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Abstract

Femtosecond optical laser pulses have been comprehensively applied in the past to

control the material properties of high critical temperature superconductors. However,

since the superconducting gap is of the order of several millielectronvolts, optical

photons have the potential to deplete the condensate by breaking Cooper-pairs.

This thesis takes a novel direction as it reports on the non-dissipative control of

the Josephson plasma in the layered cuprate superconductor La1.84Sr0.16CuO4 using

terahertz electromagnetic waves. To achieve sufficiently intense sub-millimetre radi-

ation, two complementary experimental approaches are taken. First, the table-top

tilted pulse front technique is employed as a source of microjoule broadband terahertz

pulses. Second, a large-scale free electron laser is operated to achieve multi-cycle

pulses of less than two percent relative bandwidth.

Using the tilted pulse front technique, out-of-plane superconducting transport in

La1.84Sr0.16CuO4 is gated bi-directionally on ultrafast timescales. The applied electric

field modulates the interlayer coupling, leading to picosecond oscillations between su-

perconducting and resistive states. Thereby, the modulation frequency is determined

by the electric field strength in spirit of the a. c. Josephson effect. Throughout the os-

cillations, in-plane properties remain unperturbed, revealing an exotic state in which

the dimensionality of the superconductivity is time-dependent.

Using a free electron laser, it is shown that resonant terahertz excitation of non-

linear Josephson plasma waves in La1.84Sr0.16CuO4 creates a metastable state that is

transparent over a narrow spectral region. This finding is interpreted as the result of

disruptive quantum interference between the linear plasma modes of the cuprate and

an optically injected Josephson vortex lattice, which features the periodicity of the

driving field, giving rise to three-level quantum interference optical transparency.

Both observations demonstrate the potential of layered superconductors for quan-

tum nonlinear optics and are of relevance for applications in ultrafast nanoelectronics.
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Chapter 1

Introduction

The electrical conductivity of a specimen describes how fiercely the material prop-

erties oppose the flow of an electric current. Charge transport in most conventional

metals can be understood by neglecting electron-electron interactions, similar to the

treatment of an ideal gas. In strongly correlated electron systems, however, the car-

riers cannot be described as independent non-interacting entities. Due to the large

amount of complex interactions, correlated materials exhibit very rich phase dia-

grams. Depending on conditions such as temperature, pressure or doping with impu-

rity atoms, the sample properties can change dramatically. Phase transitions describe

the changeover between different states of matter (Kittel, 2005).

A prominent example of a phase transition caused by strong electron-electron

interactions is observed in superconducting materials (Tinkham, 1996). As a super-

conductor is cooled below a critical temperature Tc, it changes from being a (bad)

conductor to an exotic state characterised by vanishing resistivity and the expulsion

of magnetic fields, an observation called the Meissner effect (Kittel, 2005). The tech-

nological importance of superconductivity has led to the award of several Nobel Prices

for ground-breaking discoveries in the years 1913, 1972, 1973, 1987 and 2003†. Many

high-technology applications utilise the materials’ extraordinary properties to detect

†“All Nobel Prizes”. Nobelprize.org. 11 July 2011
http://nobelprize.org/nobel prizes/lists/all/index.html
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or generate magnetic fields (Larbalestier et al., 2001). Examples include sensitive

magnetometers, magnetic resonance imaging techniques, and high-field applications

in maglev trains. The switching properties contemplated in a later part of this thesis

allow for the construction of ultrafast digital circuits. The potential for low-loss power

cables is obvious, however, applications have been limited due to the requirement of

cryogenic cooling.

The phenomenon of vanishing conductivity was observed for the first time in 1911

by H. K. Onnes, but it took almost 50 years until a microscopic description had

been derived based on quantum mechanics (Tinkham, 1996). Within this frame-

work, all superconducting electrons form pairs that condense into the same energetic

state which can be described by a single many-body wavefunction (Bardeen et al.,

1957). Superconductors can be categorised into low- and high-Tc compounds, the

latter having transition temperatures in excess of 30 K (Bednorz and Müller, 1986).

While the origin of electron pair formation in low-temperature superconductivity is

well-understood, a satisfactory description of the physics of high-temperature com-

pounds is still lacking, complicating the objective to further increase the transition

temperatures, potentially close to room temperature.

Cuprates are quasi two-dimensional high-Tc materials, in which superconducting

carriers are residing in copper oxygen layers that are separated by insulating planes

(Lee et al., 2006). Adjacent layers are found to be coupled by the Josephson ef-

fect (Josephson, 1962), mediating out-of-plane superconductivity. The interlayer tun-

nelling amplitude is determined by the sine-Gordon equation for the phase difference

of the superconducting order parameter across the planes (Kleiner and Müller, 1994).

At equilibrium, the superconducting phase strongly resists perturbations and tends

to be uniform throughout the material. As such, a gradient in the order parameter

phase is responsible for supercurrents, while the absolute order parameter describes

the density of superconducting charge carriers (Tinkham, 1996).

Due to the inductive layer coupling and microscopic geometry of cuprates, a
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plasma resonance at terahertz (1012 Hz) frequencies develops, corresponding to small-

amplitude oscillations of the phase (Kleiner and Müller, 1994). Because external elec-

tromagnetic fields couple to these collective charge excitations, terahertz time-domain

spectroscopy can be applied to directly observe the linear Josephson resonance in these

materials (Tamasaku et al., 1992). In order to explore the nonlinear phase regime in

cuprates, interlayer transport can be altered statically by application of magnetic or

electric fields (Schafgans et al., 2010). To achieve this effect on the ultrafast timescale,

interlayer voltage drops of tens of millivolts are required, corresponding to peak elec-

tric fields reaching hundreds of kilovolts per centimetre (Savel’ev et al., 2006).

Using optical pump-probe techniques based on femtosecond lasers, one can gain

important information about the out-of-equilibrium physics of superconductivity

(Averitt et al., 2001). However, because the superconducting gap is of the order

of several millielectronvolts, optical photons have the potential to deplete the conden-

sate by breaking Cooper-pairs. If one wishes to control the superconducting state on

these timescales without inducing dissipation, one has to apply photons with energies

below the pair-breaking threshold, such as terahertz radiation.

Nonlinear spectroscopy in the terahertz regime has long been impossible due to

a lack of sufficiently bright sources. However, recent progress in high-intensity tera-

hertz science has removed this limitation. On the one hand, broadband single-cycle

terahertz pulses of picosecond (10−12 s) duration can be generated with table-top se-

tups (Hebling et al., 2008a). Pulse energies reach the microjoule regime, providing

electric field strengths of hundreds of kilovolts per centimetre. On the other hand,

powerful narrowband multi-cycle pulses at less than two percent relative bandwidth

have become available at large-scale free electron lasers†.

The aim of this work is to exploit novel techniques in the field of terahertz science

to accomplish nonlinear spectroscopy of La1.94Sr0.16CuO4, a prototype cuprate super-

conductor. The large-amplitude terahertz pulses allow to explore nonlinear modes in

the layered superconductor without inducing dissipation by breaking Cooper-pairs.

†See for instance http://www.hzdr.de/FELBE
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In a first experiment conducted in the Oxford laboratory, broadband pulses tuned

well below the 2-THz plasma resonance are generated by the tilted pulse front tech-

nique and used to bi-directionally gate interlayer transport in the cuprate. Because

the applied pulses are so short, electric fields in excess of 100 kV/cm can be applied

without significant heating or damage of the material, making it possible to study

the response in unprecedented fields. Oscillations between the superconducting and

normal states are observed, as the conduction through Cooper-pairs is shut on and

off by the gate field. This study demonstrates the equivalent of transistor action at

ultrafast speeds, and may be of importance as a component in opto-electronic devices.

It also demonstrates the existence of a new non-equilibrium phenomenon in high-Tc

superconductivity, as the dimensionality of the system is made time-dependent. In-

deed, the superconducting properties are modulated only along the c-direction, whilst

they remain unperturbed within the ab-planes (Dienst et al., 2011a).

In a second experiment, narrowband terahertz pulses generated at the free electron

laser in Dresden are tuned close to the Josephson resonance frequency and used to

optically inject large-amplitude nonlinear plasma waves into the cuprate, giving rise to

a metastable state that is transparent over a narrow spectral region. The observation

is interpreted as the result of disruptive quantum interference between the linear

plasma waves of the material and the resonantly excited Josephson vortex train, which

exhibits the periodicity of the driving electromagnetic wave. Here, the vortices act

as long-lived dark states, and the observed transparency can be simulated with a

model of coupled oscillators. The experiment demonstrates the potential of layered

superconductors for quantum nonlinear optics and shows how such effects make it

possible to track vortex excitations on picosecond timescales (Dienst et al., 2011c).

This thesis is organised as follows. Chapter 2 contemplates the principles of light-

matter interaction and explains based on experimental data how nonlinear terahertz

spectroscopy can be applied to study the time-resolved optical properties of materials.

In chapter 3, an introduction to the field of superconductivity is given, highlighting
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anisotropic high-temperature compounds. Chapter 4 outlines the Josephson physics

needed to interpret the non-equilibrium phenomena observed in this work. Chapter

5 discusses the layered cuprate La2−xSrxCuO4 in more detail and presents the equi-

librium properties measured by terahertz time-domain spectroscopy. The observation

of bi-directional electric-field gating of superconductive transport in La2−xSrxCuO4 is

reported in chapter 6. In chapter 7, results on quantum interference optical trans-

parency by resonant excitation of nonlinear plasma modes in La2−xSrxCuO4 are pre-

sented. The thesis closes with the summary and outlook of chapter 8.



Chapter 2

Introduction to Terahertz Science

The term terahertz (THz) radiation generally refers to electromagnetic waves having

frequencies of the order of ∼ 1012 Hz = 1 THz. More specifically, the terahertz range is

often defined to lie in the interval between 0.1 THz to 10 THz. With the corresponding

wavelengths ranging from 3 mm to 30 µm, terahertz radiation is situated between the

microwave and infrared region of the electromagnetic spectrum as indicated in figure

2.1. Existing methods of radiation generation and detection in these well-established

neighbouring regions based on electronic and semiconductor technology have turned

out to be not applicable in the terahertz regime. This fact, together with the high

degree of atmospheric absorption, has resulted in a historic lack of suitable terahertz

sources and detectors (Ferguson and Zhang, 2002).

In the field of condensed matter research, however, terahertz science is of critical

importance. Many fundamental excitations in metals, semiconductors, or supercon-

ductors are in resonance with terahertz photons. Examples include phonon modes,

interband transitions, or the Josephson plasma resonance. Moreover, inelastic pro-

cesses such as quasiparticle scattering occur with rates within the terahertz region.

During the last 30 years, a surging interest in complex materials accompanied by the

development of novel detectors and high-intensity sources has led to a renewed inter-

est in the field of terahertz science. These novel high-intensity techniques open new

opportunities to achieve nonlinear terahertz spectroscopy in correlated systems.
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Figure 2.1: The electromagnetic spectrum. The terahertz frequency domain is situated be-
tween the microwave and infrared region, marking the transition from electronics to optics.

The first part of this chapter presents principles of light-matter interaction. Sec-

ond, terahertz time-domain spectroscopy is introduced as a probe of the optical prop-

erties. Third, the functionality of two broad- and narrowband high-intensity terahertz

sources is discussed. Fourth, time-resolved pump-probe techniques are introduced.

2.1 Optical Probes of Matter

Spectroscopy denotes a family of methods that extract material-specific information

from the elastic and inelastic interaction of matter and radiated energy, such as neu-

trons, electrons or electromagnetic radiation. Using photons as a probe, the optical

conductivity of the medium can be introduced through Maxwell’s equations reading

in the centimetre-gram-second (CGS) system of units† (Jackson, 1999; Lee, 2009)

∇×H− 1

c

∂D

∂t
=

4π

c
j , (2.1)

∇×E +
1

c

∂B

∂t
= 0 , (2.2)

∇ ·D = 0 , (2.3)

∇ ·B = 0 , (2.4)

where H is the magnetic H-field, D is the displacement field, E is the electric field, B

is the magnetic field, j is the electric current density, and c denotes the speed of light.

∇ symbolises the vector differential operator del, acting with respect to the spatial

†For a conversion table see http://en.wikipedia.org/wiki/Centimetre gram second system of units
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coordinate r. The constitutive equations describe the material-specific response of

bound charge and current to the externally applied fields as (Dresselhaus, 2011)

D = ε′E , (2.5)

B = µH , (2.6)

j = σ′E . (2.7)

The quantities ε′ and σ′ are used in the following to derive the concept of a complex

permittivity and conductivity, respectively. Combining Maxwell’s equations with the

constitutive equations, one obtains two equivalent wave equations for the field vari-

ables E and H reading

∇2E =
ε′µ

c2

∂2E

∂t2
+

4πσ′µ

c2

∂E

∂t
, (2.8)

∇2H =
ε′µ

c2

∂2H

∂t2
+

4πσ′µ

c2

∂H

∂t
. (2.9)

A solution of (2.8) can be found in the form of E = E0 exp{i(K · r − ωt)}, with the

complex propagation constant K and the light frequency ω. The real part of K has

the function of a wave vector, while the imaginary part represents attenuation of the

wave in the medium. The plane wave dispersion relation reads

K2 =
ε′µω2

c2
+ i

4πσ′µω

c2
, (2.10)

giving rise to the well-known relationship K0 =
√
ε′µω/c in case of vanishing attenu-

ation. Introducing the material’s complex permittivity as

ε = ε′ + i
4πσ′

ω
= ε1 + iε2 , (2.11)

the general dispersion relation (2.10) in case of finite attenuation can be written

equivalently in the form K =
√
εµ ω/c. In the same manner, a complex material-
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specific optical conductivity σ can be introduced by the expression

ε = i
4π

ω
σ , (2.12)

where the conductivity is defined as

σ = σ′ − iε
′ω

4π
= σ1 + iσ2 . (2.13)

Equivalently to the permittivity and conductivity, the material’s optical properties

are captured by the complex frequency-dependent refractive index, which is given by

n =
c

ω
K =

√
µε = n′ + ik . (2.14)

Here, the real part n′ defines the phase speed of light waves, c′ = c/n′, in the specimen.

The imaginary part k is called extinction coefficient and represents the amount of

absorption losses. The meaning of the extinction coefficient becomes immediately

clear when considering that an electromagnetic wave propagating along the x-direction

through a medium with finite conductivity is represented by

E(x, t) = E0 exp(−iωt) exp
(
i
ωn

c
x
)

. (2.15)

Hence, the wave amplitude decays exponentially over a characteristic length d reading

d =
c

ωk
, (2.16)

which is commonly referred to as skin depth. The inverse absorption coefficient defines

the distance at which the intensity of the wave |E(x, t)|2 has fallen to 1/exp(1) of its

maximum value at the surface and is given by

1

αabs
=

c

2ωk
. (2.17)
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It has to be emphasised that in general the optical properties introduced above

depend on the frequency of the incident electromagnetic radiation. The aim in spec-

troscopy is then to link the frequency-dependent complex quantities σ(ω), ε(ω), and

n(ω) to physical observables such as the reflectivity. The microscopic physical pro-

cesses in the specimen can then be described in terms of the optical properties em-

ploying suitable theoretical models that relate experiment and theory.

In conventional optical absorption spectroscopy, probe light is brought into in-

teraction with a specimen. The absorption coefficient (2.17) is then determined as

the fraction of incident intensity absorbed by the material for a given frequency in-

terval. The same analysis can be conducted using the reflected or transmitted part,

since reflection and transmission are related by a simple mathematical transformation.

This type of spectroscopy only allows for the immediate determination of the extinc-

tion coefficient k, since it captures only the intensity reflectivity while neglecting all

phase-related information (Kittel, 2005).

