2π

0

dφ1

2π
· · ·
∫ 2π

0

dφL
2π

∑
~σ

〈Ψ~σ |Φ~σ 〉 .

The state |Ψ~σ(τ)〉 has the same expression as Eq. (7.7), while for |Φ~σ(τ)〉 we

obtain

|Φ~σ(τ)〉 =− it e−iEτe−i[U−V+Ω(ηh−ηd)]τ

 ∑
(j<k)∈x(~σ)

e−
1
2 i[ηhΥj+1(τ)−ηdΥj(τ)]|~σjk〉

−e−
1
2 i[ηhΥj(τ)−ηdΥj+1(τ)]

∑
(j>k)∈x(~σ)

|~σjk〉

 .

Explicitly, χJJ,cl(τ) is

χJJ,cl(τ) = t2
Θ(τ)

2L
e−i[U−V+Ω(ηh−ηd)]τ

∑
~σ

∑
(j,k)∈x(~σ)

×
∫ 2π

0

dφj
2π

e
1
2 iηdΥj(τ)

∫ 2π

0

dφk
2π

e−
1
2 iηhΥk(τ).

We define once more the holon and doublon oscillator correlation functions as

Gp(τ) = e(−1)piΩηpτ

∫ 2π

0

dφ

2π
e−

1
2 (−1)piηpΥ(τ),

where (−1)p is shorthand for 1 when p = h and −1 when p = d. This correlation

function evaluates as

Gp(τ) = e(−1)piΩηpτ

∫ 2π

0

dφ

2π
e−i(−1)p 1

2ηp[sin(2Ωτ+φ)−sin(2φτ)]

= e(−1)piΩηpτ
∞∑

n=−∞
Jn( 1

2ηp)e−(−1)p2inΩτ

×
∫ 2π

0

dφ

2π

∞∑
m=−∞

Jm( 1
2ηp)e(−1)p2i(m−n)φ

= e(−1)piΩηpτ
∞∑

n=−∞
J2
n( 1

2ηp)e−(−1)p2inΩτ .

Putting this altogether yields the classical IR current-current correlation func-

tion:

χJJ,cl(τ) = t2Θ(τ)L e−i[U−V+Ω(ηh−ηd)]τ
∞∑

n=−∞

∞∑
m=−∞
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× J2
n( 1

2ηh)J2
m( 1

2ηd)e
−2i(m−n)Ωτ .

Finally, we find the results Eq. (7.4) for the optical conductivity

σreg
1,cl(ω) =

πt20Le
2

`ω

∞∑
n=−∞

∞∑
m=−∞

J2
n( 1

2ηh)J2
m( 1

2ηd)

× [δ(ω − ωmn)− δ(ω + ωmn)] ,

where ωmn = U − V + 2Ω(m− n) + Ω(ηh − ηd). If ηd → 0 and/or ηh → 0, the

optical conductivity reduces to the standard HM atomic limit result.

7.B Optical conductivity - Quantum limit

In this Appendix we compute the unequal time causal current-current cor-

relation function for the driven stationary state ρex = ρs ⊗
∏M
j=1 ρα defined

in Sec. 6.4:

χJJ(τ) = Θ(τ)tr
(
Ĵ(τ)Ĵ(0)ρex

)
,

ρs and ρα are defined in Eq. (6.4) and Eq. (6.5), respectively. We decompose

ρex as

ρex =
1

2M

∑
~σ

|~σ〉〈~σ| ⊗

(∫ 2π

0

dφ1

2π
· · ·
∫ 2π

0

dφM
2π

× ||α|eiφ1〉 · · · ||α|eiφL〉〈|α|eiφ1 | · · · 〈|α|eiφM |

)
. (7.8)

This leaves the correlation functions as

χJJ(τ) =
Θ(τ)

2M

∑
~σ

(∫ 2π

0

dφ1

2π
· · ·
∫ 2π

0

dφM
2π
×

〈~σ|〈|α|eiφ1 | · · · 〈|α|eiφM |eiĤ
a
DHMτ Ĵe−iĤ

a
DHMτ Ĵ |~σ〉||α|eiφ1〉 · · · ||α|eiφM 〉

)
.

The essential part of the correlation stems from the scalar product of two states

|Φ(τ)〉 =e−iĤ
a
DHMτ Ĵ |~σ〉||α|eiφ1〉 · · · ||α|eiφL〉,

|Ψ(τ)〉 =Ĵe−iĤ
a
DHMτ |~σ〉||α|eiφ1〉 · · · ||α|eiφM 〉,

where the perturbation by the current operator Ĵ is applied before and after the

time evolution, respectively. Notice that both of these states depend explicitly
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on |α|, ~σ and {φj}. The current-current correlation function for M sites is then

χJJ(τ) =
Θ(τ)

2M

∑
~σ

∫ 2π

0

dφ1

2π
· · ·
∫ 2π

0

dφM
2π
〈Ψ(τ) |Φ(τ) 〉 .

In the atomic limit, we can compute exactly the time evolution in the subspace

H0 ⊕H1. We start from a ground state with only singly occupied state. With

regard to |Ψ(τ)〉, we find that the evolution is entirely in H0:

|Ψ(τ)〉 = −it e−
1
2 iMΩτ

 ∑
(j<k)∈x(~σ)

|~σjk〉 −
∑

(j>k)∈x(~σ)

|~σjk〉


×| |α|ei(φ1−Ωτ)〉 · · · | |α|ei(φM−Ωτ)〉.

Here we have chosen a convenient notation, |~σjk〉, for a half-filled system by

introducing a shorthand for states which are minimally perturbed out of the

subspace H0: site j is occupied by a doublon and site k by a holon. The

total spin must be conserved: if we start with a given spin configuration |~σ〉,

after applying the current operator and before the time evolution, jth and kth

elements of the vector ~σ(j, k) must have been either (↑j , ↓k) or (↓j , ↑k). For each

~σ we denote the complete set of permissible pairs of locations (j, k) as z(~σ). We

will also split this set up into two parts: (i) a subset x(~σ) that contains all

adjacent holon-doublon locations, i.e., (j, k) = (j, j + 1) or (j, k) = (j, j − 1) ;

(ii) a subsect y(~σ) = z(~σ)− x(~σ) of the remaining non-adjacent configurations.

On the other hand, the evolution of the state |Φ(τ)〉 is entirely in H1:

|Φ(τ)〉 = −it e−
1
2 i(M−2)Ωτe−i(U−V )τ

 ∑
(j<k)∈x(~σ)

|~σjk〉| |α|ei(φ1−Ωτ)〉 · · ·

e−iĤd,jτ | |α|eiφj 〉e−iĤh,j+1τ | |α|eiφj+1〉 · · · | |α|ei(φM−Ωτ)〉 −
∑

(j>k)∈x(~σ)

|~σjk〉

×| |α|ei(φ1−Ωτ)〉 · · · e−iĤh,j−1τ | |α|eiφj−1〉e−iĤd,jτ | |α|eiφj 〉 · · · | |α|ei(φM−Ωτ)〉
)
.

It is clear that the evolution of the oscillators on the holon and doublon sites

is different from the remaining (M − 2) singlons sites. By taking the scalar

product of these states, 〈Ψ(τ) |Φ(τ) 〉, we obtain with a bit of algebra

χJJ(τ) = t2
Θ(τ)

2M
e−i(U−V )τ

∑
~σ

∑
(j,k)∈x(~σ)

×

(∫ 2π

0

dφj
2π

e
1
2 iΩτ 〈|α|ei(φj−Ωτ)|e−iĤ

a
DHM,d,jτ ||α|eiφj 〉
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×
∫ 2π

0

dφk
2π

e
1
2 iΩτ 〈|α|ei(φk−Ωτ)|e−iĤ

a
DHM,h,kτ | |α|eiφk〉

)
.