Through Kramers-Kronig analysis, which relates the real and imaginary part of a

complex function, one can extract the real refractive index n′ after having measured k

(Roessler, 1965). However, this determination of the real part n′ requires assumptions

about the behaviour of the imaginary part k in the limits ω → 0 and ω →∞. It does

not constitute a direct and independent measurement.

In contrast to absorption spectroscopy, terahertz time-domain spectroscopy allows

for the simultaneous determination of real and imaginary part of the refractive index

n using Fresnel’s equations. This becomes possible because the terahertz traces are

generated and detected coherently, retaining amplitude and phase related information

(see section 2.2 for experimental details).

Fresnel’s Equations

The electric field amplitude and phase of a terahertz transient which is reflected off

a specimen are directly related to the material’s complex refractive index through
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Fresnel’s equations. If the polarisation of the probing beam is perpendicular to the

plane of incidence as depicted in figure 2.2 A, the complex reflection coefficient r for

a wave travelling from a medium with refractive index n1 to a medium with index n2

is given by (Born and Wolf, 1975; Saleh and Teich, 1991)

r =
n1 cosα1 − n2 cosα2

n1 cosα1 + n2 cosα2

, (2.18)

where α1 and α2 denote the angles of incidence and refraction. For light incident

from vacuum (n1 = 1) onto a conductor, note that the angle of refraction α2 in

the material becomes complex. The reflection coefficient is defined as the ratio of

the Fourier transforms of the time-dependent reflected field and the incoming one as

r(ω) = Eref (ω)/Einc(ω). Sometimes it is convenient to display r in its polar form

r(ω) = |r(ω)| exp{iδ(ω)} . (2.19)

Here, δ(ω) = δref (ω)− δinc(ω) defines the frequency-dependent phase difference of the

Fourier transforms of the reflected and incoming electric fields. Together with Snell’s

law reading

cosα2 =

√
1−

(
n1

n2

)2

sin2 α1 , (2.20)

the Fresnel relation (2.18) can be inverted to obtain n2 as a function of α1, n1 and r.

Under the experimental condition encountered in this thesis, the probe radiation is

incident from vacuum (n1 = 1) at an angle of α1 = 45◦. Then, the real and imaginary

part of the permittivity can be calculated as

Re(ε) =
ξ2 − ζ2 + 1

2
, (2.21)

Im(ε) = ξζ , (2.22)

where ξ and ζ are determined by the amplitude |r| and phase δ as (Jepsen and Fischer,
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2005; Roessler, 1965)

ξ =
1− |r|2

1 + |r|2 + 2|r| cos δ
, (2.23)

ζ =
2|r| sin δ

1 + |r|2 + 2|r| cos δ
. (2.24)

Equations (2.21)-(2.24) provide the mathematical foundation to determine the static

optical properties in the terahertz time-domain spectroscopy experiments reported in

this thesis. How a terahertz spectroscopy apparatus is implemented experimentally

is outlined in the remaining part of this chapter.

2.2 Terahertz Time-Domain Spectroscopy

Terahertz time-domain spectroscopy utilises single-cycle electromagnetic transients

generated opto-electronically based on femtosecond-duration laser pulses. The sub-

picosecond time resolution allows for the coherent detection of the transient electric

field, determining both amplitude and phase of the pulse’s spectral components.

Figure 2.2 B depicts a typical terahertz time-domain spectroscopy setup used in

the experiments described in this thesis. Near-infrared radiation with a central wave-

length of ∼ 800 nm is delivered by a titanium-doped sapphire laser, providing pulsed

radiation at repetition rates in the kHz to MHz regime. The pulse duration accounts

for ∼ 100 fs, while the relative spectral width is ∼ 2 %. A beamsplitter divides the

laser output of several Watts average power. The main share of the split beam is

used to generate single-cycle terahertz pulses. For the terahertz sources utilised in

the experiments presented here, two generation mechanism are distinguished:

(i) When using a 1 kHz amplified laser system providing 3.7 W average output

power, terahertz transients are generated by optical rectification of the near-infrared

pulses in (110)-cut zinc telluride (ZnTe) crystals. Optical rectification is a second-

order nonlinear process based on difference frequency generation in electro-optic crys-

tals (Ma and Zhang, 1993). The principle here is that the ith polarisation component
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Figure 2.2: Refraction of light and terahertz time-domain spectroscopy. A: Reflection
and transmission of incident electromagnetic radiation at the interface between two materials with
refractive indices n1 and n2. The electric field is polarised perpendicular to the plane of incidence. B:
Schematic of a typical terahertz time-domain spectroscopy setup based on a femtosecond titanium-
doped sapphire laser. The radiation is generated by optical rectification in zinc telluride (ZnTe) or a
photoconductive emitter (PCE), while the detection is achieved by electro-optic sampling in ZnTe.

in the medium essentially follows the intensity envelope of the excitation field as

Pi(Ω) =

∫ ν0+∆ν/2

ν0−∆ν/2

χijk(Ω, ν)Ej(ν + Ω)E∗k(ν)dν , (2.25)

where the incident light beam has the central frequency ν0 and bandwidth ∆ν, while

χijk is the nonlinear susceptibility tensor element of the material. Ej(ν) denotes

the Fourier transform of the time-dependent near-infrared electric field component j.

By dipole far-field approximation, the emitted electromagnetic amplitude spectrum

ETHz(Ω) is directly proportional to the induced polarisation ETHz(Ω) ∝ Ω2P (Ω),

and the generated terahertz pulses contain frequency components Ω ranging from

d. c. to ∆ν. For efficient interaction of the femtosecond light field with the polarisation

modulation in the crystal, it is necessary that near-infrared group- and terahertz

phase-velocity match. This condition is met in zinc telluride for excitation wavelengths

of ∼ 800 nm in a collinear geometry. Because of the high excitation pulse intensities

necessary, optical rectification is often used with amplified kHz laser systems.

(ii) When working with 13 MHz oscillators, the higher pulse repetition rates avail-

able make the use of a photoconductive emitter (PCE) for terahertz generation more
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Figure 2.3: Photoconductive terahertz emitter. A: Sketch of a photoconductive emitter. A
femtosecond laser pulse is focused in between two electrodes deposited on a semiconductor substrate.
The generated photo-carriers are accelerated by a bias voltage, emitting a short terahertz pulse. B:
Electric field of terahertz transient generated with an emitter and measured by electro-optic sampling
in ZnTe. C: Spectrum obtained by computing the Fourier amplitude of the electric field in panel B.

favourable. In such a photoconductive antenna, two metal electrodes are assembled on

a semiconductor substrate, and biased with a constant voltage. Optical near-infrared

pulses are focussed onto the gap in between the electrodes, generating photocarriers

which are accelerated by the bias field. The temporal evolution of the photocurrent is

dictated by the intensity envelope of the femtosecond excitation, giving rise to radia-

tion of single-cycle terahertz pulses. Usually the generated terahertz fields are lower

than compared to optical rectification. Figure 2.3 A shows a schematic of a typical an-

tenna. Geometric parameters such as the electrode distance determine together with

excitation pulse characteristics, strength of applied voltage, and material properties

the emitted spectrum.

The terahertz probe pulses are subsequently focussed onto the sample at an in-

cident angle of 45◦ (with respect to the surface normal) using an off-axis parabola

(OAP). After reflection off the sample, the pulses are collimated, and subsequently

focussed onto a 1 mm-thick zinc telluride detection crystal. The small remaining frac-

tion of the 800 nm light which is reflected from the beamsplitter is used to gate the

far-infrared radiation in the zinc telluride detection crystal by electro-optic sampling

(EOS). This detection technique is based on an induced refractive index change in the

zinc telluride crystal caused by the coincident terahertz radiation (∆n ∝ ETHz). The

transient birefringence results in a polarisation rotation of the EOS beam, which can
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be mapped using a combination of quarter wave plate (QWP), Wollaston prism (WP),

and balanced photodiode scheme. Since the intensity difference on both photodiodes

is linearly proportional to the applied terahertz field strength (∆I ∝ ETHz), a direct

observation of the probe electric field becomes possible (Parc et al., 2008).

To scan entire terahertz traces, probe and EOS pulses have to be mutually adjusted

in time using an optical delay stage. The sub-picosecond time resolution necessary to

detect the terahertz transients is limited by the EOS pulse duration and the coherence

length of terahertz and optical pulses within the zinc telluride crystal. In a 1 mm

long crystal that corresponds to 3 THz (Nahata et al., 1996), resulting in a temporal

resolution of about 150 fs. The signal, which is generated by the balanced photodiodes,

is amplified by a phase-sensitive detector and acquired by a computer together with

the delay line position. A data acquisition program, which had to be developed for

this application, allows real time data analysis. An exemplary time-domain terahertz

trace and the corresponding Fourier amplitude, generated by an emitter and measured

after reflection from a gold sample, are shown in figure 2.3 B and C, respectively.

2.3 High-Intensity Terahertz Sources

Conventional optical rectification of femtosecond near-infrared laser radiation in zinc

telluride produces terahertz pulses of nanojoule energy and electric fields reaching few

kilovolts per centimetre. These terahertz fields are often suitable to investigate the

linear optical properties of matter. If one wishes to study nonlinear phenomena, one

has to resort to alternative generation schemes capable of producing terahertz pulses

of much higher intensity. In the following, two generation mechanisms are introduced

that provide microjoule pulse energies and electric fields reaching hundreds of kilovolts

per centimetre. The first method is based on tilted pulse front excitation in lithium

niobate crystals and represents a table-top setup producing broad-bandwidth single-

cycle radiation. The second technique generates narrow-bandwidth multi-cycle pulses

using a large-scale free electron laser.
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Tilted Pulse Front Technique

It is crucial for efficient optical rectification that the near-infrared group velocity vNIR

matches the terahertz phase velocity vTHz. For experimental simplicity, a collinear

geometry is often chosen, in which the near-infrared pulses propagate parallel to the

terahertz radiation in phonon-polariton form. Since these requirements are fulfilled by

gallium phosphide or zinc telluride crystals and near-infrared excitation wavelengths

of about 800 nm, these materials are commonly employed for optical rectification.

However, the nonlinear susceptibility χ (see equation (2.25) above) of zinc telluride

is considerably smaller than that of comparable nonlinear optical materials such as

lithium niobate (LiNbO3).

Apart from the higher nonlinear susceptibility, lithium niobate has a further very

important advantage over zinc telluride. Zinc telluride is a semiconductor with com-

parably small bandgap, leading to two-photon absorption of the 800 nm pump pulses.

The induced free carriers cause strong terahertz absorption saturating the terahertz

conversion efficiency when increasing the near-infrared pump power (Löffler et al.,

2005). The bandgap of lithium niobate is much larger, preventing two-photon ab-

sorption and allowing for higher excitation powers (Redfield and Burke, 1974).

The utilisation of lithium niobate for optical rectification, however, has been hin-

dered in the past mainly because the near-infrared group velocity is about twice as

large as the terahertz phase velocity (Hebling et al., 2002).

Recent technological progress has overcome the problem of phase matching in

lithium niobate (Hebling et al., 2002, 2008a). Figure 2.4 A shows a schematic of the

generation mechanism. The novel idea is to tilt the intensity front of the near-infrared

radiation by an angle γ, such that the modified phase matching condition

vNIR cos γ = vTHz , (2.26)

can be fulfilled. Using literature values for both vNIR and vTHz (Hebling et al.,
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Figure 2.4: Tilted pulse front generation in lithium niobate crystals. A: The pulse front
of the near-infrared excitation laser is tilted by an angle γ to fulfil the phase matching condition. B:
The optimum pulse front tilt is achieved by diffracting the laser beam off a grating at an appropriate
angle. C: Near-infrared pulses of ∼ 100 fs duration produced by a titanium-doped sapphire laser
are incident on a grating with 2000 lines/mm. After tilting of the pulse front, the polarisation is
rotated by 90◦ using a λ/2-wave plate. As described in (Hebling et al., 2002), a lens with 60 mm
focal length images the laser spot at the grating position onto the appropriately cut lithium niobate
crystal, inside of which the high-intensity terahertz radiation is generated by optical rectification.

2008a), the optimum tilt angle inside the crystal accounts for γ = 63◦. Because the

pulse front tilt decreases upon entering lithium niobate from vacuum according to

nNIR tan γ = tan γ̃, the desired angle outside of the material increases to γ̃ = 78◦.

It is known that such high tilt angles can be achieved by diffracting the near-

infrared radiation off a grating (Bor et al., 1993). Figure 2.4 B depicts the formation

of the pulse front tilt. Using the grating equations, one can show that the phase front

tilt angle γ̃ is given by

tan γ̃ = λ
dα2

dλ
, (2.27)

where λ is the wavelength, and α2 the diffraction angle. The term dα2/dλ denotes the

angular dispersion of the grating, which is determined by diffraction angle, diffraction

order, and grating line separation (Bor et al., 1993). Combining equations (2.26) and

(2.27) allows to optimise the phase matching condition by adjusting the grating angle.

Figure 2.4 C details the experimental realisation of the tilted pulse front setup

built in the laboratory. An amplified titanium-doped sapphire laser generates pulses
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Figure 2.5: Time- and frequency-domain of the high-intensity terahertz pulses. A:
Time-dependent electric field measured by electro-optic sampling of the high-intensity pulses for
atmospheric and low pressure. The ringing on the trailing edge of the pulse is caused by absorption
and coherent re-radiation through water vapour, which is strongly suppressed below 1 mbar. Both
curves have the same arbitrary units. B: Normalised Fourier amplitude of pump transients as a
function of frequency measured for two different pulse front tilt angles γ. By adjusting γ, the
spectrum can be tuned to match the experimental requirements.

of ∼ 100 fs duration with a central wavelength of ∼ 800 nm. The average laser power

is 3.7 W at a repetition rate of 1 kHz. The laser beam is incident on a blazed grating

with 2000 lines/cm. To minimise loss at the grating, the polarisation is parallel to

the plane of incidence. After diffraction off the grating, a λ/2-wave plate rotates the

polarisation by 90◦ to be parallel to the optical axis of the lithium niobate crystal. This

is important for efficient radiation generation, because the corresponding nonlinear

susceptibility tensor element (compare equation (2.25) above) is maximum. A lens

with a focal length of 60 mm is used to image the laser spot at the grating onto the

lithium niobate crystal, employing a demagnification factor of 2. The demagnification

leads to a doubling of the tangent of the tilt angle, effectively reducing the optimum

tilt angle after the grating to γ̃ ≈ 67◦ in this configuration. The spot sizes at the

grating and the lithium niobate crystal are chosen such that the damaging thresholds

are not exceeded, accounting for beam diameters of ∼ 8 mm and ∼ 4 mm, respectively.

Figure 2.5 A shows a typical high-intensity terahertz transient measured by electro-

optic sampling in zinc telluride. The graph compares two traces taken at atmospheric

pressure and under vacuum conditions. The ringing following the pulse measured at

atmospheric pressure is due to absorption and re-radiation by water vapour, which is



2 Introduction to Terahertz Science 19

A B

Figure 2.6: Determination of terahertz pulse energies. A: Measurements of the high-intensity
terahertz pulse energy in dependence of near-infrared excitation pulse energy, revealing a roughly
linear relationship. Here, the maximum achievable pulse energy is ∼1.3 µJ. B: Terahertz pulse
energy as a function of the λ/2-wave plate angle. As the wave plate is rotated and the polarisation
altered from its optimum alignment parallel to the optical axis of LiNbO3, the generation efficiency
decreases. A second maximum is reached when the wave plate is turned by 90◦, corresponding to a
rotation of the polarisation by 180◦. The experimental data can be fit with a function ∝ cos2(2β),
where β is the wave plate rotation angle with respect to the optimum configuration at β = 0.

suppressed strongly below 1 mbar. Figure 2.5 B shows two typical spectra. Through

adjustment of the pulse front tilt angle, the centre frequency can be tuned to match

the specific experimental requirements.