This expression becomes more transparent by defining two correlation functions

G(τ) as

Gd(τ) =

∫ 2π

0

dφ

2π
〈|α|eiφ|eiĤsτe−iĤdτ | |α|eiφ〉,

Gh(τ) =

∫ 2π

0

dφ

2π
〈|α|eiφ|eiĤsτe−iĤhτ | |α|eiφ〉. (7.9)

These function are composed by the overlap of two terms: (i) a driven oscillator

time evolved according to the free singlon oscillator Hamiltonian Ĥs, (ii) the very

same oscillator evolved according to the doublon or holon oscillator Hamiltonian

Ĥd or Ĥh. These correlation functions characterize the correlation function

χJJ(τ). We have assumed that every oscillator was driven identically, which

causes Eq. (7.9) to be independent on the site j or k. Therefore, χJJ simplifies to

χJJ(τ) = S t2Θ(τ) e−i(U−V )τGd(τ)Gh(τ)/2M . Here S is a scalar factor arising

from

S =
∑
~σ

∑
(j,k)∈x(~σ)

1,

and S counts the total number of holon-doublon pairs which can be generated

from every MI spin configuration ~σ. We compute this sum explicitly in Ap-

pendix 7.C, and obtain S = M 2M (Eq. (7.13)). Thus

χJJ(τ) = t2MΘ(τ) e−i(U−V )τGd(τ)Gh(τ).

χJJ(τ) is a product of functions f(τ)g(τ) in the time-domain: consequently its

Fourier transform will be a convolution

χJJ(ω) =
1

2π

∫ ∞
−∞

dω′ f(ω′)g(ω − ω′). (7.10)

By choosing f(τ) = Θ(τ) e−i(U−V )τGd(τ) and g(τ) = Gh(τ), the doublon and

holon oscillator correlation functions reduce to

Gd(τ) = tr
(

eiĤsτe−iĤdτρα

)
=
∑
n

pn〈n|eiĤsτe−iĤdτ |n〉

=
∑
n

pneiΩ(n+
1
2 )τ 〈n|e−iĤdτ |n〉,

and similarly

Gh(τ) =
∑
n

pneiΩ(n+
1
2 )τ 〈n|e−iĤhτ |n〉.
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7.B.1 Raman mode

The doublon and holon oscillators are related to the singlon oscillator by dis-

placement transformations. By using

〈n|e−iĤdτ |n〉 = 〈n|D̂†(χd)eiΩχ
2
dτe−iΩ(â†â+

1
2 )τ D̂(χd)|n〉,

= eiΩχ
2
dτ
∑
m

e−iΩ(m+
1
2 )τ |〈n|D̂(χd)|m〉|2,

the Green function for the doublon results to be

Gd(τ) =
∑
n

pn
∑
m

e−iω
d
mnτ |〈n|D̂(χd)|m〉|2,

where ωdmn = Ω(m− n)−Ωχ2
d. Similarly, the correlation function for the holon

is

Gh(τ) =
∑
n

pn
∑
m

e−iω
h
mnτ |〈n|D̂(χh)|m〉|2,

where ωhmn = Ω(m− n)−Ωχ2
h. We can now compute the Fourier transforms of

f(τ) and g(τ) by using the well known expressions∫ ∞
−∞

dτ ei(ω±W )τ = 2πδ(ω ±W ),

and ∫ ∞
−∞

dτ Θ(τ)ei(ω±W )τ = πδ(ω ±W ) + P
(

i

ω ±W

)
.

We obtain

f(ω) =
∑
n

pn
∑
m

|〈n|D̂(χd)|m〉|2

×
[
πδ(ω − ωdmn − U + V ) + P

(
i

ω − ωdmn − U + V

)]
,

g(ω) = 2π
∑
n

pn
∑
m

|〈n|D̂(χh)|m〉|2δ(ω − ωhmn),

and their convolution

χJJ(ω) =t2M
∑
n,n′

pnpn′
∑
m,m′

|〈n|D̂(χd)|m〉|2|〈n′|D̂(χh)|m′〉|2

×
[
πδ(ω − ωmm′nn′) + P

(
i

ω − ωmm′nn′

)]
.

Here ωmm′nn′ = U − V + ωdmn + ωhm′n′ which reduces to

ωmm′nn′ = U − V + Ω(m+m′ − n− n′)− Ωχ2
h − Ωχ2

d.
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Finally, we obtain Eq. (7.5) for σreg
1 (ω):

σreg
1 (ω) =

e2

aω
Re {χJJ(ω)− χ̃JJ(ω)}

=
πt2Me2

aω

∑
n,n′

pnpn′
∑
m,m′

|〈n|D̂(χd)|m〉|2|〈n′|D̂(χh)|m′〉|2

× [δ(ω − ωmm′nn′)− δ(ω + ωmm′nn′)] .

If χd → 0 and χh → 0 then the optical conductivity reduces to

σreg
1 (ω) =

πt2Me2

aω
[δ(ω − ωCT)− δ(ω + ωCT)] ,

where ωCT = U − V . When the driving is zero, we simply find optical peaks at

the CT resonance.

The “oscillator strengths” |〈n|D̂(ζ)m〉|2, or photon-number distribution of

number displaced states, have the form (for n ≥ m)

|〈n|D̂(χ)|m〉|2 =
e−|χ|

2 |χ|2(n−m)

m!n!
D(χ, n,m), (7.11)

where

D(χ, n,m) =

∣∣∣∣∣
m∑
k=0

m!n!(−1)k|χ|2(m−k)

k!(m− k)!(n− k)!

∣∣∣∣∣
2

.

7.B.2 IR mode

We use a very similar procedure for the IR case. We start from the overlap

〈n|e−iĤdτ |n〉 = 〈n|Ŝ†(ξd)e−iΩh(â†â+
1
2 )τ Ŝ(ξd)|n〉

=
∑
m

e−iΩh(m+
1
2 )τ |〈n|Ŝ(ξd)|m〉|2,

so that the Green’s function for the doublon is

Gd(τ) =
∑
n

pn
∑
m

e−iω
d
mnτ |〈n|Ŝ(ξd)|m〉|2,

with ωdmn = Ωdm− Ωn+ 1
2 (Ωd − Ω). Similarly for the holon:

Gh(τ) =
∑
n

pn
∑
m

e−iω
h
mnτ |〈n|Ŝ(ξh)|m〉|2,

with ωhmn = Ωhm−Ωn+ 1
2 (Ωh −Ω). The two functions, f(ω) and g(ω) in this

case are

f(ω) =
∑
n

pn
∑
m

|〈n|Ŝ(ξd)|m〉|2
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×
[
πδ(ω − ωdmn − U + V ) + P

(
i

ω − ωdmn − U + V

)]
,

g(ω) = 2π
∑
n

pn
∑
m

|〈n|Ŝ(ξh)|m〉|2δ(ω − ωhmn),

and their convolution

χJJ(ω) = t2M
∑
n,n′

pnpn′
∑
m,m′

|〈n|Ŝ(ξd)|m〉|2|〈n′|Ŝ(ξh)|m′〉|2

×
[
πδ(ω − ωmm′nn′) + P

(
i

ω − ωmm′nn′

)]
.

The frequency ωmm′nn′ = U − V + ωdmn + ωhm′n′ reduces to

ωmm′nn′ = U − V + Ωdm− Ωn+ Ωhm
′ − Ωn′ + 1

2 (Ωh + Ωd − 2Ω).

The optical conductivity for the IR case is then Eq. (7.6):

σreg
1 (ω) =

πt2Me2

`ω

∑
n,n′

pnpn′
∑
m,m′

|〈n|Ŝ(ξd)|m〉|2|〈n′|Ŝ(ξh)|m′〉|2

× [δ(ω − ωmm′nn′)− δ(ω + ωmm′nn′)] .

Once more, if ξd → 0 and ξh → 0 the optical conductivity reduces to the

standard HM atomic limit result.

The “oscillator strengths” |〈n|Ŝ(ξ)|m〉|2, or photon-number distribution of

number squeezed states, have analytic form

|〈n|Ŝ(ξ)|m〉|2 =
n!m!

[cosh(ξ)]2n+1
[tanh(ξ)]m−nS(ξ, n,m), (7.12)

when |n − m| = 2, otherwise it is zero. The latter condition reflects the fact

that squeezing is a two photon process. Here we have defined

S(ξ, n,m) =

∣∣∣∣∣
kmax∑
k=kmin

(−1)k[ 1
2 sinh(ξ)]2k

k!(n− 2k)!(k + (m− n)/2)!

∣∣∣∣∣
2

,

where k is a non-negative integer running from kmin = max{0, 1
2 (n − m)} to

kmax = b 1
2nc.

7.C Computing the configuration sum

In the calculation of the optical conductivity in the atomic limit we need to

evaluate the sum

S =
∑
~σ

∑
(j,k)∈x(~σ)

1.
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Let us recall that x(~σ) is the set of all adjacent locations (j, k) of the doublon

and hole in the configuration string ~σ. ~σ has either (↑j , ↓j+1) or (↓j , ↑j+1).

The holon and doublon can be created on either side: as a consequence x(~σ)

will contain two locations (j, j + 1) and (j + 1, j). For this reason the sum∑
(j,k)∈x(~σ) 1 counts twice the number of such pairs within the configuration ~σ.

We can formulate this problem by taking an arbitrary bit string bM of length

M ≥ 3 and creating a function F (bM ) which counts the number of occurrences

of adjacent “01” and “10” substrings within bM allowing for periodic boundary

conditions. As an example, a string like b11 = 01100100111 has F (b11) = 6.

This way, SM =
∑
bM

F (bM ) for strings of length M . We then note that the

set of all bit strings {bM} can be created from the set of strings {bM−1} by

inserting an additional bit z = {0, 1} between the first and second bit of every

string. So if bM−1 = xybM−3 then bM = xzybM−3, where bM−3 is an arbitrary

M − 3 length string. We thus spawn two new bM ’s through z from each bM−1.

The newly created bM ’s have the same number of substrings as the bM−1 they

were created from (see 7.1). Let us denote the set of 3-bit strings xzy in this as

A. The remaining 1
4 of the bM ’s have 2 more substrings in addition to those in

the bM−1 string, and we denote this set of 3-bit strings xzy as B. This allows

us to write SM as

SM =
∑
bM

F (bM ) =
∑
xzy

∑
bM−3

F (xzybM−3)

=
∑
xzy∈A

∑
bM−3

F (xzybM−3) +
∑
xzy∈B

∑
bM−3

F (xzybM−3).

By using that F (xzybM−3) = F (xybM−3) xzy ∈ A, and that F (xzybM−3) =

2 + F (xybM−3) for xzy ∈ B, we obtain

SM =
∑
xzy∈A

∑
bM−3

F (xybM−3) +
∑
xzy∈B

∑
bM−3

[2 + F (xybM−3)]

=
∑
z

∑
xy

∑
bM−3

F (xybM−3) +
∑
xzy∈B

∑
bM−3

2

=
∑
z

SM−1 + 2M−3
∑
xzy∈B

2

= 2SM−1 + 2M−1.

Here we have also used ∑
xzy∈A

+
∑
xzy∈B

=
∑
xzy

, and
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∑
xy

∑
bM−3

F (xybM−3) = SM−1.

By inspection we can evaluate S3 = 23 + 22 = 12 and consequently

S4 = 2(23 + 22) + 23 = 24 + 2× 23,

S5 = 2(24 + 2× 23) + 24 = 25 + 3× 24,

S6 = 2(25 + 3× 24) = 26 + 4× 24,

...

SM = 2M + (M − 2)× 2M−1 = M × 2M−1.

Finally, we have obtained the results used in Appendix 7.B:

S = 2SM = M × 2M . (7.13)

Table 7.1: Configurations of the bit strings upon enlargement.

x z y F (bM+1)− F (bM )

0 0 0 0

0 1 0 2

0 0 1 0

0 1 1 0

1 0 0 0

1 1 0 0

1 0 1 2

1 1 1 0

7.D Operator ordering SU(1,1) theorem

In this appendix we expand upon the SU(1,1) disentangling theorem [171], useful

for computing the action of squeezing operators and squeezed Hamiltonians on

coherent states. The SU(1,1) algebra K̂-operators is defined as

K̂0 =
1

4
(â†â+ ââ†), K̂− =

1

2
â2, K̂†+ =

1

2
(â†)2.
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The SU(1,1) disentangling theorem allows to decompose the exponentials as

eγ0K̂0+γ+K̂++γ−K̂− ,

where one defines

Γ0 =

(
cosh(β)− γ0

2β
sinhβ

)−2

, Γ±
2γ± sinh(β)

2β cosh(β)− γ0 sinh(β)
,

and β2 = γ2
0/4−γ+γ−. We need to compute the matrix element 〈α|Ŝ(ξ)|α〉. The

operator Ŝ(ξ) has coefficients γ± = ∓ξ and γ0 = 0. Thus β2 = ξ2. Irrespective

of choosing β = ξ or β = −ξ, we obtain Γ± = ∓ tanh(ξ), and Γ0 = cosh(ξ)−2.

Let us consider the action of the K̂ operators on coherent states:

exp(Γ−K̂−)|α〉 = exp

(
Γ−

α2

2

)
|α〉,

〈α| exp(Γ+K̂+) = 〈α| exp

(
Γ+

(α∗)2

2

)
,

exp(zK̂0)|α〉 = ez/4e
|α|2

2 (|ez/2|2−1)|αez/2〉,

where we defined the modified normalized coherent state as

|αez/2〉 = e−
|α|2|ez/2|2

2

∞∑
n=0

(αez/2)n√
n!
|n〉.

For the case z = ln(Γ0), then ez/2 =
√

Γ0 so the result simplifies to

exp[ln(Γ0)K0]|α〉 = (Γ0)1/4e
|α|2

2 (|Γ0|−1)|α
√

Γ0〉.

Using the values for Γ± and Γ0 given by the squeezing operator then leaves

〈α|eΓ+K̂+eln(Γ0)K̂0eΓ−K̂− |α〉 =
exp

[
1
2 |α|

2(sech2(ξ)− ξe−2iφ + ξe2iφ − 1)
]√

cosh(ξ)

× 〈α|αsech(ξ)〉,

where we used that sech(ξ) = cosh(ξ)−1 and set α = |α|eiφ. Note that for

squeezing operator we also have that Γ0 > 0. The overlap of the two coherent

states becomes

〈α|αsech(ξ)〉 = exp
{
− 1

2 |α|
2[1 + sech2(ξ)− 2sech(ξ)]

}
,

giving in total

〈α|Ŝ(ξ)|α〉 =
exp

[
1
2 |α|

2(sech(ξ)− 1 + iξ sin(2φ))
]√

cosh(ξ)
.

This indicates that the special case of the vacuum expectation value of the

squeezing operator is simply 〈0|Ŝ(ξ)|0〉 =
√

sech(ξ).



Chapter 8

Phase controlled driving

8.1 Phase locked vibrational driving

In the previous chapter we showed that by strongly driving an intra-molecular

mode we can modulate the on-site Coulomb interaction in time, and reveal its

effects on observable optical properties of the systems. By driving an anti-

symmetric IR active mode at frequency ΩI ∼ 1000 cm−1, and by using ultrafast

probes, we observed a transient red-shift of the charge transfer (CT) peak and

the appearance of a sideband at a frequency ∼ 2ΩI . The quantum nature of

the oscillator, and thus the back-action on the electrons, was revealed by the

asymmetry of the response: the doublon oscillators “slackens” much more than

the holon oscillators “stiffens”, and the sidebands appear only within the gap.

In this chapter, we wish to further substantiate our physical picture using a

new experimental and therefore numerical approach. Our goal is to find signa-

tures of the U modulation by tracking the reflectivity (or optical conductivity)

directly in the time domain. Experimentally, this is a very challenging task.

First of all, if we drive the anti-symmetric 10 µm mode introduced previously,

we need a time resolution . 17 fs to observe the 2ΩI oscillations. Moreover,

in order for the oscillations to be visible, the driving needs to be performed

with phase “locked” pulses. In fact, if the pulse has random phase for each

experimental run, the oscillations in the time domain are averaged out. As a

consequence, one can obtain only indirect signatures of the time dependence,

131
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Figure 8.1: (a) Crystal structure of ET-F2TCNQ (b) Static reflectivity of ET-

F2TCNQ along a-axis (c) Reduced optical conductivity is shown in green with

model fit in dashed black curve. Red and blue curves are contributions from

holon-doublon pair and particle-hole continuum to the charge transfer peak.

namely peaks in the optical response.

We will perform our experiment once again on the ET-F2TCNQ system.

In Fig. 8.1 are summarized the key properties of the compounds that are going

to be useful in the following. In particular, in Fig. 8.1(a) the crystal structure is

shown; in Fig. 8.1(b) and (c) we report the reflectivity and optical conductivity.

Furthermore, in Fig. 8.1(c) we highlight the contributions of holon-doublon (HD)

and particle-hole (PH) continuum to the charge transfer peak, extracted in the

same way as in Ch. 5.

The plan of the chapter is the following. In Sec. 8.2 we report the ex-

perimental results1, and extract the Hubbard parameters by using the fitting

procedure developed in Ch. 5. Consequently, in Sec. 8.3 we compute the non

time-translationally invariant conductivity. This calculation requires the com-

putation of two-time correlation functions, owing to the explicit time depen-

dence of the Hamiltonian. We will exploit the effective Hamiltonian, Eq. (5.6),

to simulate the broadband optical properties as the Coulomb interaction is pe-

riodically modulated.