The energy of the sub-millimetre radiation can be determined with a calibrated

pyroelectric detector. Figure 2.6 A displays the terahertz pulse energy as a function

of the near-infrared excitation pulse energy measured after and before the lithium

niobate crystal position, respectively. In the energy interval shown, the relationship

between excitation and terahertz pulse energy is roughly linear, which is in agreement

with previous measurements (Hebling et al., 2008a).

Rotating the λ/2-wave plate highlights the terahertz generation efficiency in de-

pendence of the near-infrared polarisation orientation. Measurements of the terahertz

pulse energy as a function of the wave plate rotation angle are shown in figure 2.6

B. When the near-infrared polarisation is parallel to the optical axis of the nonlinear

crystal, the generation efficiency is maximum. When the wave plate is rotated by 45◦,

corresponding to a polarisation rotation of 90◦, the generated terahertz pulse energy

takes on a minimum value. The experimental data can be well-fitted by a function

∝ cos2(2β), where β is the angle of rotation.
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Figure 2.7: Terahertz polarisation and near-infrared spectra. A: Polarisation-sensitive
measurements of time-dependent terahertz transients. The near-infrared excitation field is polarised
parallel to the LiNbO3 crystal axis. A terahertz polariser is inserted into the beam path, and the
transmitted radiation polarised parallel and perpendicular to the optical axis of LiNbO3 is probed.
The transients are found to be essentially polarised parallel to the optical axis. B: Scaled spectra of
the titanium-sapphire laser recorded before and after interaction with the lithium niobate crystal.
As previously observed in (Hebling et al., 2008a), the spectrum develops a broad shoulder on the
low-energy side due to the cascade-like difference frequency generation in the nonlinear crystal.

Inserting a terahertz polariser in the beam path allows to probe the polarisation of

the terahertz pulses. Figure 2.7 A shows polarisation-dependent measurements of the

pump transients. For the near-infrared polarisation oriented parallel to the crystal

c-axis, the terahertz pulses are essentially linearly polarised in the same direction.

The terahertz generation process also alters the near-infrared excitation spectrum.

Figure 2.7 B depicts scaled titanium-sapphire laser spectra measured before and after

passing through the lithium niobate crystal. After interaction with the nonlinear ma-

terial, a pronounced broadening of the red side of the spectrum is observed, indicating

that the cascading process of difference-frequency generation is the major cause of the

spectral shift (Hebling et al., 2008b).

The tilted pulse front technique can generate broadband high-intensity terahertz

pulses using a table-top setup. Indeed, it is possible to significantly narrow the spectra

by splitting the optical excitation radiation into several collinear pulses using parallel

partial reflectors with adjustable spatial separation (∼ 100 µm), leading to multi-cycle

pulse sequences (Hebling et al., 2008b). However, when relative spectral bandwidths

of a few percent or less are required, one has to resort to free electron lasers.
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Free Electron Laser Sources

Free electron lasers are large-scale facilities capable of providing tunable, spectrally

brilliant, and coherent high-power electromagnetic radiation. The produced light

has optical properties characteristic of conventional lasers, although the generation

mechanism is based on free moving electrons as lasing medium in contrast to molecular

or atomic transitions in solids, liquids and gases. The wavelengths that are achievable

span from millimetre waves to hard x-rays, and the pulse duration can be as short as

several pico- or femtoseconds (Huang and Kim, 2007).

In a free electron laser, relativistic electron bunches move freely through a magnetic

structure called undulator. Due to the acceleration by the magnetic fields, the charge

carriers emit photons. To illustrate the principle of light emission, figure 2.8 A shows

an electron moving along the z-direction in a planar undulator. The magnetic field in

the vertical y-direction varies sinusoidal as a function of the z-coordinate according

to By = B0 sin(kuz). Thereby, B0 denotes the magnetic pole field and ku = 2π/λu,

with λu being the undulator period. A relativistic electron with mass m entering a

finite magnetic field wiggles in the horizontal x-direction and emits radiation along

the undulator z-axis at the resonant wavelength (Huang and Kim, 2007)

λr =
λu
2γ2

0

(
1 +

K2
0

2

)
. (2.28)

Here, γ0 represents the electron energy in terms of the rest energy mc2, where c

denotes the speed of light. The undulator strength parameter K0 is defined by

K0 =
eB0

mcku
= 9340B0[Gauss]λu[cm] . (2.29)

As can be seen from equations (2.28) and (2.29), the resonantly emitted wavelength

can be tuned by adjusting the electron energy or undulator specifications. After

entering the magnetic structure, spontaneous emission at the resonant wavelength

constitutes the starting process of amplification. The emitted electromagnetic radia-



2 Introduction to Terahertz Science 22

Figure 2.8: Operational principle of a free electron laser. A: Schematic of an electron with
energy γ0 entering an undulator with spatial periodicity λu. The electron’s oscillatory motion leads
to the emission of electromagnetic radiation with wavelength λ1 (graph according to (Huang and
Kim, 2007)). B: A bending magnet directs an accelerated electron into an undulator. In many free
electron lasers, the magnetic structure is enclosed in an optical cavity to enhance the electron-photon
interaction. A second bending magnet directs the electrons into a beam dump. A small hole in one
cavity mirror couples part of the terahertz radiation out for delivery into the optical laboratories.

tion co-propagates in the forward direction together with the electron beam. In many

free electron lasers operating in the terahertz regime, the undulator is confined in an

optical cavity to enhance the interaction of photons and electrons (see figure 2.8 B).

The measurements presented in chapter 7 of this thesis were performed at the

free electron laser ELBE in Dresden, Germany. The three main components of ELBE

are the electron accelerator, the undulator and the optical resonator. As shown in

the schematic in figure 2.8 B, a dipole bending magnet deflects the electron beam

incident from the accelerator into the undulator. The wiggling electrons emit light

into a narrow cone around the undulator axis, which is confined in an optical resonator

consisting of two opposite focussing mirrors. A second bending magnet subsequently

directs the electrons into a beam dump. The length of the cavity is tuned such

that a cycling light pulse is coincident with the next electron bunch for optimum

interaction during propagation. Stable operation of the free electron laser is achieved

if all radiation losses are compensated for by the stimulated emission process. A hole

in one of the cavity mirrors couples the 13-MHz pulse train out for delivery into the

various scientific laboratories.

Figure 2.9 A shows a typical spectrum measured at ELBE. The relative spectral

width for a centre frequency of ω/2π ≈ 2 THz is ∆λ/λ = 2.2 %. Using a near-infrared

laser oscillator whose repetition rate can be synchronised to the high-intensity pulse
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Figure 2.9: Characterisation of the free electron laser pulses. A: Spectrum of the free
electron laser exhibiting a central wavelength of 150 µm, corresponding to 2 THz. The spectral
width is measured to be ∆λ = 3.4 µm assuming a Gaussian pulse shape (dashed line). B: Kerr
signal as a function of time delay. The measurement is carried out according to the technique of
(Hoffmann et al., 2009) by electro-optic sampling of the free electron laser pulses in a zinc telluride
crystal using a synchronised near-infrared laser oscillator. Under assumption of a Gaussian pulse
shape (dashed line), the full width at half maximum of the Kerr signal amounts to ∆τ = 15.7 ps.

train, one can measure the pulse duration of the free electron laser by electro-optic

sampling in zinc telluride. This is possible because the high-power terahertz pulses

induce a refractive index change in the nonlinear material that follows the envelope

of the square of the electric field (∆n ∝ E2
THz), a phenomenon called terahertz Kerr

effect (Hoffmann et al., 2009). Figure 2.9 B reports the Kerr signal as a function of

time delay, giving rise to a full width at half maximum of ∆τ = 15.7 ps assuming a

Gaussian pulse shape. The calculated time-bandwidth product is ∆τ∆ω/2π ≈ 0.7,

which is close to Fourier-transform limited operation. The terahertz pulse duration

can be tuned by adjusting the cavity mirror separation with respect to the nominal

length which is determined by the electron bunch repetition rate. The power output

is highest at minimum detuning (achieving ∼ 5 W in the laboratories), when the pulse

duration reaches its minimum. The spectral width can be decreased by detuning the

resonator, resulting in an increase in pulse length†.

By combining the high-intensity sources discussed in the present section with con-

ventional low-fluence probe techniques, time-resolved nonlinear terahertz spectroscopy

becomes possible as outlined in the following section.

†For further technical specifications of ELBE see http://www.hzdr.de/FELBE
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2.4 Time-Resolved Spectroscopy

Terahertz time-domain spectroscopy as discussed in section 2.2 can be combined with

the high-intensity sources described in section 2.3 in a terahertz pump, terahertz

probe geometry. In such an experiment, the high-intensity excitation pulses induce

a non-equilibrium state in a specimen. As a result, the optical properties of the

material become time-dependent in a surface layer of thickness comparable to the

penetration depth of the pump radiation. Low-field pulses are then used to probe the

excited state by recording changes in the reflection coefficient. The relative time delay

between probe and pump pulses is adjusted in a well-defined manner, giving access

to the non-equilibrium dynamics with sub-picosecond temporal resolution.

Figure 2.10 A shows a schematic of a typical terahertz pump, terahertz probe

setup. A titanium-sapphire laser provides near-infrared pulses with ∼ 100 fs duration

at a centre wavelength of ∼ 800 nm. A terahertz time-domain spectroscopy setup

identical to the one introduced in section 2.2 is used to probe the sample properties.

The probe pulses are synchronised to a high-intensity terahertz source, and both

beams are spatially and temporally overlapped at the sample position. The relative

temporal delay between the pump and probe pulses can be controlled by offsetting

the mutual phase-locked loop, or by controlling the optical delay line position. In

all experiments discussed in this thesis, the terahertz generation, propagation, and

detection takes place in vacuum to avoid absorption effects in air.

The pump-induced change in the sample’s optical properties leads to a change

∆E(ω) of the Fourier transform of the reflected terahertz probe transients E(ω). The

main objective here is to deduce the non-equilibrium optical properties by measuring

the modulation ∆E(ω) as a function of pump-probe time delay. Subsequently, the

out-of-equilibrium conductivity can be determined by inverting Fresnel’s equations.

One common approach is to model the system response by considering a photo-

excited surface layer of thickness d and unknown properties (n, ε, σ), over an unper-

turbed semi-infinite superconductor with the equilibrium optical constants (ñ, ε̃, σ̃).
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Figure 2.10: Terahertz pump, terahertz probe spectroscopy. A: A conventional terahertz
time-domain spectroscopy apparatus is combined with a high-intensity terahertz source. Both, low-
fluence probe and high-intensity pump radiation are spatially and temporally overlapped at the
sample position. The relative time delay between pump and probe transients is controlled by off-
setting the phase-locked loop that synchronises the titanium-sapphire laser with the high-intensity
terahertz source. B: As contemplated in (Born and Wolf, 1975), it is assumed that the pump pulses
produce a homogeneously excited surface layer of thickness d in the sample, in which the transient
complex optical properties (n, ε, σ) deviate from their equilibrium values (ñ, ε̃, σ̃) by an unknown
amount. The upper panel depicts the situation when the probe penetration depth p is much larger
than the surface thickness d. In the lower panel, the probe penetration depth is similar to the layer
thickness.

A scheme of the excited surface layer is depicted in figure 2.10 B. The total reflected

wave is represented by the complex reflection coefficient r as (Born and Wolf, 1975)

r =
r1 + r2 exp(iδ)

1 + r1r2 exp(iδ)
, (2.30)

where δ = 4πdn cos(θ)/λ. Hereby, n is the refractive index of the film, θ denotes the

angle of diffraction, and λ is the probe wavelength. The variables r1 and r2 represent

the reflection coefficients at the layer front and back surface, respectively.

Depending on the penetration depth d of the high-fluence pump pulses, different

analysis techniques have to be employed for a given penetration depth p of the probe

radiation. In the limit of long wavelengths and thin films when p� d, δ is sufficiently

small so that the exponential in equation (2.30) can be approximated as exp(iδ) ≈

1 + iδ. Then, it can be shown that for an incident angle of 45◦, the change in the
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complex out-of-equilibrium conductivity ∆σ = σ−σ̃ is given by (Thoman et al., 2008)

∆σ =
1

Z0d

∆E/E
(
ñ2
√

1− 1/(2ñ2)− 1/2
)

∆E/E
(

1/
√

2− ñ
√

1− 1/(2ñ2)
)

+
√

2
, (2.31)

where Z0 is the impedance of free space, ñ the equilibrium refractive index, and ∆E(ω)

represents the pump-induced change of the Fourier transform of the reflected electric

probe field E(ω). Equation (2.31) is commonly known as the thin-film approximation.

In another limiting case when the penetration depth of the pump radiation is very

similar to the one of the probe, one is essentially examining a bulk sample with the

out-of-equilibrium optical properties. In a situation where | exp(iδ)| � 1, the total

Fresnel coefficient (2.30) simplifies to r ≈ r1, since one can neglect multiple reflections

inside of the specimen. This latter approximation is commonly applied for optically-

thick samples (Born and Wolf, 1975). Fresnel’s equations for the equilibrium and

out-of-equilibrium condition can then be combined and solved for the unknown film

properties. For an incident angle of 45◦, the perturbed complex permittivity ε can be

determined from the expression

ε =
1

2

(
1− (1 + ∆E/E)

(
1−
√

2ñ− 1
)
/
(
1 +
√

2ñ− 1
)

1 + (1 + ∆E/E)
(
1−
√

2ñ− 1
)
/
(
1 +
√

2ñ− 1
))2

+
1

2
. (2.32)

Under the assumption that the equilibrium optical properties are known, equations

(2.31) or (2.32) can be employed (depending on the relative penetration depths of

pump and probe) to calculate the time-dependent optical properties by recording the

pump-induced changes in the reflection coefficient. In the context of pump-probe

measurements, it is important to discuss the minimum temporal resolution of the

results obtained. However, since this quantity depends on the exact experimental

realisation, it is addressed in the chapters 6 and 7 of this thesis individually.

The following chapter introduces some basic concepts of superconductivity, in an

effort to motivate time-resolved studies of these extraordinary materials. Attention is

devoted to the anisotropic properties of layered cuprate superconductors.



Chapter 3

Introduction to Superconductivity

Electrical resistance is a measure for how strongly an electrical current through a

medium is opposed by the material properties. In metals, resistance arises as a result

of collisions of the charge carriers with lattice imperfections, impurities, or lattice

vibrations. At room temperature, electron-phonon scattering dominates dissipation,

whereby the other two processes prevail at low temperatures (Kittel, 2005).

The superconducting state is in part characterised by the disappearance of all

electrical resistivity of a material, a phenomenon which was discovered in 1911 by

H. K. Onnes. In his studies, Onnes monitored the conductivity of mercury at cryo-

genic temperatures, after having liquified helium for the first time in 1908 for use as

a refrigerant. He showed that at a critical temperature (Tc) of 4.2 K, the resistivity

dropped several orders of magnitude, marking the transition from conventional metal-

lic conduction to a novel state of perfect conductivity, which later became known as

superconductivity. In the subsequent decades, several other materials such as lead

and niobium nitride were found to undergo the same transition at equally low tem-

peratures that are close to the boiling point of liquid helium (4.2 K) (Tinkham, 1996).