In this chapter we are going to treat the system as classical, rather then

quantum as in the previous chapter. This is justified by the much weaker exci-

tation energy of the vibrations of the current experiment (pump fluence of 0.9

1The experimental measurements reported in this section have been performed by R.

Singla.



8.2. EXPERIMENTAL RESULTS AND FITTING 133

Figure 8.2: (a) Electric field time trace of MIR pump pulse. (b) Spectra of pump

pulse (orange) together with reflectivity of ET-F2TCNQ along c-axis (dashed

black). Infrared active vibrational mode at 1000 wavenumber is highlighted in

blue with its pictorial representation in the inset. (c) Auto-correlation of nearly

transform limited near-infrared (NIR) probe pulse. (d) Spectra of probe pulse

(green).

mJ/cm2) with respect to the one described in Ch. 7 (pump fluence up to 35

mJ/cm2).

8.2 Experimental results and fitting

We start by describing the measurements of the the reflectivity changes along

the chain of ET molecules, probed when the antisymmetric, IR active mode is

driven. In the experiment, an amplified Ti:sapphire laser at 800 nm with repe-

tition rate of 1 kHz has been used to seed two NIR optical parameter amplifier

(OPA) setups. Difference frequency mixing of the two NIR beams generates

carrier-envelope phase stable pulses in the mid-infrared region at 10 µm [186].

In Fig. 8.2. Fig. 8.2(a) shows the phase stable electric field of the pump pulse

over time with width of 10 fs. The corresponding spectrum in Fig. 8.2(b) res-

onantly pumps the IR mode of the ET molecule along the c-axis. The pump

beam is incident normally to the sample surface with fluence of 0.9 mJ/cm2.

Subsequently, the CT band along the a-axis has been probed with an over-
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Figure 8.3: (a) Integrated experimental relative reflectivity changes (green) to-

gether with deconvolved (i.e., with the probe signal subtracted) data (grey). (b)

Frequency resolved reflectivity as a function of pump-probe delay time.

lapping NIR spectrum covering the range 4700−7500 cm−1. The probe beam is

parallel to the a-axis to highlight the one-dimensionality of the conduction along

the ET chain. In the experiment, this is achieved by using the same Ti:sapphire

laser that drives another OPA, which in combination with deformable mirror

compression generates pulses in the NIR region [187]. Fig. 8.2(c) and (d) show

the time profile and the spectrum of the probe pulse.

Driving the infrared mode at 1000 cm−1, the reflectivity changes in the way

reported in Fig. 8.3. Time-dependent oscillations are clearly observed both in

the integrated reflectivity (Fig. 8.3(a)), and in the frequency resolved reflectivity

(b). To interpret these data, we are going to use exact analytic results for the

optical conductivity, and extract the Hubbard parameters from experimental

measurements as in Sec. 5.2. Let us recall that in that experiment, the data

were analyzed using a model of the optical conductivity based on a 1/U strong

coupling expansion of the extended Hubbard model. In that case, the onsite

repulsion U was assumed to be constant at all pressures, while V and t were

modified by the applied pressure. This assumption was justified by the fact
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Figure 8.4: Time and frequency dependent experimental optical conductivity

after the vibrational modulation.

that, to leading order, one expects the reduction of lattice spacing to affect the

inter-site parameters rather then the intra-site ones.

In the current experiment, this picture is not valid anymore. On the contrary,

since the excited mode is local, we expect the on-site effects to be dominant, as

extensively discussed in Ch. 2 as well as in Ch. 7.

With this strategy, we extract the changes in U/t as a function of time dif-

ference (τ) between the pump and the probe, after transforming the reflectivity

results of Fig. 8.3(b) in reduced optical conductivity, shown in Fig. 8.4. We

observe two main effects: (a) a U decrease as a consequence of the expansion

of the electronic wave function (hence the interaction between two electrons in

the same orbital decreases), and (b) oscillations with a 2ΩI frequency. To ac-

curately fit the data, it was necessary to let the ratio V/t be a free parameter

as well.

The absolute effect on the V/t ratio is similar to the one of U/t, but shows

much less visible oscillations (see Fig. 8.5(a)). Despite the relative reduction

effect on V/t� U/t, the fact that the oscillations are mostly prominent on U/t

confirms that the leading effect of the local modulation is to modify the on-site

contribution.

In Fig. 8.5(b) we plot the conductivities fit for selected instants of time.

Alongside the total result, we show the exciton and particle-hole (PH) con-

tinuum contributions in red and blue, respectively. The exciton contribution

decreases as a function of pressure, which suggests the holon and doublon be-
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Figure 8.5: (a) Time dependence of the Coulomb parameters U and V as ex-

tracted from the fit of the steady state ωσ1(ω). (b) Frequency dependent optical

conductivity after the vibrational modulation at selected time delays between

pump and probe, τ . In black we show the experimental data, in green the fit

results (see main text for details), while in red and blue the exciton and PH

contributions are displayed.

come less bounded with driving.

Before moving to the theoretical analysis, one remark is necessary. The fit-

ting procedure is not completely justified in this case, since the analytic formula

used to extract the Hubbard parameters is strictly valid only for equilibrium

optical conductivities. In the experiment, the state of the system is probed

while the driving is still on, that causes the Hamiltonian to be explicitly time-

dependent. Nonetheless, the fitting procedure is very useful to give an insight

into the overall effects on the Hubbard parameters, and confirm our physical

intuition.

The results of this section will be used as a starting point for the simulations

of the optical conductivity in the next section as follows. Firstly, the functional

form extracted for the U/t and V/t will be used to shape their time dependence.

Then, we will compute the two-time correlation function and the resulting op-

tical conductivity. Finally, we will show that this reproduces the experimental

results thereby confirming the reliability of our assumptions.
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Figure 8.6: Time-dependent Coulomb parameters U and V used in the effec-

tive model. We use this sensible form for the perturbation based on the fits

performed previously (see main text).

8.3 Two-time correlation functions

We take into account the influence of vibrations by considering the oscillators

as having a position coordinate described by a scalar qj(τ) = Q0 sin(ΩIτ + φ)2,

where Q0 and φ are the maximum displacement and the phase, respectively,

identical for all oscillators. This was called classical limit in Sec. 7.3, and it was

shown to have the effect of making the U interaction time dependent.

An implicit assumption of this result was that the modulation was kept

switched on indefinitely. On the contrary, here we are going to superimpose

the sinusoidal oscillation of U on a gaussian envelope to reproduce the finite

duration of the pulse. The width and amplitude of the Gaussian is extracted

from the fit of Fig. 8.5(a). Simultaneously, also the V is assumed to decrease,

but without periodic modulation. Overall,

PU (τ) = e
− τ−τPTP

[
1− P0 sin(ΩIτ + φ)2

]
, PV (τ) = e

− τ−τPTP ,

where τP and TP are the center and width of the pulse-like modulation. P0 and

φ are the amplitude and the phase of the modulating function superimposed to

the gaussian envelope, respectively. U and V then change in time as

U(τ) = U(1−AUPU (τ)), V (τ) = V (1−AV PV (τ)), (8.1)

where AU and AV quantify the reduction of U and V ensuing the molecular

vibration.
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As explained in detail in Ch. 3, the central quantity in the Kubo formula is

the unequal time current-current correlation function of the initial state, defined

as

χJJ(τ, τ ′) = 〈0|Û†(τ + τ ′)Ĵ Û(τ + τ ′)Û†(τ ′)Ĵ Û(τ ′)|0〉.

We use the effective model, Eq. (5.6), with |0〉 ground state, as Hamiltonian that

governs the time evolution in Û . Let us recall that |0〉 represents all the config-

urations with only singly occupied sites, but no specific spin order due to being

at room temperature. The current-operator, in this picture, creates a particle at

“site” 2, with energy U −V , i.e., the energy to create a nearest-neighbor holon-

doublon pair. The explicit time-dependence of U and V , expressed by Eq. (8.1),

mimics the effects of molecular vibrations.

8.3.1 Results

Having described the parameters that enter our simulation, we now describe

how they are pieced together.

1. We choose a time interval for which to compute the correlation function

τint ∈ [τ ′i , τ
′
f ], and we divide it in equal sub-intervals of length dτ ′ = 1 fs;

2. we evolve the system up to τ ′i ;

3. we apply the first current operator Ĵ ;

4. we time-evolve the resulting state up to τ ′ + τ , where τ is a fixed time

window over which the system is probed: τ = τprobe;

5. we apply the second current operator, and compute the current-current

correlation function;

6. at this point, we start again from |0〉, time evolve it up to time τ ′i + dτ ′,

and repeat the steps from number 3., until the value τ ′ = τ ′f is reached.

As for the time intervals, we have chosen τint = 400 fs, Nτ ′ = 400, τprobe = 100

fs. The values of AU and AV are deduced from the fitting in Sec. 8.2, and equal

AU ∼ 1.5% and AV ∼ 20%. The energy changes in U result thus to be bigger,

in absolute value, then those in V . We take the phase to be φ = 0: as long as
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Figure 8.7: Comparison between the (a) numerically computed, and (b) exper-

imentally measured, time and frequency dependent reflectivity.

its value is fixed (or “locked”), the actual initial value is not relevant. Finally,

we will find that, in order to reproduce the data, a value P0 = 0.5 has to be

chosen.

The results of this procedure are shown in Fig. 8.7(a), compared with the

experimental data in the same range in Fig. 8.7(b). In the figure the data have

been shifted so that the pulse is centered at time τ = 0. The main features

observed in the experiment are reproduced.

By combining the tools developed in the previous chapters we can thus

combine the physics of the DHM with a single-particle effective model and

reliably predict the time and frequency dependent reflectivity.
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8.4 Summary

This and the previous chapters have attempted to demonstrate that the selective

modulation of one degree of freedom, when combined with probing of the elec-

tronic system, raises the tantalizing prospect of experimentally deconstructing

the Hubbard Hamiltonian, by exposing one specific coupling that would oth-

erwise have a vanishingly small contribution to the the equilibrium properties.

We have investigated the optical signatures of selective vibrational excitations

of intra-molecular modes to ET-F2TCNQ, and argued that the lineshape of the

optical conductivity carries important information about the microscopic inter-

actions of the material, such as holon-doublon asymmetry. Most importantly,

the response to such strongly driven vibrational modes reveals the strength of

their coupling to the electronic structure.

Such control is not easily accomplished by other means and the method

is likely to be applicable to a broader class of organic materials, beside ET-

F2TCNQ, which exhibit other phases such as charge-density waves, high-Tc

superconductivity, and higher dimensionality.



Chapter 9

Spin ordering via

vibrational control

9.1 Magnetism in a strongly-correlated Mott in-

sulator

In Ch. 6 we have studied the effects of local vibrations on the charge degrees

of freedom (DOF). By exploiting the spin-charge separation property of one-

dimensional system, we were able to trace out the contributions of the spins

to the optical conductivity, and bundle their effect into a multiplicative factor

(Sec. 4.5). The assumption of having a spin-mixed state was justified by the fact

that the experiments were performed at room temperature. In this chapter, on

the contrary, we are going to focus on the effects of vibrations on the magnetic

properties of a strongly correlated material, i.e., on the spins’ DOF. For this

to be the case, we will be working at low temperatures. Notice that differently

from the last chapters, here we are not going to interpret experimental results,

but rather discuss a proposal for a future experiments.

For large values of the local repulsion U , the low-energy properties of the

Hubbard Model can be described by the t − J model [188] (see Appendix 9.A

141
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Figure 9.1: Schematic view of the interactions between a hole and spins in the

t− J model.

for the derivation based on strong-coupling perturbation theory):

ĤtJ =P0

−t ∑
〈ij〉,σ

ĉ†iσ ĉj,σ +
J

2

∑
〈ij〉

(
Si · Sj −

n̂in̂j
4

)

− t2

2U︸ ︷︷ ︸
J′

i 6=k∑
ijk

[∑
σ

(ĉ†i,σ ĉk,σn̂j)− ĉ
†
i~σĉk · ĉ

†
j~σĉj

]P0, (9.1)

where P0 projects the Hilbert space onto the subspace of zero and one electron

per site, Ŝ are the spin-operators expressed in terms of fermionic operators

(Eq. (4.2)), and ~σ are the Pauli matrices. With ĉ
(†)
j,σ we denote, as usual, the

creation (annihilation) operator for electrons with spin σ on site j.

It is customary to call the exchange interaction term J = 4t2/U , from which

the name t− J model arises. Physically, the three terms of Eq. (9.1) represent

the following processes:

1. the first one corresponds to an electron hopping from singly occupied site

onto an empty site;

2. the second is the full kinetic-exchange part in which the spin-1/2 operators

{Sj} are

Sj ≡
1

2

∑
σσ′

ĉ†jσ~σσσ′ ĉjσ′ ,

and ~σ are the Pauli matrices;

3. finally, the third denotes hopping between three sites without and with

spin flip in the middle site.

At half-filling, the expectation value of the number operator, 〈n̂〉j = 1. The

first and third term annihilate, as there can be no low-energy hopping process
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if every site has exactly one electron. This is the Mott insulating (MI) phase,

and the only terms that survive in Eq. (9.1) are the magnetic interactions. We

obtain the Heisenberg model with antiferromagnetic (AF) exchange interaction:

ĤHeis = J
∑
j

(
Ŝj · Ŝj+1 −

1

4

)
.

Notice that if we take into account the nearest neighbor interaction term, the

exchange coupling term takes the form J = 4t2/(U −V ) and an additional term

V
∑
j n̂j n̂j+1.

Away from half-filling, the t−J model describes a system of interacting spins

and mobile holes, i.e., a doped AF. A fundamental problem is to understand the

evolution of an AF Mott-type insulator into a metal or superconductor at a

certain hole concentration.

Since large U/t implies that t � J, J ′, the hopping term is not small. As a

consequence, the motion of the holes disturbs the AF correlations. This is a quite

challenging theoretical problem: the Heisenberg model, which is believed to be

fairly well understood, is strongly perturbed by addition of mobile holes. The

properties of the t− J model have been widely explored, since it is believed to

describe features of high-Tc superconductors. A famous semi-classical solution

has been obtained using the Swinger boson mean field-theory [189, 190], that

shows that the propagation of charge carriers interacting strongly with AF spin-

fluctuations favors spin-ordering.

When studying Eq. (9.1), it is customary to omit the third term from the

Hamiltonian, by arguing that its effects are small in comparison to the ones

dictated by the hopping t. Furthermore, in bipartite lattices, the three site

terms do not “mess up” the spin ordering since they move holes on the same

sublattice. On the contrary, the hopping term can move holes between different

sublattices, thereby disturbing AF correlations. This is schematically illustrated

in Fig. 9.1. The Hamiltonian that we will consider in the following is then

ĤtJ = P0

−t ∑
〈ij〉,σ

ĉ†iσ ĉj,σ +
J

2

∑
〈ij〉

(
Si · Sj −

n̂in̂j
4

)P0. (9.2)

It is important to notice that the projected version of creation, annihilation, and

particle-number operators, b̂†j,σ ≡ ĉ†j,σ(1− n̂j,−σ), b̂j,σ ≡ ĉj,σ(1− n̂j,−σ), ν̂j,σ ≡

b̂†j,σ b̂j,σ = n̂j,σ(1 − n̂j,−σ), have non-fermionic anticommutation relations [188,
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191, 192]. As a consequence, the hopping and exchange part do not commute

with each other, causing the motion of single electrons and the spin interactions

to be entangled with each other. For large enough t, this results in a strongly

correlated metallic state, which can be described as a Luttinger Liquid [22].

When the kinetic ∼ t and the exchange ∼ t2/U energies become comparable,

the Luttinger liquid (metallic) state may have a transition to a localized state

induced by the exchange interaction [193]. Alternatively, one could have phase

separation into AF islands immersed in the ferromagnetic sea of holes [194].

Based on our success from earlier chapters, here we propose selective vibra-

tional excitation as a tool to cause a transition between a metallic-like and a

localized state. We shall exploit the results of Sec. 6.5, in which we have shown

that driving can greatly reduce the coherent hopping amplitude to a new value

t→ t̃ < t.