The second fundamental property of the superconducting state was discovered

in 1933 by W. Meissner and R. Ochsenfeld. In their observation, which became

widely known as the Meissner effect, it was shown that a magnetic field within an

originally normal specimen would be expelled as the sample is cooled below the critical
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temperature (see figure 3.1 A). However, a perfect metallic conductor would tend to

trap magnetic flux rather than give rise to perfect diamagnetism. Indeed, the Meissner

effect could not be explained by invoking perfect conductivity alone and confirmed

the notion that superconductivity is a fundamentally different state compared to

conventional metallic conduction (Meissner and Ochsenfeld, 1933). In the years after

the discovery of vanishing resistivity and the Meissner effect, several theoretical models

of superconductivity were developed. Some concepts are outlined in the following.

3.1 Electrostatics of Superconductors

In 1935, the two brothers F. and H. London devised a phenomenological approach en-

capsulating the two fundamental characteristics of superconductivity within a mathe-

matical framework. The two London equations describe the microscopic electrostatics

of superconductors and reproduce perfect conductivity as well as perfect diamagnetism

(London and London, 1935).

Although a rigorous derivation of the London equations from fundamental princi-

ples is not possible, one can gain an intuitive understanding of the basic properties of

superconductivity from them. The theory’s primary postulate asserts that the super-

current density Js is directly proportional to the vector potential A, defining a weak

microscopic magnetic field B = ∇ ×A. The two London equations then relate the

supercurrent to the electric and magnetic field E and B as† (Tinkham, 1996)

E =
∂

∂t
(ΛJs) , (3.1)

B = −c∇× (ΛJs) . (3.2)

The phenomenological parameter Λ = 4πλ2
L/c

2 depends on the characteristic length

λL, which is defined by λL =
√
mc2/(4πnse2). Here, c is the speed of light, ns the

†Note that the vector potential A is, unlike the observables E, B and Js, not a uniquely-defined
physical quantity, but depends on the gauge. In the following, the London gauge ∇ ·A = 0 is used.
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Figure 3.1: Illustration of the Meissner effect. A: A weak external magnetic field is applied to
a superconductor. For temperatures above the transition temperature, the flux lines penetrate into
the material. As the superconductor is cooled below the critical temperature, the magnetic field is
expelled from the bulk sample. B: A magnetic field is applied perpendicular to the surface normal
of a superconductor that occupies the half-space with x > 0. Inside the material, the magnetic field
decays exponentially as B(x) = B(0) exp(−x/λL), whereby B(0) defines the magnetic field at the
surface. The London penetration depth λL determines the distance over which the magnetic field
amplitude is attenuated to 1/exp(1) of its maximum value at the surface (Kittel, 2005).

density of superconducting electrons, m their mass and e the electron charge.

The phenomenon of perfect conductivity is captured by the first London equation

(3.1), stating that any electric field would accelerate the superconducting carriers

rather than just sustaining their velocity against dissipative effects, as it is the case

in a conventional metal described by Ohm’s law (J = σE).

Combining the second London equation with the Maxwell equation ∇×B = 4π
c
Js,

one finds for a superconductor a differential equation of the form

∇2B =
1

λ2
L

B . (3.3)

This expression is encapsulating the Meissner effect, since it allows for the trivial

case B = 0, or a damped solution of the form B(x) = B(0) exp(−x/λL). Here, the

magnetic field decays exponentially inside the sample, with the x-direction assumed to

be perpendicular to the magnetic field and parallel to the surface normal as depicted
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in figure 3.1 B. As a result of persistent superconducting currents, external magnetic

fields are screened out in a distance λL from the surface. Using Maxwell’s equations,

it can be shown that electric fields are attenuated in the same characteristic distance

λL, which is referred to as London penetration depth.

It is important to note that the London theory of superconductivity is a local

theory. It assumes that the current density Js(r) in a point r is determined entirely

by the vector potential A(r) at the same position. Under the condition of long

electronic mean free paths (in “clean superconductors”) it is actually found that the

experimental London penetration depth is larger than the one predicted above. This

is because the assumptions of locality (that remain valid for “dirty superconductors”)

cease to hold. In this case, one has to average the potential A over a characteristic

range ξ to obtain Js. The coherence length ξ is independent of λL, and was introduced

in the Ginzburg-Landau theory of superconductivity (Tinkham, 1996; Kittel, 2005).

3.2 The Ginzburg-Landau Theory

A further milestone in the phenomenological description of macroscopic superconduc-

tivity was achieved with the development of the Ginzburg-Landau theory in 1950.

Through the introduction of a complex pseudo-wavefunction as the order parameter

in L. D. Landau’s general theory of second order phase transitions, it became possible

to treat the case when a magnetic field exceeds a critical value and depletes part of the

superconductivity, causing a spacial dependence of the condensate density (Tinkham,

1996; Kittel, 2005). The most relevant aspect with respect to this thesis is the concept

that the free energy of a superconductor depends not only on the order parameter, but

also on its gradient. As such, the gradient of the pseudo-wavefunction is responsible

for supercurrents in the material, and motivates the notion of a “phase stiffness”. This

concept highlights that the superconducting phase tends to be uniform throughout

the specimen, strongly resisting perturbations (similar to the rigidity of a solid).

The Ginzburg-Landau description of superconductivity introduces a complex
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wavefunction ψ, defining the local density of superconducting electrons as

ns(r) = |ψ(r)|2 . (3.4)

The wavefunction ψ serves as an order parameter in the description, since it is zero in

the normal state, and finite in the superconducting. In Landau’s general description

of second order phase transitions, one basic assumption is that the free energy can be

described as a Taylor expansion in the order parameter ψ and its gradient ∇ψ. The

free energy represents the amount of work that a thermodynamic system is capable

of performing. As such, the phenomenological expansion parameters α and β in the

Taylor series are chosen to minimise the energy. Applied to superconductors, one

arrives at the Ginzburg-Landau equations (Tinkham, 1996)

1

2m

(
~
2i
∇− e

c
A

)2

ψ + β(T )|ψ|2ψ + α(T )ψ = 0 , (3.5)

e~
2im

(ψ∗∇ψ − ψ∇ψ∗)− 2e2

mc
|ψ|2A = Js . (3.6)

Equation (3.5) describes the order parameter in dependence of the magnetic vector

potential A (note the similarity to the nonlinear Schrödinger equation for a free par-

ticle). The second Ginzburg-Landau equation (3.6) determines the superconducting

current density Js (compare to the probability current of a wave function). In com-

bination, these equations allow for the description of a spatially varying superfluid

density |ψ(r)|2, and account for nonlinear effects should the vector potential exceed

a critical value, leading to the coexistence of superconducting and normal domains.

The corresponding critical magnetic field strength is in the following denoted Hc.

Besides encapsulating the effective penetration depth λ, which is given by

λ =

√
mc2

4π|ψ|2e2
, (3.7)

the Ginzburg-Landau description predicts the existence of a second characteristic
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Figure 3.2: Interface between superconducting and normal domains. A: In a type 1
superconductor, the superfluid density changes over a much longer distance than the magnetic field,
which is attenuated strongly in the superconducting domain. B: A type 2 superconductor does not
show perfect diamagnetism because magnetic flux is allowed to penetrate much deeper into the bulk
sample. Cuprates represent a prominent example of type 2 superconductors (Tinkham, 1996).

length scale, the coherence length, which is defined as

ξ =
~√
|2mα|

=
Φ0

2
√

2πHcλ
, (3.8)

where Φ0 = hc/(2e) is the flux quantum. Since there is an energy cost associated with

a spatial variation of the density ns = |ψ|2, the coherence length ξ defines the distance

within which the condensate density cannot change drastically without destroying the

superconducting state.

The Ginzburg-Landau parameter κ is defined as the ratio of the two characteristic

length scales κ = λ/ξ. In most conventional pure low-temperature superconductors

called type 1 materials, the penetration depth is much smaller than the coherence

length, and κ � 1. In this case, one is speaking of superconductivity in the clean

limit, and the superconductive state is characterised by almost perfect diamagnetism.

For type 2 materials exhibiting κ > 1/
√

2 as found in many metal-based alloys

and high-temperature superconductors, the superconductivity is local and in the dirty

limit. An external magnetic field is not screened as efficiently as in type 1 supercon-

ductors and can penetrate into the sample. In the context of chapters 4 and 7 of

this thesis, it is important to note that this property favours the injection of vortices

into type 2 materials. The interface between a normal and superconducting domain

is sketched in figure 3.2 comparing type 1 and 2 systems.
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3.3 High-Frequency Electrodynamics

The London and Ginzburg-Landau theories describe the Meissner effect and perfect

conductivity in the case of static external electromagnetic fields. If one considers

the response of a superconductor to time-dependent fields, dissipation effects have

to be taken into account. This is because time-dependent electromagnetic fields act

not only on the superconducting, but also on the normal state electrons, which are

not perfectly shorted. Scattering of the accelerated normal electrons from lattice

imperfections gives rise to finite resistance, which can be captured by Ohm’s law.

A fluid of free electrons subject to damping and a time-dependent electric field

E(t) while moving along the x-direction is described by the Newton equation

mẍ = −eE(t)− m

τ
ẋ , (3.9)

where m and e are electron mass and charge, and τ represents the relaxation time.

The two fluid model asserts that the total electrons density n can be divided into

a superfluid and a normal electron density ns and nn, respectively. Obviously, the

restriction n = nn + ns is imposed to conserve the total number of electrons. The

behaviour of the superconducting and normal electrons is characterised by their relax-

ation times τs and τn, which are expected to differ as τs � τn. Assuming an external

field of the form E(t) = E0 exp(iωt), the a. c. response of the normal fraction of the

electron density is captured by the complex conductivity (Tinkham, 1996)

σn(ω) =
nne

2τn/m

1 + iωτn
. (3.10)

Thus, the conductivity of the normal electrons follows the well-known Drude response

of free electrons. The conductivity of the superfluid fraction is described by an equiv-

alent expression and can be evaluated in the limit τs →∞, giving rise to

σs(ω) =
nsπe

2

2m
δ(ω) + i

nse
2

mω
. (3.11)
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The real part of the superfluid conductivity reduces to a delta function at zero fre-

quency, reflecting vanishing d. c. resistivity. The imaginary part shows a 1/ω fre-

quency dependence, characteristic of the superconducting state and equivalent to the

first London equation. In the two fluid approximation, the conductivity of a super-

conductor is then described by σ(ω) = σn(ω) + σs(ω).

It has to be noted that the two fluid model only applies to frequencies below the

superconducting gap. Often, the normal electron relaxation times are short enough

that ωτn � 1, in which case the total complex conductivity can be written as

σ(ω) =
nsπe

2

2m
δ(ω) +

nne
2τn
m

+ i
nse

2

mω
. (3.12)

This limiting case illustrates that when probing a superconductor at finite frequencies,

the real part of the conductivity reflects dissipation by normal state electrons. The

imaginary part in contrast shows a 1/ω frequency dependence, with a pre-factor that

is determined by the superfluid density ns. This characteristic is of great importance

to the following chapters of this thesis, as the two fluid model is applied to interpret

the experimental results.

3.4 The BCS Theory

The conjectures of Ginzburg and Landau were years later shown to be a limiting case

of the first complete microscopic theory of superconductivity, which was developed

in 1957 by J. Bardeen, L. N. Cooper and J. R. Schrieffer (BCS). One of the main

findings of the BCS theory is the prediction that electrons close to the Fermi sur-

face tend to form bound pairs in presence of any weak attractive interaction. These

bound electrons with equal and opposite momentum and spin are called Cooper-pairs,

and represent the superconducting charge carriers that were postulated by the phe-

nomenological models introduced above (Bardeen et al., 1957).

The BCS theory is founded on a quantum mechanical description of the inter-
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action between the superconducting electrons. While single electrons are fermions,

which have to obey the Pauli exclusion principle, Cooper-pairs behave like bosons

that can condense into the same energetic state. Breaking a single Cooper-pair into

its constituents therefore means that the state of all other unpaired electrons has to

change. Hence, there is an energy gap associated with the excitation of a pair of single

electrons (quasi-particles) out of the superconducting condensate (Kittel, 2005).

Figure 3.3 A shows the development of the gap for temperatures below the critical

value. The width of the gap Eg(T ) is predicted to depend on the temperature and

increases from zero at the transition temperature Tc to

Eg(0) ≈ 3.5 kBTc , (3.13)

as T → 0. Here, kB denotes the Boltzmann constant. Figure 3.3 B depicts how

the gap energy changes as a function of temperature on a normalised scale. The

emergence of the energy gap inhibits scattering processes that would lead to finite

resistivity in the normal state. For low enough temperatures, such that the thermal

energy is smaller than the superconducting gap, the condensed electrons can carry a

current without resistivity, optimally shortening the normal state electrons.

Different mechanisms leading to the pairing of electrons are possible. In conven-

tional low-temperature superconductors, the coupling of electrons to discrete lattice

vibrations (phonons) produces a weak attractive force between the charge carriers,

leading to the formation of Cooper-bound electrons. These boson-like particles are

unaffected by the scattering processes impeding the motion of single electrons in met-

als, and give rise to vanishing resistivity. In an attempt to visualise the interaction,

one can think of an electron pair moving through a crystal lattice of positively charged

ions. Via the Coulomb interaction, the leading electron will attract the ions, leading

to a local increase in positive charge, which in turn attracts the second electron. In

combination, both electrons enter a bound state, and are capable of moving through

the crystal structure without undergoing dissipative scattering processes.
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Figure 3.3: The superconducting energy gap. A: The left panel depicts the electronic state
for temperatures above the transition temperature. The conduction band is occupied up to the
Fermi level εF . The right panel shows the emergence of an energy gap at the Fermi level in the
superconducting state. The energy gap has a size of Eg, which is exaggerated in the figure and
usually much smaller than the Fermi energy. Breaking of a Cooper-pair amounts to an excitation of
two electrons from the condensate above the gap. B: The relative size of the superconducting gap is
shown schematically as a function of the reduced temperature. For T � Tc, the relative gap energy
Eg(T )/Eg(0) approaches unity. As the temperature increases to the critical temperature Tc, the gap
decreases continuously to zero. The graphs are according to (Tinkham, 1996; Kittel, 2005).

According to the BCS theory, the spatial extension of a Cooper-pair is determined

by the coherence length ξ. Because the coherence length in most conventional mate-

rials is much larger than the average distance between electrons, the wavefunctions

of many pairs overlap, motivating the representation of the superconducting state

by a single macroscopic many-body wavefunction that underpins the resulting Bose-

Einstein statistics. The BCS theory predicted many of the fundamental properties

of superconductors such as the isotope effect. This effect describes the experimental

observation that if the mass of the lattice ions is increased, the transition temperature

decreases. This is qualitatively understood by considering that an increase in mass

will make the lattice less capable of meditating the interaction between two electrons.

In the context of this thesis, the microscopic BCS theory plays a minor part.

Nevertheless, the concept of an energy gap due to pair binding is crucial, as the main

objective of this work is to study below-gap excitations in superconductors. Despite

its significance to low-temperature superconductivity, the BCS theory sets an upper

limit for allowed transition temperatures of about 30 K. However, as discussed in the

following section, materials exhibiting significantly higher critical temperatures exist.
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3.5 High-Temperature Superconductivity

While the electron-phonon interaction is at the heart of the pair binding process in

conventional superconductors such as mercury, it fails to account for high critical

temperature (high-Tc) superconductivity, which was discovered in 1986 by G. Bed-

norz and K. A. Müller (Bednorz and Müller, 1986). High-Tc superconductors are

commonly defined as materials whose transition temperature lies above 30 K, which

is the highest allowed temperature that can be explained within the BCS framework.