9.2 Dynamic t− J model

The effects of local vibrations can be taken into account within the t−J model,

by adding a coupling term between the local electron density and the oscillator

displacement. We obtain a Dynamic t− J model, that can be written as

ĤDtJ =− t
∑
〈ij〉,σ

b̂†i,σ b̂j,σ + J
∑
〈ij〉

(
Si · Sj −

ν̂iν̂j
4

)
+ g

a0√
2

∑
j

ν̂j(â
†
j + âj) + Ω

∑
j

(â†j âj + 1
2 ), (9.3)

where â†j and âj are the oscillator raising and lowering operators of on-site

molecular vibrations, coupled to the electron density with coupling g and oscil-

lating with frequency Ω. In other words, here we are considering the simplest

possible coupling between on-site vibrations and electrons, i.e., a Holstein-type

linear coupling.

In analogy to Ch. 6, we perform a canonical Lang-Firsov transformation so

as to move to a quasi-particle picture, and investigate how the various terms

in Eq. (9.3) are affected by the coupling. We choose the simplest possible form of

coupling, i.e., linear coupling to the electron density. In this case, the operator

for the Lang-Firsov transformation is X̂j = D̂j(χ)Psj , where Ps is the projector
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over the singly occupied state and χ = ga0/Ω
√

2, the transformed Hamiltonian

is

Ĥ•DtJ =− t

Ĥ•t︷ ︸︸ ︷∑
〈ij〉,σ

D̂j(χ)D̂†j+1(χ)b̂†i,σ b̂j,σ +J
∑
〈ij〉

(
Si · Sj −

ν̂iν̂j
4

)
+
∑
j

Ω(â†j âj + 1
2 )︸ ︷︷ ︸

Ĥs,j

−Ωχ2
∑
j

ν̂j . (9.4)

We have succeeded in locally decoupling the oscillators and the electrons, whilst

reducing the local potential by −Ωχ2 and “dress” the hopping term. As antic-

ipated above, the hopping operator (Ĥ•t ) is transformed in such a way that an

electron is dressed by a displaced state of the local oscillator. Crucially, the

exchange term in the Hamiltonian is unaffected by the transformation.

9.2.1 Hopping quench

To estimate quantitatively how the coherent motion is affected by the vibration,

we need to evaluate the modifications caused by the vibrations on the hopping

amplitude. As already argued in Sec. 6.5, this is tantamount to limit the al-

lowed hopping processes only to diagonal transitions: |xi, ~σi〉|~n〉 → |xf , ~σf 〉|~n〉.

Let us recall that these are the hopping processes in which all the vibrational

occupation numbers ~n stay unchanged.

If |xi, ~σi〉 and |xf , ~σf 〉 are the initial and final electronic configurations, and

assuming that the original Ĥt has the same amplitude t for any permissible

hopping transition, we can consider the amplitude of just one transition of a

single electron with spin σ to hop from site j + 1 to j:

(t̃)nj ,nj+1 =〈xf , ~σf |ĉ†j,σ ĉj+1,σ|xi, ~σi〉〈~n|D̂j(χ)D̂j+1(χ)|~n〉,

=t〈nj |D̂j(χ)|nj〉〈nj+1|D̂†j+1(χ)|nj+1〉. (9.5)

Keeping only diagonal terms, the truncated Dynamic t−J Hamiltonian, Eq. (9.4),

is transformed as

Ĥ◦DtJ =

Ĥ◦t + J
∑
〈ij〉

(
Si · Sj −

ν̂iν̂j
4

)
− Ωχ2ν̂j + Ĥs,j

⊗ |~n〉〈~n|,
that formally can be written as

Ĥ◦DtJ =
∑
~n

Ĥ~n ⊗ |~n〉〈~n|.
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We have bundled all the electronic terms into a Ĥ~n with hopping amplitudes

dependent on ~n, so that the time evolution operator in the polaron picture is

readily given by Û(τ) =
∑
~n exp(−iĤ~nτ) ⊗ |~n〉〈~n|. Let us take an initial state

of the form ρi = ρel ⊗ ρos, where ρos is a number-diagonal stationary state of

the oscillators described by a vibrational occupation probability distribution p~n,

and ρel and ρel a generic thermal state of the electron system. ρ(τ) evolves in

time as

ρ(τ) = Û†(τ)ρiÛ(τ) =
∑
~n

p~n

(
eiĤ~nτρele

−iĤ~nτ
)
⊗ |~n〉〈~n|. (9.6)

Following Mahan [103], we evaluate (t̃)nj ,nj+1 by averaging over the (initially

identical) stationary states of the oscillators. We end up with a single, transla-

tionally invariant, hopping amplitude:

t̃ =
∑

nj ,nj+1

pnj ,nj+1
(t̃)nj ,nj+1

=
∑

nj ,nj+1

tr
[
D̂(χ)ρα

]
tr
[
D̂†(χ)ρα

]
= te−χ

2

J2
0 (2χ|α|). (9.7)

The matrix element in Eq. (9.7) is suppressed exponentially with the coupling

g2, regardless of the driving, and further suppressed by the square of the J0

Bessel function with increasing driving |α|.

To conclude, by exploiting the fact that the vibrational driving affects the

hopping amplitude but does not change the spin exchange interaction strength,

we advocate vibrational driving as a tool to inhibit the hole motion and thus

dynamically induce spin ordering.

9.2.2 Vibrationally induced disorder

Up to this point, we have focused on localized vibrations, since we would like to

apply this idea to our organic salt ET-F2TCNQ. It is worthwhile to consider in

some detail what kind of differences would arise if we rather considered phonons,

i.e., collective normal modes of the lattice. In this instance, the electron-phonon

coupling takes the form [165]:
∑
jk gk,j n̂j q̂k , i.e., the electron density at each

site couples linearly to all collective phonon modes, with quasi-momentum k

and coupling strength gk,j . In particular, gk,j is gk,j = Mk exp(ikj): the site

dependence is a phase factor multiplying a momentum dependent coupling.
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Figure 9.2: (a) Holstein-like coupling between electrons on the molecular site

and a bath of oscillators. (b) Local electron-vibration coupling.

The difference between electron-phonon and electron-local vibration coupling is

schematically illustrated in Fig. 9.2.

Strictly speaking, averaging the hopping transition amplitudes t̃ over the sta-

tionary state of the oscillators is more justified in the case of phonon coupling

than for local vibrations. In fact, in the former situation the eigenstates of the

hopping term are all Bloch states independent of ~n, but with bandwidth depen-

dent on ~n. On the contrary, for a local Dynamic t− J model, the eigenstates of

the hopping term differ considerably with ~n and will in general be localized. The

system can be seen as disordered, since the hopping will be different depending

on the pair of sites taken into account. This effect is neglected by averaging the

amplitude1.

Despite this approximation being quite crude, the final physical result should

not be affected. Indeed, as shown by Anderson [185, 195], disordered hopping

leads to hole-localization as well. Thus, the effective result will be that “vibra-

tionally induced” disorder leads to a further reduction of hole motion within the

system.

9.3 Correlation functions

Up to this point, we have demonstrated that local vibrations reduce the hopping

amplitude rather then the exchange coupling. To get some insight on how the

1To see this, suppose we had an Hamiltonian with some disordered coupling ε ∈ {−1, 1}

distributed with zero mean 〈ε〉 = 0. If the Hamiltonian itself is averaged directly, the disorder

disappears completely. Yet, if the evolution is performed first for each disorder realization of

the original Hamiltonian and the results are averaged at the end, the Anderson localization

will emerge.
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Figure 9.3: (a) Commensurate spin-density wave, with wave vector q = π/a.

(b) Incommensurate spin-density wave.

magnetic state of the system is affected by this process, in this section we discuss

the spin structure factors.

In general, the study of dynamic structure factors provides information about

the dispersion and intensity of electronic excitations. Importantly, they are

related to observables that can be experimentally measured, e.g., by inelastic

neutron scattering [196].

In this section, we are going to focus on the longitudinal spectral function

Szz. By taking z as the longitudinal axis along which the spins are aligned if

the system shows magnetic order, the Fourier transform of the spin operator Ŝz

is

Ŝzq =
1√
M

∑
j

Ŝzj e−iqj .

If we set periodic boundary conditions (PBC) for a chain of M lattice sites, we

obtain values for the momentum q = 2πaZ/M , where −M/2 < Z ≤ M/2 (a

is the lattice spacing). On the contrary, if we have open boundary conditions

(OBC), the Fourier transform needs to be slightly modified as

Ŝzq =

√
2

M + 1

∑
j

Ŝzj sin(qj),

where now the quasi-momentum values are q = πZa/M , for integers 1 ≤ Z ≤

M . The results obtained with either boundary condition should be equivalent

in the thermodynamic limit.
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The longitudinal dynamical structure factor is defined as the imaginary part

of the spin-spin correlation function

Szz(q, ω) =
1

π
Im

 M∑
j,j′=1

e−iq(j−j
′)

∫ +∞

−∞
dτeiωτ 〈ψ0|Ŝzj (τ)Ŝzj (0)|ψ0〉


=

1

π
Im

[
〈ψ0|Ŝz†q

1

Ĥ + ω − E0

Ŝzq |ψ0〉
]
, (9.8)

where |ψ0〉 and E0 are the ground state wave function and energy of the Hamil-

tonian Ĥ, respectively.

One of the most important properties that can be extracted from Eq. (9.8)

is the existence of ordered phases. For example, the spin structure factor at

q = π/a is a measure of AF correlations. When the nesting wave vector

q = 2kF = nπ,

where kF and n are the Fermi wave vector and the filling, respectively, turns out

to be π/a, there is a spin-density wave commensurate with the lattice and AF

order results (Fig. 9.3(a)) [197]. On the contrary, when q is not a simple multiple

of π/a, the spin density wave is incommensurate (Fig. 9.3(b)). Correspondingly,

a peak at q = 0 is indicative of a ferromagnetic behavior.

9.4 Quenched hopping

From Fig. 9.4 we find that in a system with low-energy physics described by

the t− J model, the AF order is destroyed when moving away from half-filling

when the kinetic energy of the electron is sizable with respect to the exchange

energy. On the contrary, if the latter becomes dominant, one would expect the

spins to localize and align antiferromagnetically (for J > 0).

In Sec. 9.2 we argued that local vibrations can dynamically quench the hop-

ping amplitude. Here we ask the following question: provided that the system

is at time τ0 = 0 in its ground state, what happens in time if the hopping

amplitude is suddenly quenched, e.g., by strongly driving the system?

To address this matter, we calculate the spin structure factor Szz(q) as a

function of time. We start by computing the ground state of the t − J Hamil-

tonian with U/t = 20, J = 4t2/U = 0.2. Then, we let this state evolve in time
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Figure 9.4: Szz(q) in a t−J model as a function of the filling n. A clear peak at

q = π/a is observed for half-filling. The results have been obtained for a chain

of M = 10 lattice sites with periodic boundary conditions. We choose a value

of U/t = 20.

up to a final time τf , while the hopping amplitude is quenched to a value small

that J : t̃� J .

The results for the time-dependent structure factor, computed in a chain

with M = 10 lattice sites with PBC and t̃ = J/10, are reported in Fig. 9.5 for

different fillings. The thick red and blue lines show Szz(q, τ) at initial (τ0 = 0)

and at a much later time, that we take equal to τf = 30/t. We have chosen a

large value so that the electrons have enough time to perform multiple hops. It

is clear the appearance of a peak at q/a = π, signaling AF order. This signature

becomes less and less prominent as the filling decreases, given the increase in

the number of holes.

9.5 Summary

In this chapter, we proposed vibrational driving as a tool to transiently induce

magnetic order. Starting from a system with electronic properties described by

the t−J model, we showed that the excitation quenches the hopping amplitude

while not affecting the exchange interaction. We presented some numerical
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Figure 9.5: Time dependence of spin structure factor of a t− J with quenched

hopping t̃ = J/10, for different fillings (n = 1 is half-filling, n = 0.5 quarter

filling, and so on). The thick red and blue lines show Szz(q, τ) at initial (τ0 = 0)

and at final (τf = 30/t) time, respectively, while the black lines are the results

for intermediate times. We clearly see a peak appear at q = π/a, indicating AF

order.
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results to substantiate our claims.

These results are encouraging, but an extension to bigger systems (e.g. by

using time-dependent DMRG algorithms [198]) is required. In parallel with

this, it would be interesting to perform simulations with different values of the

quenched hopping t̃ and establish what is the maximum value that allows to

observe this effect. Furthermore, a deeper knowledge of the final state of the

system is required, e.g., if we reach a out-of-equilibrium steady state.

Vibrational control of magnetism could be investigated in an experiment

at low temperature, in which a simultaneous probe of the X-ray or neutron

diffraction with vibration pumping, should show a transient formation of AF

order.
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9.A Strong coupling limit

In this appendix we formally derive the t− J and Heisenberg model by means

of large U perturbation theory of ĤHM Eq. (2.1). Following [102], we take Ĥt

to be a small perturbation of ĤU . The double occupancy operator,

Ĥd =

M∑
j=1

n̂j↑n̂j↓,

counts the number of doubly occupied sites: its eigenvalues are thus n =

0, . . . ,M . The Hilbert space H(M) of our model decomposes into H(M) =

H0 ⊕ · · · ⊕ HM , and Ĥd has spectral decomposition

Ĥd =

M∑
n=1

nPn,

where Pn are the projectors onto the corresponding eigenspaces Hn.

A fermionic representation of Pn is obtained by the generating function

G(α) =

M∏
j=1

(1− αn̂j↑n̂j↓),

that acts on Wannier states |x, ~σ〉 as

G(α)|x, ~σ〉 = (1− α)n|x, ~σ〉. (9.9)

Here n is the number of doublons in the state |x, ~σ〉, i.e., Ĥd|x, ~σ〉 = n|x, ~σ〉. It

follows from Eq. (9.9) that

(−1)k

k!
∂kαG(α)|α=1|x, ~σ〉 = δkn|x, ~σ〉,

and thus

Pn =
(−1)n

n!
∂nαG(α)

∣∣∣
α=1

. (9.10)

Obviously, for n = 0 we have P0 = G(1) from Eq. (9.9). Explicitly,

P0 =

M∏
j=1

(1− n̂j↑n̂j↓). (9.11)

The Hamiltonian ĤHM conserves the number of electrons N , and we are

going to consider the case N ≤ M . For a fixed number of electrons N there

are 2N

 M

N

 ground states of Ĥd, which span the eigenspace H0 of P0.
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Hence, the total number of Wannier states with no site doubly occupied is

dim(H0) = 3M . The perturbation Ĥt partially lifts this degeneracy splitting

the lowest energy level of ĤU in many levels that are still well separated from

the first excited one as long as t� U .

Let us consider a generic Hamiltonian Ĥ acting on a Hilbert space H, P a

projection on a subspace PH of H and Q = 1 − P. |ψ〉 is a solution of the

Schrödinger equation, Ĥ|ψ〉 = E|ψ〉, with eigenvalue E, if and only if

PĤP|ψ〉+PĤQ|ψ〉 = E|ψ〉,

QĤP|ψ〉+QĤQ|ψ〉 = E|ψ〉.

Solving the second equation for Q|ψ〉 and inserting the result in the first one

gets

Ĥ(E)|ϕ〉 = E|ϕ〉, (9.12)

where

Ĥ(E) = PĤ(1 + (E −QĤ)−1QĤ)P, (9.13)

and |ϕ〉 = P|ψ〉. Thus, if |ϕ〉 ∈ PH solves Eq. (9.12), the vector

|ψ〉 = (1 + (E −QĤ)−1QĤ)|ϕ〉, (9.14)

is a solution of the full stationary Schrödinger equation with eigenvalue E.

Eqs. 9.13 and 9.12 are a convenient starting point for the perturbation theory

around a given degenerate energy level.

Let us now split Ĥ into a contribution with known spectral decomposition,

Ĥ0 =
∑
nEnPn, and a perturbation Ĥ1 coupled to Ĥ0 by a constant λ:

Ĥ = Ĥ0 + λĤ1

Replacing P by Pn one obtains an operator Ĥn(E) that acts non-trivially only

on the degeneracy subspace corresponding to the n-th energy level En of Ĥ0.

Using the explicit form of Ĥ0 one can express Ĥn(E) in terms of the projectors

P

Ĥn(E) =

[
En +PnĤ1

∞∑
k=0

 ∑
m(n 6=n)

PĤ1

E − Em

k ]
Pn. (9.15)

and consequently the spectral problem Eq. (9.12) turns into

PnĤ1

∞∑
k=0

 ∑
m(n 6=n)

PĤ1

E − Em

k

|ϕ〉 = (E − En)|ϕ〉, (9.16)
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for |ϕ〉 ∈ PH.

We can finally perform perturbation theory around an energy level En in

ascending orders of λ. For small λ we expect corrections to En of the form

E = En + λE(1)
n + λ2E(2)

n +O(λ3).