The first unconventional compounds were found to be quasi two-dimensional, with

superconducting transport occurring within layers of weakly coupled copper oxygen

planes. These ceramic oxides are referred to as cuprates.

In the decades after the discovery of the first high-Tc materials, further cuprates

with increasingly higher critical temperatures of up to ∼ 140 K were produced† (Dai

et al., 1995). The higher transition temperatures create an interest with respect to

technical applications, since the superconducting state can be reached with liquid

nitrogen as a coolant (boiling point 77 K), rather than with liquid helium. Liquid

nitrogen is cheaper and considerably easier to produce than liquid helium.

In high-Tc cuprates, superconductive transport is carried by paired electrons as well

(Gough et al., 1987), but the origin of pair binding is still the subject of controversial

debate (Lee et al., 2006). The out-of-plane electrodynamics can be well-described

by the Lawrence-Doniach model, which assumes that the copper oxygen layers are

weakly coupled by the Josephson effect (Lawrence and Doniach, 1971). One of the

key results is that the superconducting order parameter ψ can be described by

1

2

(
~
2i
∇− e

c
A

)(
1

m

)(
~
2i
∇− e

c
A

)
ψ + β|ψ|2ψ + ψ = 0 , (3.14)

which corresponds to a Ginzburg-Landau equation with ellipsoidal anisotropy. The

†In 2008, a second class of high-Tc compounds was identified which consist of layers of iron and
pnictogen (Takahashi et al., 2008). These materials are called iron-pnictides. However, to keep the
scope of this thesis, the following discussion focuses on cuprates.
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reciprocal mass tensor 1/m has the principal values 1/mab, 1/mab, and 1/mc. The

different masses represent the different strength of charge transport within the copper

oxygen (ab-)planes, and in the perpendicular (c-)direction (see chapter 5 for further

information). When the interlayer coupling is weak one has mc � mab.

Using the definition of the isotropic coherence length in equation (3.8) above, it

becomes clear that the coherence length ξj, and in turn the penetration depth λj, are

anisotropic and given by

ξj(T ) =
~√

|2mjα(T )|
=

Φ0

2
√

2πHc(T )λj(T )
, (3.15)

where j denotes the ab- or c-direction. Anisotropic cuprate superconductors usually

have λc � λab and ξc � ξab. The anisotropy of a layered superconductor is encapsu-

lated in the ratio γ = λc/λab = ξab/ξc.

Apart from the higher transition temperature and the structural anisotropy, high-

temperature compounds differ from conventional materials in that the superconduct-

ing state is more affected by resistance-causing fluctuations. This is because higher

temperatures inevitably lead to stronger thermal fluctuations and because the mate-

rials are type 2 superconductors with comparably short coherence lengths. External

magnetic fields penetrate into the materials and give rise to the formation of vortices.

In a vortex, a supercurrent flows around a normal or superconducting core, carrying

one unit of magnetic flux (Moler et al., 1998; Tinkham, 1996). Vortex excitations in

cuprates are discussed in greater detail in chapter 7 of this thesis.

In most cuprates, the Josephson coupling energy as well as the gap are of the order

of several millielectronvolts, corresponding to terahertz frequencies. Thus, terahertz

spectroscopy provides a convenient tool to investigate and control the superconduct-

ing state. The approach taken in this thesis is to focus on the Josephson-aspect of

cuprate superconductors, and to exploit this property for nonlinear spectroscopy. The

fundamental Josephson physics of layered superconductors are introduced in the next

chapter, which is followed by a discussion of the cuprate Lax−2SrxCuO4.



Chapter 4

The Josephson Effect

One of the defining features of quantum mechanics is the assertion that quantum

objects can tunnel through a potential barrier that represents an unsurmountable

obstacle for classical particles. Single free electrons possess this quality and can tunnel

from one conductor to another via a thin insulating barrier. In an external potential,

the tunnelling current depends exponentially on the work function of the material

and the gap spacing, enabling the exploitation of the effect for imaging techniques in

scanning tunnelling microscopy (Binning et al., 1982).

The phenomenon of electric tunnelling between two superconductors that are sep-

arated by a thin insulating barrier is named after its discoverer B. D. Josephson. In

1962, Josephson predicted that a zero voltage d. c. supercurrent would flow across the

barrier between two unbiased electrodes, with an amplitude determined by the super-

conducting order parameter phase difference across the link. He derived an expression

for the temporal evolution of the relative phase in case a voltage difference were es-

tablished across the junction. Maintaining a constant voltage leads to an alternating

current with a frequency proportional to the electric potential difference.

These fascinating predictions, known as the d. c. and a. c. Josephson effect, have

hitherto been confirmed in a plethora of experiments. However, Josephson physics

has given rise to many more phenomena. Analogous to coupling between classical

mechanical oscillators, stacks of interacting Josephson junctions give rise to complex
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Figure 4.1: The Josephson effect. A: Two superconductors are separated by an insulating
barrier. The condensate in both electrodes is described in terms of the complex wavefunction ψ1 and
ψ2, respectively. B: If the insulating layer is thin enough, there is a finite probability for electrons
from either side to tunnel through the barrier. C: The RCSJ model describes a real Josephson link
as an ideal junction J , that is shunted by a resistance R representing quasiparticle transport. The
junction geometry is encapsulated by the capacitance C. D: Mechanical analogue of the Josephson
effect. The angle of deviation θ corresponds to the phase difference, the angular velocity θ̇ to the
voltage, and the torque Γ to the current. The pendulum tips over if a critical torque is applied, leading
to a finite angular velocity. Small amplitude oscillations correspond to the Josephson resonance.

dynamical behaviour. Stacked junctions can be realised based on niobium technology

(Ustinov et al., 1993), however, it has turned out that anisotropic layered supercon-

ductors such as cuprates provide stacks of great homogeneity and density. In these

materials, the superconducting layers are formed by single CuO2 sheets, with inductive

coupling between layers giving rise to plasmonic behaviour (Machida et al., 1999).

The present chapter is organised as follows. First, the fundamental physics of

Josephson coupling is introduced. Second, the electrodynamics of long Josephson

junctions are outlined. Finally, stacks of junctions are discussed.

4.1 Fundamental Josephson Physics

The consequences of Cooper-pair tunnelling between two superconductors were first

noticed by Josephson (Josephson, 1962). In his microscopic analysis, Josephson con-

sidered two superconductors connected by a thin insulating layer as depicted in figure

4.1 A. This basic structure is now called a Josephson junction. If the insulating bar-

rier is too thick, electron pairs are not able to tunnel from one electrode to the other.

However, if the layer is thin enough, there is a finite quantum mechanical tunnelling

amplitude across the barrier as depicted in figure 4.1 B.
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The main phenomena that result from the Josephson tunnelling mechanism can be

understood by considering two coupled Schrödinger equations for the wavefunctions

on both sides of the barrier (Feynman et al., 1966). One essential characteristic of the

superconducting state is the existence of a many-particle condensate wave function

ψ maintaining phase coherence over a macroscopic distance. In the following, the

amplitude to find an electron on the left side of the barrier is called ψ1, the amplitude

to find it on the other side ψ2. Assuming the same superconducting material on both

sides of the junctions, the two amplitudes are related by

i~ψ̇1 = U1ψ1 +Kψ2 ,

i~ψ̇2 = U2ψ2 +Kψ1 ,

(4.1)

where K is a characteristic coupling constant. Without coupling (K = 0), the two

equations simply describe the lowest energetic states with energies U1 and U2, re-

spectively. Finite coupling (K > 0) describes leaking of the wavefunctions across the

barrier into the other electrode. This set of equations can be analysed by choosing a

solution of the form

ψ1 =
√
ρ1e

iφ1 ,

ψ2 =
√
ρ2e

iφ2 ,

(4.2)

where φ1 and φ2 are the phases of the condensate wavefunctions on both sides of the

junction, and ρ1 and ρ2 are the corresponding Cooper-pair densities. Substituting this

expression into equations (4.1) and comparing real and imaginary parts gives rise to

~ρ̇1 = −~ρ̇2 = 2K
√
ρ1ρ2 sin(φ2 − φ1) ,

~(φ̇2 − φ̇1) = U1 − U2 .

(4.3)

The time derivative of the Cooper-pair density effectively describes a current I = ρ̇1.

If the two superconducting regions are connected to a battery so that a potential

difference V is applied across the junction, U1 − U2 = 2eV , with 2e being the charge
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of an electron pair. Defining the zero energy appropriately and introducing the phase

difference φ ≡ φ1 − φ2, equations (4.3) can thus be written as†

I = Ic sinφ , (4.4)

φ̇ = 2eV/~ . (4.5)

Here, Ic = 2K
√
ρ1ρ2/~ is the critical current. Equations (4.4)-(4.5) are commonly

referred to as the first and second Josephson equation, and represent the general theory

of a weak link between two superconductors. If there is no voltage drop across the

junction, the d. c. supercurrent can take any value between −Ic and Ic. The critical

current therefore denotes the maximum supercurrent that the junction can support. In

contrast, if a constant voltage is maintained across the junction, the phase difference

advances linearly in time (φ ∝ t). This in turn leads to a sinusoidally oscillating

supercurrent at a frequency of fac = 2eV/h, whereby the net current remains zero.

These two phenomena are known as the d. c. and a. c. Josephson effect, respectively.

One way of interpreting the zero voltage d. c. Josephson effect is given in terms

of a nonlinear inductance (Josephson, 1964). If one considers a small deviation of the

phase difference δ (small enough to preserve the zero voltage state) from its equilibrium

position φ0, the first Josephson equation (4.4) implies a current change

∆I = (Ic cosφ0)δ . (4.6)

Through the second Josephson equation, the phase variation induces a voltage as

∆V = ~/(2eIc cosφ0) ˙(∆I) = L ˙(∆I) . (4.7)

This expression is the defining equation for an inductor with a nonlinear inductance

†Assuming that the barrier thickness in negligible. In general, the phase difference φ is, unlike the
supercurrent I, not a well-defined gauge-invariant physical quantity. This is corrected by introducing
the gauge-invariant phase difference φ = φ1−φ2− 2e

~c

∫ 1

2
A ·ds, A being the magnetic vector potential.
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L = ~/(2eIc cosφ0). The Josephson inductance therefore depends on the equilibrium

phase difference φ0, which can be adjusted by an external electric current or field.

Without external stimulus, the inductance takes the minimum value L0 = ~/(2eIc).

It should be noted that the Josephson inductance is a kinetic inductance, since it arises

from the kinetic energy of the Cooper-pairs rather than the magnetic field energy.

Josephson’s equations are often sufficient to describe the zero voltage characteris-

tics, however, they do not model dissipation effects in the finite voltage regime. One

approach to combine the a. c. Josephson physics with quasiparticle dissipation is the

Resistively and Capacitively Shunted Junction (RCSJ) model. As depicted in figure

4.1 C, a real Josephson junction is modelled by an ideal weak link J shunted in par-

allel by a voltage independent resistance R and a capacitance C. An external current

source provides a bias current I. The resistance accounts for dissipation in case the

total current I exceeds the critical current Ic, and quasiparticles flow across the junc-

tion. Due to the junction geometry, a parallel capacitor is added to model charging

effects. The total current through the link equals the sum of the contributions from

each parallel element according to the differential equation

I = Ic sinφ+ V/R + CV̇ . (4.8)

Using Josephson’s equations and introducing a dimensionless time variable t → ωJt,

this expression can be rewritten to form a second-order differential equation in the

phase difference reading

φ̈+ βcφ̇+ sinφ = I/Ic , (4.9)

with the parameter βc = ωJRC determining the damping (McCumber, 1968). The

characteristic frequency is defined as ωJ =
√

2eIc/(~C) = 1/
√
L0C, and corresponds

to the resonance frequency of the undamped oscillator circuit in the limiting case of

small amplitudes when sinφ ≈ φ. These plane wave solutions are a type of plasma
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oscillations, whereas the electric current and field are oriented normal to the barrier.

The oscillatory behaviour can be understood in terms of an exchange between the

inductive and capacitive energy terms.

It is interesting to note that equation (4.9) has a mechanical analogue, which

describes a physical pendulum attached to a pulley as illustrated in figure 4.1 D. The

superconducting phase difference is thereby replaced by the angle θ of the pendulum

with respect to the vertical direction, while the applied torque Γ replaces the external

current. The average angular velocity of the mechanical pendulum corresponds to

the voltage across a weak link. By introducing the dimensionless time coordinate

t→ ωRt, the equation of motion for the pendulum reads (Altshuler and Garćıa, 2002)

θ̈ + ν θ̇ + sin θ = Γ/Γc , (4.10)

where ωR is the resonance frequency of the linearised problem, and ν determines the

damping. The parameter Γc denotes the critical value of the torque, that lets the

pendulum tip over its pivot.

With the help of the pendulum analogue, one can obtain qualitative insight into

the different types of Josephson junction dynamics. As the external torque Γ increases

from zero, the deflection angle of the pendulum increases, achieving an equilibrium

position θ0 for a given torque. The angular velocity of the pendulum is zero in this case.

Hence, the behaviour is analogous to the d. c. Josephson effect when the interlayer

phase difference is finite and a constant supercurrent flows (I < Ic, φ = φ0, V = 0).

If the torque is increased above it’s critical value Γc when the pendulum is aligned

horizontally (θ = π/2), the system starts to swing and the angle θ increases in time

with an average angular velocity determined by the torque. This is analogous to the

oscillating supercurrents of the a. c. Josephson effect (I > Ic, φ ∝ t, V 6= 0). The

resonance frequency ωR of the pendulum in the approximation sin θ ≈ θ corresponds to

small amplitude oscillations around the equilibrium position θ0 = 0. This mechanical

resonance is the analogue of Josephson plasma waves.
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4.2 Electrodynamics of Long Josephson Junctions

The electrodynamics of long two-dimensional Josephson junctions can be understood

by considering Maxwell’s equations, relating the magnetic field B to the electric

current J and electric field E as

∇×B =
4π

c
J +

εr
c

∂E

∂t
, (4.11)

where c is the speed of light, and εr the relative dielectric constant of the barrier

material. The junction is supposed to lie in the plane z = 0, having a separation s

(see figure 4.2 A). The magnetic field is assumed to have nonzero x- and y-components,

while the electric field is parallel to the z-axis (with ẑ being the unit vector along the

same direction). Then, the phase difference across the junction obeys

∇φ =
2π(2λ+ s)

Φ0

B× ẑ , (4.12)

where Φ0 = hc/2e is the flux quantum, and λ the London penetration depth. The

z-component of the total current Jz is composed of two contributions stemming from

superconducting and quasiparticle tunnelling as

Jz = Jc sinφ+ σV/s . (4.13)

Here, σ is the quasiparticle conductivity. Combining the expressions (4.11)-(4.13) and

introducing the Josephson penetration depth as λJ =
√
cΦ0/[8π2Jc(s+ 2λ)] gives rise

to the sine-Gordon equation for the relative phase (Josephson, 1965; Hu and Lin, 2010)

∂2φ

∂x2
+
∂2φ

∂y2
− 1

c′2
∂2φ

∂t2
− β′

c′2
∂φ

∂t
=

1

λ2
J

sinφ , (4.14)

with the Swihart velocity c′ = c/
√
εr(1 + 2λ/s), and the damping coefficient reading

β′ = 4πσ/εr. In the stationary limit of small phases φ and if dissipation is neglected,
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Figure 4.2: Nonlinear modes of long Josephson junctions. A: Schematic of a long Josephson
junction with spatial separation s. B: The upper panel depicts a kink (solid line) and antikink (dotted
line), corresponding to a 2π phase twist of the interlayer phase difference φ along the x-direction (the
phase is assumed to be uniform along the y-axis). The lower panel shows sinφ of the kink, which
is equal to the normalised supercurrent distribution J/Jc. As can be seen from the resulting loop
of circulating current (red curve), a kink corresponds to a Josephson vortex oriented perpendicular
to the junction, with a vortex core confined in-between the electrodes. C: The upper panel shows
a breather for three different points in time. A breather is a bound-state kink-antikink pair, which
oscillates around a common centre of mass position. Large amplitude breathers correspond to vortex-
antivortex pairs (the red curves indicate the resulting currents). D: Binding energy of breathers versus
relative frequency. The binding energy converges to twice the rest energy of a single vortex Ek at low
frequencies, while approaching zero close to the Josephson plasma frequency (Eilbeck et al., 1981).

equation (4.14) has the character of a London-type penetration equation ∇2φ = λ−2
J φ.