To quadratic order in λ we obtain for Eq. (9.16)[
PnĤ1Pn + λ

∑
m(m 6=n)

PnĤ1PmĤ1Pn

En − Em

]
=
E − En

λ
|ϕ〉. (9.17)

The effective Hamiltonian on the restricted space PnH in [· · · ] describes the

splitting of the energy level En of Ĥ0 under the influence of the perturbation

λĤ1. The corresponding eigenstates of the full Hamiltonian are obtained by

application of the operator 1 + (E −QnĤ)−1QnĤPn.

This formalism can now be readily applied to ĤHM, by rescaling it as

ĤHM/U = Ĥd + Ĥt/U.

ĤHM/U is in the form Eq. (9.15) with Ĥ0 = Ĥd, Ĥ1 = Ĥt and λ = 1/U .

Since the operator Ĥd has eigenvalues En = n and we with to expand around

the double occupancy degenerate ground state, we set n = 0 in Eq. (9.17) and

obtain [
P0ĤtP0 −

1

U

M∑
m=1

P0ĤtPmĤtP0

m

]
|ϕ〉 = E|ϕ〉. (9.18)

The operator in [· · · ] is called t− J Hamiltonian, ĤtJ .

Substituting the explicit expressions and with a bit of algebra, we find Eq. (9.2):

ĤtJ =P0

−t ∑
〈ij〉,σ

ĉ†iσ ĉj,σ +
J

2

∑
ij

(
Si · Sj −

n̂j n̂j
4

)

− t
2

U

i 6=k∑
ijk

[∑
σ

(ĉ†i,σ ĉk,σn̂j)− ĉ
†
i~σĉk · ĉ

†
j~σĉj

]P0.
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Chapter 10

Conclutions and outlook

10.1 Overview

Throughout this thesis we have used theoretical models and numerical tools to

understand and characterize photo-induced effects in complex materials. Pump-

probe experiments allow for an investigation of the electronic real-time dynam-

ics, and manipulation of phase of correlated electron systems. We addressed

these issues by investigating the one-dimensional organic charge-transfer com-

pound ET-F2TCNQ. This section highlights some of the more relevant contri-

butions to this problem provided by this thesis.

• In Ch. 5 we have analyzed the pressure dependence of hot holon-doublon

recombination in a one dimensional Mott insulator. By fitting the steady

state infrared properties with a model based on the extended Hubbard

Hamiltonian, we have extracted the pressure dependence of the Hubbard

parameters t and V up to 2.0 GPa. We have succeeded in correlating

these microscopic parameters to the recombination rates, and, crucially,

in comparing their experimentally determined dependence to theoretical

predictions. The key conclusion has been that the decay of quasi-particles

is likely connected to the coherent evolution of holon-doublon pairs imme-

diately after excitation.

• In Ch. 6, we have shown that the Extended Hubbard Hamiltonian has

to be complemented with additional terms to properly take into account

157
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the effects of local variations on the optical properties. The general fea-

tures and the optical conductivity of the resulting model, called Dynamic

Hubbard Model, have been explored analytically and with numerical sim-

ulations. The results of Ch. 7 and Ch. 8 have confirmed that it is possible

to reproduce and thereby explain the broadband optical properties of ET-

F2TCNQ when specific modes are strongly driven.

• In Ch. 9 we have studied the effects of vibrations on the magnetic prop-

erties of a generic systems that satisfy the requirement that the Coulomb

repulsion among electrons is much bigger than their kinetic energy. Dif-

ferently from previous sections, in this case we consider non-half filled

systems, and thus we are concerned with much lower energy scales. The

model describing this physics, namely the t− J model, is extended to in-

clude local molecular vibrations. We showed that, when driving a specific

mode, the motion of holes is inhibited and magnetic order may be induced.

10.1.1 Further results

Motivated by the numerous similarities between the physics of ultra-cold quan-

tum gases and correlated-electron systems, in Ref. [4] we have calculated, from

first principles, the parameters of nearest-neighbor Hubbard models. We inves-

tigated several optical lattice potentials including the honeycomb and Kagomé

potentials, demonstrating quantitatively for which lattice depths these models

are accurate. Strongly-correlated phenomena probed in optical lattice experi-

ments and quantum simulations depend delicately on the ratios of kinetic and

interaction energies. Therefore, precisely determining them is essential for diag-

nosing and interpreting such experimental results, and for using optical lattices

as quantum simulators of condensed matter systems. The ability to efficiently

calculate the maximally-localized Wannier states for a given optical lattice po-

tential will allow cold-atom researchers to easily and accurately determine Hub-

bard models realized by any laser setup.

More generally, having the capability to faithfully represent localized molec-

ular orbitals in solid-state systems can be used in a large variety of applica-

tions [199], such as the analysis of chemical bonding, or as a local probe of

phenomena related to electric polarization or orbital magnetization. Aside from
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their use in determining electronic structure theory and for modelling cold-atoms

within optical lattices, maximally localized Wannier functions can be used for

cases that include phonon excitations and photonic crystals.

10.2 Looking ahead

10.2.1 Strongly correlated organics: fundamental physics

In this work we have mainly addressed the fundamental physical processes of

materials that exhibit strong electronic correlations. The one-dimensional con-

duction properties made our system ideal to explore and shed new light into the

fundamental electron transfer mechanisms.

A possible question to address with regard to one-dimensional system is how

much of our results can be applied to explain the physics of strongly correlated

organic superconductors, such as the Bechgaard salts. These materials exhibit a

Peierls transition from metallic to insulating behavior, and a spin-density wave is

formed at the transition with a periodic antiferromagnetic order of conduction

electrons. In these compounds, the application of pressure has already been

investigated and shown to increase the dimensionality from one-dimensional

to two- or three-dimensional [200]. In the future, mode-selective modulation

spectroscopy may be used as an alternative method to dynamically induce phase

transitions and switch between competing states with ordered charge or spin.

Another, possibly even more interesting, line of research could focus on the

quasi-two dimensional CT superconductors that have the BEDT-TTF molecule

as a structural unit. For example, one could study the effects of the very same

vibrational excitations in salts with chemical composition (ET)2X. It is of crucial

importance to understand the role that a time dependent Coulomb interaction

plays in these compounds, since vibrational excitations can couple strongly to

the superconducting order parameter [201].

10.2.2 Molecular electronics

The exploration of new territories and the subsequent discovery of novel phe-

nomena often lead to unexpected technological applications. In recent years,

molecular electronics has developed into an interdisciplinary research area which
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deals with the question of how molecular materials (such as organics) might find

applications in electronics, photonics, and optoelectronics [202]. The future of

this technology depends on our ability to understand the fundamental mecha-

nism that governs the electronic conduction at the molecular scale.

In comparison with silicon-based technology, molecular electronics could in

principle offer major advantages [203], ranging from higher packing density of

devices and speed, as well as the capability of both switching and sensing elec-

tronic behavior on the single-molecule scale. Moreover, the existence of exotic

phases, such as the ones investigated in this thesis, could lead to new electronic

functions (e.g. ultrafast switches) that is not possible to implement in conven-

tional semiconductor-based devices. Obviously, a number of issues have to be

addressed, such as the fabrication of reliable molecular junctions, possible in-

stabilities that might give rise to chemical reactions with their neighbors, etc.

Anyway, the advantages described are sufficient to motivate a further explo-

ration of electronics based on organic molecules.

We have shown that a light pulse permits the reversible selection of a specific

physical property of the macroscopic system by means of an ultrafast stimulus.

Such systems could be used as molecular switches, similarly to the ones based

on polychromic compounds [204, 205, 206].

The control of magnetism with light is of interest precisely within the con-

text of high speed switching applications.Vibrations could offer a neat way for

achieving this goal. From an experimental point of view, it would be interesting

to discover if mode selective vibrational driving can indeed transiently induce

magnetic ordering, as proposed in Ch. 9. One could combine photo-doping and

vibrational driving in ET-F2TCNQ cooled below its Neél temperature, and track

the electronic properties with THz probes. The mechanism proposed, though,

is not limited to one-dimensional materials.

Additionally, further theoretical and numerical work is needed to substanti-

ate the claims of Ch. 9. It is necessary to examine other correlation functions,

e.g., transverse spin- or density-correlation functions. To achieve a better ac-

curacy in the computation, we plan on simulating much larger system by using

the Tensor Network Theory (TNT) library, developed within our group at Ox-

ford http://ccpforge.cse.rl.ac.uk/gf/project/tntlibrary/.

http://ccpforge.cse.rl.ac.uk/gf/project/tntlibrary/
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