This means that the Josephson current is confined in a distance of λJ from the edges

of the electrodes due to screening by the self-generated magnetic field.

Equation (4.14) describes the full electrodynamics of the long Josephson junction.

It represents a nonlinear partial differential equation and a general solution has not

been found yet. However, some special cases can be treated analytically.

In the limit of small amplitudes (sinφ ≈ φ) and negligible damping, the system can

show collective oscillations of Cooper-pairs between the two electrodes at the Joseph-

son plasma frequency ωJ = c′/λJ . The electric field is oriented along the z-direction

and the mode corresponds to a longitudinal plasma wave. Contrary, solutions of the

form φ(x, y, t) = φ0exp{i(k · r − ωt)} give rise to transverse plasma wave solutions

with the dispersion relation ω2 = ω2
J + c′2k2. Thus, c′ defines the minimum phase and

maximum group velocity of linear electromagnetic waves in long Josephson junctions.

In the extremely nonlinear regime, equation (4.14) gives rise to soliton solutions

(Martinov and Vitanov, 1992). For the sake of presentability, it is convenient to

consider solutions depending on the spatial coordinate x only, while the phase is
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assumed to be uniform along the y-axis. For the full two-dimensional solution, giving

rise to well-defined vortices that are localised in the xy-plane, please consult (Martinov

and Vitanov, 1992). The one-dimensional form, however, captures the basic physics

of the Josephson vortex as discussed in chapter 7 of this thesis, owing to the system’s

isotropy within the xy-plane. Introducing the coordinates x→ x/λJ , and t→ ωJt, the

fundamental nonlinear modes can be categorised in two classes, (i) kink or antikink,

and (ii) breather solutions (Eilbeck et al., 1981)

(i) φ(x, t) = 4 tan−1 [exp{±γ(x− x0 − ut)}] , (4.15)

(ii) φ(x, t) = 4 tan−1

[√
1/ω2

b − 1 sin θI sech θR

]
. (4.16)

Here, θI = γωb [t− u(x− x0)], θR = γ
√

1− ωb(x− x0− ut), and γ = 1/
√

1− u2. The

(dimensionless) velocity u can take the values 0 < u < 1, corresponding to 0 < u < c′

in real units. The Swihart velocity thus defines the maximum speed of propagation.

The first solution (i) is called kink or antikink, depending on the sign of the

argument in the exponent. As shown in figure 4.2 B, the kink or antikink represents a

twist of the phase between the zero energy constant solutions φ = 0 and φ = 2π, or vice

versa. The resulting current distribution of the kink (antikink) illustrates that these

solutions correspond to vortex (antivortex) states in the junction, with supercurrents

circulating around the superconducting vortex core. Because
∫∞
−∞

∂φ
∂x
dx = 2π , solitons

carry one quantum of magnetic flux, which is why they are also called fluxons. The

energy carried by a fluxon is Ek = 8γ, determined by the velocity.

The breather solution (ii), displayed in figure 4.2 C, can be viewed as a bound

state kink-antikink pair oscillating with the (dimensionless) frequency ωb. Thereby,

the oscillation frequency ωb represents a parameter which can be freely chosen within

the interval 0 < ωb ≤ 1. In real units this means for the frequency 0 < ωb ≤ ωJ .

Hence, a small amplitude breather is oscillating with the Josephson plasma frequency

ωJ . Figure 4.2 D depicts the binding energy, which is given by Eb = 2Ek
√

1− ω2
b .

The binding energy goes to zero as ωb → 1, and the breather can be considered as a
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coherent spatially confined excitation of linear plasmons. Transforming back into real

time units, this means that the binding energy vanishes as the frequency gets close

to the Josephson plasma frequency ωJ . For ωb → 0, the breather energy Eb = 2Ek

approaches twice the energy of a single kink (antikink). Contrary to vortex solutions,

there is no threshold energy required for the creation of breathers, and a relatively

small inhomogeneous driving force is expected to excite a low energy breather mode

(Eilbeck et al., 1981).

4.3 Stacks of Josephson Junctions

When stacks of Josephson junctions are formed by connecting a number of long later-

ally extended weak links (of dimension larger than the Josephson penetration depth

λJ) in series, inter-junction coupling leads to intriguing collective phenomena. As de-

scribed in chapter 5 of this thesis, layered cuprate superconductors represent stacks of

intrinsic Josephson junctions. The linear Josephson properties of cuprates have been

examined in a variety of experiments, including current-voltage (Kleiner et al., 2000)

and terahertz spectroscopy measurements (Tamasaku et al., 1992; Thorsmølle et al.,

2001). The latter becomes possible since external terahertz fields couple resonantly to

the Josephson plasma waves in cuprates. In the present thesis, the nonlinear regime

of plasma excitations is exploited using high-field terahertz radiation.

In the following, a stack of Josephson junctions is theoretically investigated ac-

cording to figure 4.3 A, with the superconducting electrodes parallel to the xy-plane,

being separated by the distance s. A weak electric field is assumed to be parallel

to the z-axis, whereas the magnetic field is parallel to the xy-plane. The Josephson

coupling between planes can be analysed on the basis of the Lawrence-Doniach model

(see section 3.5), which relates the superconducting phase difference in the lth layer

to the current Jl and the magnetic field Bl as (Lawrence and Doniach, 1971)

∇xyφl =
8π2λ2

ab

cΦ0

(Jl+1 − Jl) +
2πs

Φ0

Bl × ẑ . (4.17)
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Here, the del operator∇xy = ( ∂
∂x
, ∂
∂y
, 0) is acting in the lateral xy-direction. Neglecting

charging effects of the layers, the current conservation dictates (Hu and Lin, 2010)

∇xy · (Jl+1 − Jl) = −1

s
∆dJ

z
l , (4.18)

with Jzl being the current across the lth junction. ∆d represents a difference operator

acting along the z-direction and is defined as ∆dJ
z
l = Jzl+1 + Jzl−1 − 2Jzl . Using

the Maxwell relations ∇ ·E = 4πρ/εr and equation (4.11), expression (4.17) can be

written in the form

∇2
xyφl =

(
1− λ2

ab

s2
∆d

)(
8π2s

Φ0c

∂Jzl
∂t

+
2πsεr
Φ0c

∂Ez
l

∂t

)
. (4.19)

Substituting Jzl by the Josephson current relation (4.13) with Jc = cΦ0/(8π
2λ2

cs), and

using the a. c. Josephson equation (4.5), the phase evolution is governed by

λ2
c∇2

xyφl =

(
1− λ2

ab

s2
∆d

)(
sinφl +

4πσλ2
c

c2

∂φl
∂t

+
λ2
cεr
c2

∂φ2
l

∂t2

)
. (4.20)

By introducing the dimensionless variables x → x/λc, y → y/λc, and t → ωJt, this

expression can be equivalently written as

∇2
xyφl =

(
1− κ∆d

)(
sinφl + β

∂φl
∂t

+
∂φ2

l

∂t2

)
, (4.21)

where κ = (λab/s)
2 is the constant of inductive coupling, the dimensionless damping

parameter is given by β = 4πσ/(ωJεr), and the Josephson plasma frequency reads

ωJ = c/(λc
√
εr). For phase differences uniform along the z-axis, this expression is

equivalent to equation (4.14) for a single junction.

In analogy to a single weak link, small amplitude Josephson plasma wave solutions

exist. The dispersion relation for a purely transverse plasma wave travelling along the

x-direction reads ω2 = ω2
J+c′2k2

x, where c′ = c/
√
εr is the light velocity in the material.

Thus, the dispersion is qualitatively identical to the relation for the transverse mode
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Figure 4.3: Physics of stacks of Josephson junctions. A: Schematic of a stack of Josephson
junctions separated by the distance s. B: Dispersion relation of small amplitude transverse (solid
line) and longitudinal (dashed line) Josephson plasma waves propagating in a stack of junctions. C:
Summary of novel effects predicted in reference (Savel’ev et al., 2006) for nonlinear Josephson plasma
waves in layered superconductors under the approximation sinφ ≈ φ− φ3/6 in equation (4.22).

in a single junction, differing only in the temporal and spatial constants involved.

For nonuniform phase differences along the z-direction, the dispersion of the lon-

gitudinal plasma waves can be determined by incorporating charging effects of the

superconducting electrodes (Hu and Lin, 2010). With the Debye length µ, defining

the distance over which mobile charge carriers screen out an electric field, the longi-

tudinal plasma dispersion reads ω2 = ω2
J + c2µ2k2

z/λ
2
c . In the limit of small charging

effects when µ→ 0, this expression reduces to the constant relation obtained for the

single junction. Since µ� λc for the intrinsic stacks of junctions under investigation

in this thesis, the dispersion is much smaller than for the transverse wave as depicted

in figure 4.3 B.

In the limit of long wavelengths compared to the interlayer spacing, the difference

operator in equation (4.21) can be treated in the continuum approximation, yielding

the sine-Gordon equation (Savel’ev et al., 2006)

∇2
xyφ =

(
1− ∂2

∂z2

)(
sinφ+ β

∂φ

∂t
+
∂φ2

∂t2

)
. (4.22)

Linear small amplitude longitudinal and transverse plasma waves which can be de-

scribed with this equation have been observed experimentally in a number of Joseph-

son junctions (Tamasaku et al., 1992; Kadowaki et al., 1997; Thorsmølle et al., 2001).

Furthermore, the nonlinear regime has been explored in experiments and theory. The
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evolution equation (4.21) has been applied for instance to understand vortex dynamics

in Josephson systems (Kleiner et al., 2000; Hu and Lin, 2010).

Some recent theoretical investigations have predicted a range of intriguing nonlin-

ear phenomena in the intermediate weakly nonlinear regime when sinφ ≈ φ − φ3/6

(Savel’ev et al., 2006). Analogous to conventional nonlinear optics, nonlinear Joseph-

son plasma waves are predicted to give rise to effects such as higher harmonic gener-

ation at terahertz frequencies, slowing down of electromagnetic radiation, nonlinear

pumping of weak waves, and electromagnetically induced transparency below the

plasma frequency (see the summary in figure 4.3 C). Cuprate superconductors, which

represent stacks of intrinsic Josephson junctions as outlined in the next chapter, are

expected to give rise to these nonlinear phenomena when subject to sufficiently strong

terahertz fields.



Chapter 5

The Cuprate La2−xSrxCuO4

High critical temperature (Tc) cuprate superconductors are generally considered to

be quasi two-dimensional systems in which mobile charge carriers primarily reside

within weakly coupled copper oxygen (CuO2) planes. The superconducting layers are

separated by neighbouring dielectric planes that contain atoms such as lanthanum,

strontium or barium. These atoms act as charge reservoirs that control the doping

of the CuO2 planes with free carriers and represent spacers delivering stability and

determining the level of anisotropy. The un-doped parent compounds of cuprate su-

perconductors have insulating character, accompanied by antiferromagnetic ordering

at low temperatures. The phase diagram in figure 5.1 A highlights qualitatively the

emergence of superconductivity in dependence of temperature for hole-doped cuprates.

Cuprates can be categorised according to the constituent elements and the number

of CuO2 layers building the superconducting blocks. Substitution of divalent Sr for

trivalent La in the antiferromagnetic insulator La2CuO4 introduces mobile holes into

the copper-oxygen layers and leads to superconductivity in La2−xSrxCuO4. Here, the

doping level is expressed in terms of the fractional number x. La2−xSrxCuO4 repre-

sents a prototype high critical temperature superconductor, adopting the perovskite-

like crystal structure depicted in figure 5.1 B with one CuO2 plane per unit cell.

The copper oxygen planes resemble checkerboards with a Cu2+ ions at the centres of

squares whose corners are taken by O2− ions. Oxygen ions surround the copper ions
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Figure 5.1: Microscopic properties of the cuprate La2−xSrxCuO4. A: Simplified phase dia-
gram of hole-doped cuprate superconductors. The parent compound represents an antiferromagnetic
insulator (AFI). Doping of holes leads to the emergence of metallic transport (ME). At low tem-
peratures, a superconducting (SC) dome develops. B: The unit cell of La2−xSrxCuO4, highlighting
the perovskite crystal structure. Copper atoms are at the corners of the unit cell, which contains
a single superconducting copper oxygen layer (Lee, 2008). C: The superconducting planes resemble
a checkerboard pattern with copper atoms located at the centre of squares defined by four oxygen
atoms. The parent compound is an insulator due to the repulsive Coulomb interaction of the elec-
trons. The ferromagnetic exchange interaction J permits a finite hopping amplitude t. As holes are
introduced into the planes by doping, the charge carriers become mobile and metallic conductivity
develops (Lee et al., 2006). D: The copper oxygen octahedra form stacks of CuO2 layers lying in the
ab-plane. The CuO2 planes have a separation of ∼ 6.6 Å (Kubo et al., 2009). Charge dynamics along
the perpendicular c-axis can be understood by invoking Josephson coupling between the planes.

to form octahedral cages, separated from each other by sheets containing lanthanum

and strontium ions. The unit cell is rotated by 45◦ from the checkerboard pattern,

where the centre and corners are taken by the copper ions (Lee et al., 2006; Lee, 2008).

The electronic properties of the copper oxygen layers are determined by the dop-

ing level, and the parent compounds of cuprate superconductors are typically Mott

insulators. In a copper oxygen layer of La2CuO4, which is schematically depicted in

the upper panel of figure 5.1 C, each copper atom has one loosely bound electron that

in principle has the potential to move from one copper atom to another carrying an

electrical current. However, because of the repelling Coulomb interaction of electrons

at adjacent lattice sites, the system has an insulating character. In addition, the un-

doped material gives rise to antiferromagnetism, a state of spin order without bulk

magnetisation. The forces between the electrons’ magnetic moments lead to neigh-

bouring spins pointing in opposite directions, such that an alternating spin-orientation

pattern develops across the material. The spin-ordered state, which arises due to the
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antiferromagnetic exchange interaction J , diminishes the virtual hopping amplitude

t between the lattice sites (Lee, 2008).

When lanthanum atoms are replaced by strontium and the doping level rises from

zero (x > 0) as depicted in the lower panel of figure 5.1 C, the material turns from an

insulator to a conductor. This is because the electron affine strontium atoms attract

the loosely bound electrons from the copper atoms. The introduction of electron

vacancies leads to greater charge mobility as the Coulomb repulsion declines locally

(see figure 5.1 A). At even larger doping values, the material becomes superconducting

when the temperature is reduced below the critical value Tc. Optimal doping is defined

as the level at which Tc reaches its maximum value, accounting for x ≈ 0.2 in many

copper oxides. In the superconducting phase, carriers move freely within the copper

oxygen planes (ab-axis), while the out-of-plane (c-axis) electrodynamics are dominated

by quantum tunnelling between the CuO2 layers (Lee, 2009).

More than 25 years after their discovery, possible mechanisms for pair-binding in

high-temperature superconductors are still the subject of considerable debate (Lee,

2008). However, tunnelling between planes makes possible three-dimensional coherent

transport in cuprates, and the c-axis electrodynamics can be understood by consider-

ing stacks of intrinsic Josephson junctions (see figure 5.1 D).

The Josephson coupling, however, also depends on the doping level. For optimal

doping with x = 0.16, the Josephson plasma resonance frequency in La2−xSrxCuO4

reaches a maximum value, and the superconducting state is characterised by a homo-

geneous superfluid density in the planes. As a result, a description of c-axis transport

in terms of the two fluid model (see chapter 3.3) is possible (Dordevic et al., 2003).

In the normal state, the resistivity ratio was measured to be ρc/ρab ≈ 450 at

T = 40 K in the sample used in the experiments described in this thesis. In the

superconducting state, the anisotropy ratio of the penetration depth is γ = λc/λab ≈

15. The directional anisotropy of La2−xSrxCuO4 leads to inherently different charge

dynamics depending on the direction of carrier transport. In the following sections,
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terahertz time-domain spectroscopy measurements probing the in- and out-of-plane

response of optimally doped La2−xSrxCuO4 are being presented.

5.1 c-Axis Electrodynamics of La1.84Sr0.16CuO4

Apart from vanishing d.c. resistivity and the manifestation of the Meissner effect

through the development of a −1/ω2 frequency dependence of the real permittivity,

the c-axis electrodynamics in the superconducting state are characterised by a third

key feature. The combination of the layers’ capacitive coupling and tunnelling be-

tween the planes, which has an equivalent inductive impedance, gives rise to collective

plasma oscillations of Cooper-paired electrons, or Josephson plasma waves (Orenstein

and Mills, 2000). The insulating planes in layered cuprates have thicknesses of the

order of interatomic distances, resulting in plasma frequencies in the terahertz regime.

The Josephson plasma resonance in cuprates, typically investigated using frequency

domain techniques (Tamasaku et al., 1992), can be observed directly by time-domain

terahertz spectroscopy (Thorsmølle et al., 2001).

Figure 5.2 A shows single-cycle terahertz time-domain spectroscopy transient

recorded by electro-optic sampling after reflection from the optimally doped cuprate

La1.84Sr0.16CuO4. The terahertz electric field is polarised parallel to the c-axis, prob-

ing the out-of-plane electromagnetic response. Measurements are carried out above

and below the critical temperature Tc = 36 K. At low temperatures, the onset of the

2-THz Josephson plasma resonance is apparent in the long-lived oscillations on the

trailing edge of the reflected pulse (red line). In the frequency domain, the plasma

edge emerges in the amplitude of the Fourier transform of the two transients as shown

in figure 5.2 B. While the reflected field gains spectral weight at low frequencies, a

sharp dip develops close to ∼ 2 THz.

In order to deduce the absolute sample reflectivity, the incident pulse has to be

recorded for comparison. Here, the incident field is determined after reflection from

a gold-coated portion of the sample surface. The frequency-dependent complex re-
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Figure 5.2: Out-of-plane equilibrium constants of La1.84Sr0.16CuO4. A: Time-dependent
terahertz transients detected after reflection from La1.84Sr0.16CuO4 above and below Tc. For T < Tc,
long lived oscillations on the trailing edge of the pulse signal the onset of interlayer Josephson
coupling. B: Fourier amplitude of the probe traces versus frequency. Spectral weight increases at
low frequencies for T < Tc, and a well-defined edge appears at ∼ 2 THz. C: Intensity reflectivity
in dependence of frequency. For T > Tc, the reflectivity is featureless and almost constant. A well-
defined reflectivity edge develops at ∼ 2 THz for T < Tc. D: Real part of the relative permittivity
as a function of frequency. For T > Tc, the real permittivity is almost constant and positive.
When T < Tc, a −1/ω2 frequency dependence arises, reflecting the superfluid response. The real
permittivity crosses zero at the Josephson plasma frequency ωJ/2π. A fit of the reflectivity edge with
the two fluid model reproduces the data (dashed line). E: Real part of the conductivity in dependence
of frequency. The real part is featureless over the whole frequency range for T > Tc. For T < Tc,
the conductivity decreases, reflecting diminishing quasiparticle absorption. A fit of the reflection
edge with the two fluid model reproduces the measurement (dashed line). F: Normalised Josephson
plasma frequency ωJ(T )/ωJ(0) in dependence of the temperature. With increasing temperature,
the plasma resonance shifts to lower frequencies and disappears as T → Tc. The data can be fitted
(dashed line) based on the weak-coupling BCS theory in (Mühlschlegel, 1959; Homes et al., 2004).
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flection coefficient r(ω) = Erefl(ω)/Einc(ω) is then derived as the ratio of the Fourier

transforms of the reflected and incident fields. The intensity reflectivity |r(ω)|2 is dis-

played in figure 5.2 C. Above the superconducting transition temperate (T > Tc), the

c-axis response is insulator-like and the reflectivity essentially featureless at a level of

about 55% (black line). However, as the sample undergoes the superconducting tran-

sition (T < Tc), the reflectivity characteristics change dramatically (red line). The

reflectivity approaches unity at low frequency, but drops sharply at about 2 THz. At

higher frequencies, the reflectivity approaches that of the normal state. These mea-

surements, which are reminiscent of the plasma edge observed in conventional metals

(Kittel, 2005), reproduce the well-characterised Josephson plasma resonance in this

compound (Tamasaku et al., 1992; Dordevic et al., 2003; Gerrits et al., 1994).

Having determined the reflection coefficient r(ω), the equilibrium optical proper-

ties can be deduced using Fresnel’s equations as described in section 2.1 above. Since

measuring the incoming field after reflection from the thin gold layer on the sample

introduces a small uncertainty in the phase of the transients, the reflectivity edge in fig-

ure 5.2 C was simultaneously fitted with the two fluid model. Figure 5.2 D displays the

real part of the complex frequency-dependent relative permittivity Re{ε(ω)}. Above

the transition temperature, the real permittivity is almost frequency-independent and

determined by the high-energy phonon contribution ε∞. The plasmon is overdamped

and can not be observed in the normal state (black line). For T < Tc, the damping

vanishes, and the superfluid response gives rise to the characteristic −1/ω2 frequency

dependence (red line). The reason for this is that the real part of the permittivity is

directly related to the superfluid density ρ as Re{ε(ω)} = −ρ/ω2, which represents

a measure for the condensate stiffness at equilibrium (see section 3.3 above). The

interplay of phonon background and superfluid contribution leads to the zero crossing

of the real permittivity at the Josephson plasma frequency ωJ/2π ≈ 2 THz. A fit of

the two fluid model to the reflectivity edge reproduces the measurements of the real

permittivity at both temperatures (thin dashed lines).
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The real part of the optical conductivity, reflecting the amount of dissipation of

electromagnetic energy in the medium, is displayed in figure 5.2 E. The real conductiv-

ity is indicative of an insulating state for T > Tc (black line), since charge transport

along the c-axis is incoherent and dominated by interlayer hopping. Upon cooling

through the transition temperature, the material shows a depression of the real con-

ductivity at terahertz frequencies, because electron pairs form and enter the conden-

sate. However, a residual conductivity remains even at low temperatures (T � Tc),

and no evidence can be found for the emergence of the superconducting gap. The real

part of the conductivity is reproduced by a fit of the two fluid model to the reflectivity

edge (thin dashed lines).

Figure 5.2 F summarises the temperature dependence of the Josephson resonance

in La1.84Sr0.16CuO4, reporting the plasma frequency ωJ as a function of temperature

T on a normalised scale. For low temperatures, the plasma frequency increases and

saturates, corresponding to a strengthening and eventual saturation of the superfluid

density. As the temperature approaches Tc from below, the plasma frequency contin-

uously tends to zero, reflecting the disintegration of the condensate. The measured

characteristics of the plasma frequency in La1.84Sr0.16CuO4 are well-fitted by utilising

the temperature-dependence of the superconducting gap energy, which is predicted

by the BCS theory assuming a transition temperature of Tc = 38 K (Mühlschlegel,

1959; Homes et al., 2004).

5.2 ab-Plane Electrodynamics of La1.84Sr0.16CuO4

Vanishing d. c. resistivity and the expulsion of magnetic fields for ω → 0 through the

Meissner effect are the two defining properties of the in-plane superconducting tran-

sition. Terahertz time-domain spectroscopy can be applied to examine the transition

experimentally.

Figure 5.3 A shows the Fourier amplitudes of time-domain spectroscopy measure-

ments in which the terahertz electric field polarisation is parallel to the supercon-
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Figure 5.3: In-plane equilibrium reflectivity of La1.84Sr0.16CuO4. A: Fourier amplitude
of terahertz transients detected by electro-optic sampling after reflection from La1.84Sr0.16CuO4 in
dependence of frequency. The electric field is polarised parallel to the ab-layers, probing the in-plane
response. In the superconducting state, spectral weight increases almost independent of frequency
with respect to the normal state. B: Amplitude ratio |E40K(ω)|/|E5K(ω)| as a function of frequency.
The relative reflectivity is fitted with the two fluid model (dashed line).

ducting layers, probing the in-plane response. As highlighted in figure 5.3 B, the

relative reflectivity increases almost frequency independent by several percent when

the sample is cooled below the transition temperature.

The complex ab-plane optical properties are determined by using literature values

for the two-fluid model description of La1.84Sr0.16CuO4, which reproduce the relative

reflectivity |E40K |/|E5K | measured in our experiment (dashed line in figure 5.3 B)

(Gorshunov et al., 1998; Fudamoto et al., 2003; Tajima et al., 2005; Basov and Timusk,

2005). Figure 5.4 A depicts the real part of the complex relative permittivity at both

temperatures below and above Tc. Above the critical temperature T > Tc, the in-plane

response is that of a bad metal, manifested in a featureless almost constant intensity

reflectivity at low frequencies, dropping sharply at the in-plane plasma edge located

at ∼ 120 THz. Accordingly, the real part of the normal state relative permittivity

is almost constant at low frequencies, taking a value close to zero. When entering

the superconducting state, the real permittivity develops the characteristic −1/ω2

frequency dependence, reflecting the stiffening of the condensate and the Meissner

effect as ω → 0.

Figure 5.4 B shows the real part of the conductivity. In the metallic state, the real
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Figure 5.4: Plot of literature values of the in-plane equilibrium properties of
La1.84Sr0.16CuO4. A: Plot of the real relative permittivity as a function of frequency. The con-
ductivity data is obtained using literature values of the well-characterised in-plane properties of the
material (Gorshunov et al., 1998; Fudamoto et al., 2003; Tajima et al., 2005; Basov and Timusk,
2005), which reproduce the relative reflectivity of figure 5.3 B (dashed line). For T > Tc, the real
permittivity is almost frequency-independent. Due to the superfluid response, the real part of the
permittivity develops a −1/ω2 dependence when T < Tc. B: Plot of the real conductivity as a func-
tion of frequency. When cooled below the transition temperature, the real conductivity increases
below ∼ 1 THz, and is strongly suppressed at higher frequencies when compared to the normal state.
The missing spectral weight is accumulated in the superconducting delta function at zero frequency.

part of the conductivity shows an almost frequency-independent behaviour over a wide

range up to several terahertz. Below the critical temperature, the real conductivity

decreases for frequencies above ∼ 1 THz, while it increases for smaller frequencies.

During the superconducting transition, the missing spectral weight in the real conduc-

tivity is accumulated in the superconducting δ function at zero frequency. However,

unlike conventional low-Tc materials, La1.84Sr0.16CuO4 does not show a well-defined

conductivity gap in the in-plane superconducting response. Instead, a residual ab-

sorption is inherent to these materials, meaning that the density of states is finite

at all energies. This is a scenario expected for d-wave superconducting transport,

however, the measured magnitude of the residual conductivity cannot be accounted

for within this framework for physically reasonable choices of the scattering rate and

measured transition temperatures (Quinlan et al., 1996).

The equilibrium optical properties of the optimally doped cuprate La1.84Sr0.16CuO4

presented in this chapter provide the foundation for determining the out-of-

equilibrium dynamics presented in the remaining part of this thesis.



Chapter 6

Bi-Directional Electric-Field

Gating of Superconductivity

In the superconducting state, tunnelling between planes underpins three-dimensional

coherent charge transport in cuprates. However, the interlayer tunnelling amplitude

is reduced when an order parameter phase gradient is established in the direction

perpendicular to the planes. As such, interlayer superconductivity along the c-axis

can be weakened if a strong electric field is applied in the same direction. Here, high-

field single-cycle terahertz pulses generated by tilted pulse front excitation in lithium

niobate are used to gate interlayer coupling in La1.84Sr0.16CuO4. Ultrafast oscillations

between superconducting and resistive states are induced, and the plasmon response

is switched on and off, without reducing the density of Cooper-pairs in the copper

oxygen layers. Indeed, in-plane superconductivity remains unperturbed, revealing a

non-equilibrium state in which the dimensionality of the superconducting transport

is time-dependent. The gating frequency is determined by the electric field strength

in the spirit of the a. c. Josephson effect. Non-dissipative, bi-directional gating of

superconductivity is of interest for device applications in ultrafast nanoelectronics and

represents an example of nonlinear terahertz physics, applicable to nanoplasmonics

and active metamaterials.
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6.1 Linear Josephson Plasma Resonance

Superconducting transport in layered cuprates can be understood by considering a

stack of intrinsic Josephson junctions, made of superconducting planes which are sep-

arated by insulating layers. Three key features characterise the c-axis electrodynamics

in the superconducting state. First, the d. c. resistivity vanishes, as superconductive

tunnelling shorts resistive transport through incoherent quasi-particles. Second, the

imaginary part of the conductivity displays 1/ω frequency dependence, reflecting dia-

magnetism and the Meissner effect as ω → 0. Third, the combination of tunnelling,

which has an equivalent inductive impedance, and capacitive coupling between the

planes, leads to collective plasma oscillations of superconducting electrons at terahertz

frequencies, or Josephson plasma waves (Orenstein and Mills, 2000).

These properties, which are typically measured in the frequency-domain

(Tamasaku et al., 1992), can be observed directly with time-domain terahertz spec-

troscopy (Thorsmølle et al., 2001). Figure 6.1 a shows one such electro-optic sampling

measurement of a single-cycle terahertz field, after reflection from the optimally-doped

cuprate La1.84Sr0.16CuO4 (Takagi et al., 1989; Shibauchi et al., 1994). In the super-

conducting phase (red curve), long-lived oscillations at 2-THz frequency appear on

the trailing edge of the pulse. The incident field is measured after reflection from a

gold-coated fraction of the sample surface. The frequency-dependent complex reflec-

tion coefficient r(ω) = Erefl(ω)/Einc(ω) is derived by dividing the Fourier transforms

of the time-dependent reflected field of figure 6.1 a by the incident one. The intensity

reflectivity |r(ω)|2 is displayed in Figure 6.1 b, and reproduces well the Josephson

plasma edge in this compound.

In figure 6.1 c, the complex frequency-dependent dielectric function ε(ω) of the

equilibrium low-temperature state is displayed, extracted by the procedure explained

in section 5.1 above. As for any plasmonic response, the real part Re{ε(ω)} is neg-

ative for ω < ωJ , where ωJ/2π ≈ 2 THz is the frequency of the Josephson plasma

resonance in La1.84Sr0.16CuO4. The imaginary part Im{ε(ω)} is nearly zero over the
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Figure 6.1: Linear optical response of La1.84Sr0.16CuO4. In La2−xSrxCuO4, x = 0.16 cor-
responds to the optimal doping level (Takagi et al., 1989). The anisotropy is a decreasing function
of doping, both in the normal and superconducting states. In the normal state, the resistivity ratio
decreases for x > 0.08, and is measured to be ρc/ρab ≈ 450 at T = 40 K in the sample used here. In
the superconducting state, the anisotropy ratio of the penetration depth is λc/λab ≈ 15. a: Reflected
terahertz electric fields from La1.84Sr0.16CuO4, above (black curve, 40 K) and below (red curve, 5
K) Tc = 36 K. The probe electric field is polarised along the c-axis, probing interlayer transport. b:
Electric field intensity reflectivity spectrum above (black curve, 40 K) and below (red curve, 5 K)
Tc = 36 K. c: Real and imaginary part of the frequency-dependent equilibrium permittivity ε(ω)
at 5 K. While Im{ε(ω)} is small indicating negligible dissipation, Re{ε(ω)} highlights the plasmonic
response crossing zero at the plasma frequency ωJ/2π ≈ 2 THz. d: Real and imaginary part of the
equilibrium conductivity σ(ω) in the superconducting state at 5 K. Re{σ(ω)} is small and almost
frequency-independent since the spectral weight is accumulated in the superconducting delta func-
tion at zero frequency. Im{σ(ω)} exhibits a 1/ω dependence representing the Meissner effect and
diamagnetic response as ω → 0. The figure was first published in (Dienst et al., 2011a).

whole frequency range, indicating negligible dissipation by non-superconducting quasi-

particles. In figure 6.1 d, the low temperature conductivity σ(ω) is displayed, which

is characterised by a vanishing real part for finite frequencies, and a 1/ω frequency

dependence in its imaginary component, Im{σ(ω)} = ρ/4πω. Here, ρ represents the

superfluid density, a measure for the stiffness of the condensate at equilibrium (Basov
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et al., 1999). These equilibrium transport properties have been discussed extensively

in the past, especially with regard to the controversial role of interlayer tunnelling in

high-Tc superconductivity (Anderson, 1998; Moler et al., 1998; Tsvetkov et al., 1998).

The present work aims at perturbing interlayer Josephson coupling without inject-

ing incoherent excitations, in order to gate c-axis transport at high frequencies. It is

known that interlayer transport can be altered statically by application of magnetic

(Schafgans et al., 2010) or electric fields (Kleiner and Müller, 1994). This is possible

because tunnelling across a weak link depends on the order parameter phase differ-

ence φ between the two superconductors, which is affected by application of external

electromagnetic fields (Josephson, 1962, 1964).

To obtain a simple estimate of the required terahertz field strengths, it is instruc-

tive to consider the voltage drop V, that corresponds to an induced phase difference

of π/2 according to the time integral of equation (4.5) above, yielding

φ(t) =

∫ t 2e

~
V (t′)dt′ ≡ π

2
. (6.1)

If the voltage V is assumed to be constant over the time duration of 1 ps this implies

V =
π

4e

~
1 ps
∼ mV . (6.2)

Thus, to achieve the gating effect on ultrafast timescales, interlayer voltage drops of

few to tens of mV are needed. This implies that for interlayer distances of the order

of 10 Å (Kubo et al., 2009), peak electric fields of tens of kV/cm are required since

Epump ∼
1 mV

1 nm
= 10

kV

cm
. (6.3)

Hence, application of the tilted pulse front technique introduced in section 2.3 above

allows to exceed the required fields by at least one order of magnitude assuming

modest focussing constraints.
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6.2 Experimental Realisation

High-field terahertz transients are achieved in the experiment using the tilted-pulse

front technique, which is applied to generate µJ single-cycle pulses by optical rectifi-

cation in LiNbO3 (Hebling et al., 2008a). The pulses are tuned to a centre frequency

of 450 GHz, well below the 2-THz Josephson plasma edge as displayed in figure 6.2.

The gate field wavelength is ∼ 0.65 mm, and can be focused down to spot sizes of

approximately 1 mm2, reaching field strengths up to 100 kV/cm. The gate field is

polarised perpendicular to the planes and is completely reflected, penetrating over a

distance of 5 µm as an evanescent wave.

The time-dependent reflectivity of La1.84Sr0.16CuO4 is probed both perpendicular

and parallel to the planes with a delayed terahertz probe pulse. The probe bandwidth

extends up to 2.5 THz and, for c-axis polarisation, it covers the Josephson plasma

edge (see figure 6.2). To extract the time-dependent conductivity, the amplitude- and

phase-resolved transients are fitted by the model described in section 2.4, considering

a 5-µm-thick surface layer of unknown conductivity, over an unperturbed semi-infinite

superconductor with the optical properties of figure 6.1 d.

The experimental realisation of the pump-probe apparatus is schematically shown

in figure 6.3. Near-infrared radiation of ∼ 800 nm central wavelength is delivered by

a titanium-doped sapphire laser at a repetition rate of 1 kHz. The pulse duration

accounts for ∼ 100 fs, while the average pulse energy is measured to be 3.7 mJ. The

initial laser output is split by a (98 % transmission, 2 % reflection) beamsplitter (BS1),

whereas the small reflected component is denoted EOS since it is used for electro-optic

sampling of the terahertz probe pulses.

The transmitted component is again divided by a (92 % transmission, 8 % reflec-

tion) beamsplitter (BS2). The smaller reflected part of the 800 nm light is used to

generate the broadband single-cycle probe pulses via optical rectification in a (110)-

cut zinc telluride (ZnTe) crystal of 500 µm thickness. The terahertz probe pulses

are subsequently focussed onto the sample using an off-axis parabola (OAP), and
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Figure 6.2: Characterisation of pump and probe pulses. Scaled spectra of terahertz pump
(thick black curve) and probe (thin black curve) pulses, overlaid to the La1.84Sr0.16CuO4 reflectivity
edge at 5 K (red curve). The inset shows typical time-domain transients of THz pump and probe
pulses measured by electro-optic sampling. The figure was first published in (Dienst et al., 2011a).

reflected at 45◦ (with respect to the surface normal) for coherent detection. To this

end, the probe is collimated and subsequently focussed onto the second zinc telluride

detection crystal of 1 mm thickness, spatially and temporally overlapping with the

near-infrared EOS beam. The main share of the split beam (at BS2) is used to gener-

ate the high-intensity terahertz radiation pump pulses by tilted pulse front excitation

in lithium niobate. The pump is focused onto the sample using an off-axis parabolic

mirror, spatio-temporally overlapping with the probe pulses.

It is important to discuss the minimum temporal resolution achievable in this

experimental setup. A measurement scheme with two translation stages is employed

in which the temporal delay between electro-optic sampling gate field at the zinc

telluride detection crystal and pump field is kept constant. This guarantees that

the measured terahertz probe transients experience as a whole the same pump-probe

time delay, avoiding artefacts that arise when the material response is faster than the

terahertz probe duration (Kindt and Schuttenmaer, 1999; Averitt et al., 2000). The

temporal resolution in this scheme is not limited by the terahertz pump pulse envelope

duration, but rather by the response time of the electro-optic detection system which

is on the order of 150 fs. The response is determined by the electro-optic sampling
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Figure 6.3: Experimental realisation of electric-field gating. An amplified titanium-sapphire
laser provides femtosecond pulses in the near-infrared. Single-cycle high-field terahertz pump pulses
are generated with the tilted pulse front technique and focussed onto the sample. The excited
sample is probed by terahertz time-domain spectroscopy. Optical delay lines regulate the relative
time delay between pump and probe pulses as proposed in references (Kindt and Schuttenmaer,
1999; Averitt et al., 2000). Terahertz generation, propagation and detection takes place in vacuum
to avoid absorption effects in air.

gate pulse duration, and by the coherence length of terahertz and optical pulse within

the zinc telluride crystal. In a 1 mm thick crystal the latter corresponds to 3 THz

(Nahata et al., 1996). A temporal resolution of 150 fs full width at half maximum

therefore is a safe assumption.

6.3 Ultrafast Electric-Field Gating

The key observation of this work is reported in the two-dimensional plots of figure

6.4 a, which display the frequency-dependent conductivities (real and imaginary part)

for different time delays τ between a 80 kV/cm single-cycle gate field and the probe

pulse. In the two upper panels, c-axis measurements are displayed. As the gate

electric field evolves in time, superconductive coupling vanishes for τ = 1.25 ps, as

qualitatively shown by the loss of spectral weight in the imaginary conductivity, and in

the corresponding gain of the real part. Remarkably, superconductive transport is re-

established within a few hundred femtoseconds (τ = 1.5 ps), when the conductivity of

the unperturbed superconductor is recovered. Oscillations between the states follow.
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Figure 6.4: Time-dependent optical conductivity. a: The upper panels show two-dimensional
plots of real and imaginary part of the c-axis conductivity σc(ω, τ) for different pump probe time
delays, measured at 5 K. Pump and probe polarisation are parallel to the c-axis. The pump field
strength is 80 kV/cm. For τ < 0, the lineouts reflect the unperturbed optical conductivity. As the
gate field progresses, the conductivity oscillates rapidly between resistive and superconductive states.
Oscillations persist for a couple of picoseconds, comparable to the Josephson coherence time. The
lower two panels display the low-temperature in-plane conductivity σab(ω, τ), measured by rotating
the probe polarisation by 90 degree to be parallel to the ab-plane, whilst the pump polarisation is
kept parallel to the c-axis. b: Lineouts of the real and imaginary part of the c-axis conductivity
σc(ω, τ) at the peaks and the troughs of the oscillations depicted in panel a, exhibiting resistive
(τ = 1.25 ps) and superconductive (τ = 1.5 ps) interlayer coupling. The figure was first published
in (Dienst et al., 2011a).
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Figure 6.4 b shows lineouts of the complex conductivity at the peaks and the

troughs of these oscillations. At negative time delays and in the recurring super-

conducting states, Re{σ(ω, τ)} nearly vanishes at all frequencies, whilst Im{σ(ω, τ)}

follows a 1/ω frequency dependence, as in figure 6.1 d. At time delays were resistive

states are established (dashed curve), the real conductivity is the dominant contribu-

tion and tends to a finite value σ0 for ω → 0, as expected for a Drude gas of incoherent

quasi-particles. Here, it is interesting to note the long scattering time (∼ 1 ps) for

the quasiparticle c-axis transport, which could be attributed to the decreased den-

sity of unpaired electrons compared to T > Tc. In the resistive state, the imaginary

conductivity still exhibits its 1/ω dependence, but with a strongly depleted pre-factor.

A second important observation results from the ab-plane conductivity, which re-

mains essentially unperturbed throughout these dynamics as displayed in the lower

panels of figure 6.4 a. Effectively, the dimensionality of the superconductivity oscil-

lates in time as the planes are decoupled, an exotic phenomenon never observed to

date. The fact that the in-plane optical properties do not show significant change rein-

forces the notion that the strong terahertz field perturbs the phase but does not ionise

the Cooper-pairs, maintaining the modulus of the order parameter unperturbed.

6.4 Field to Frequency Conversion

The physics observed here can be quantitatively discussed as follows. As can be seen

from equation (4.7) introduced in chapter 4 above, the interlayer coupling strength is

described by an equivalent tunnelling inductance L, which is proportional to 1/ cosφ

(Josephson, 1962). At equilibrium when φ ≈ 0, the inductance L is minimum and

transport by non-condensed, incoherent quasi-particles is optimally shorted. For weak

electric fields, a supercurrent Js is driven through the layers, and a gradient in φ

develops across the junction, as, according to the first Josephson equation, Js ∝ sinφ.

For large fields, as L increases, ohmic conduction by quasi-particles becomes rel-

evant and a voltage drop V develops across the junction. At this point the order
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Figure 6.5: Ultrafast electric field gating of superconductivity. The upper panel shows
the normalised integral of the measured terahertz pump transient as a function of time delay, being
proportional to the advancement of the interlayer phase difference φ(t) ∝

∫ t
Epump(t′)dt′. The lower

panel shows S(τ) = limω→0 ωIm{σ(ω, τ)} as a measure of interlayer coupling strength extracted
from our experimental data (red dots), together with error bars obtained from the low-frequency
extrapolation. The coupling strength is fit by the function | cos(c

∫ t
Epump(t′)dt′)| (black dashed

line), where c is left as free parameter. The figure was first published in (Dienst et al., 2011a).

parameter phase difference starts advancing in time according to the second Joseph-

son equation, that is, as φ̇ = 2eV (t)/~, where e is the electron charge and ~ Planck’s

constant. The tunnelling evolves then as L ∝ 1/ cosφ, diverging when φ crosses ±π/2,

and changing sign in between.

The upper panel of figure 6.5 reports the normalised time integral of the gate

electric field
∫ t
Epump(t

′)dt′, derived from the measured terahertz pump transients

Epump(t). The field integral is compared to the quantity S(τ) = limω→0 ωIm{σ(ω, τ)}

displayed in the lower panel, which represents the measured time-dependent strength

of c-axis superconducting transport (Basov et al., 1999). Under equilibrium condi-

tions, this quantity is proportional to the superfluid density ρ (see section 3.3 above).

Here, S(τ) is used as a measure of the non-equilibrium interlayer coupling strength,
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Figure 6.6: Pump-induced modulation of peak probe field. A: For an excitation fluence
below a certain threshold, the peak electric field of the probe pulse is modulated in time in conformity
with the measured time-dependent pump transient (grey line). When the excitation field strength
exceeds a critical value, a more rapid oscillation is superimposed onto the slow modulation (red line,
78 kV/cm). B: Fourier amplitude as a function of frequency for the two curves displayed in panel A.
For excitation above the threshold (red line, 78 kV/cm), the electric field is modulated at the pump
frequency (grey line), however, a distinct second spectral peak emerges at higher frequencies.

and is well-fitted by the function | cos(c
∫ t
Epump(t

′)dt′)| with only the constant c left

as free parameter. As the integral of the driving voltage evolves, and as φ crosses π/2,

the coupling S(τ) vanishes, recovering as φ is driven towards π. The model does not

fit well at low field strengths, as, according to the discussion above, the transport is

still superconducting and no voltage drop develops. At high fields, the model faith-

fully reproduces the measured non-equilibrium interlayer coupling strength S(τ) over

a large dynamic range.

The pump-induced oscillations of interlayer coupling can be investigated as shown

in figure 6.6 A by sampling the peak of the terahertz probe field as a function of time

delay (with respect to the pump pulse). Utilising a double-polariser configuration, it

is possible to tune the terahertz electric field strength with high accuracy. For electric

field strengths below a certain threshold, the peak probe field modulation resembles

the electro-optic sampling signal of the pump transients (grey line). As a critical field

strength is exceeded, an additional considerably faster oscillation is superimposed

onto the slow modulation (red line).

Taking the Fourier transform of the time-dependent traces and comparing the
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Figure 6.7: Field dependence of gating frequency. Modulation frequency as a function of
terahertz gate electric field amplitude with estimated systematic error. Two regions can be dis-
tinguished: For low amplitudes Epump < E?, the modulation occurs at the pump frequency (the
shaded area represents the full width at half maximum of the pump amplitude spectra). Above the
critical threshold E?, the modulation frequency increases linearly with field strength, reminiscent of
the a. c. Josephson effect. The figure was first published in (Dienst et al., 2011a).

amplitude to the pump spectrum as shown in figure 6.6 B reveals that the slow

modulation occurs at the pump frequency. As the critical pump amplitude is exceeded,

a second distinct amplitude component appears at higher frequencies. The higher

component of the superconductive-resistive oscillation frequency is shown in figure

6.7 in dependence of the pump field strength. Two distinct regions are identified.

Below E? ≈ 75 kV/cm, the transport is modulated at the frequency of the pump. In

this regime the interlayer phase difference is perturbed but it does not reach π/2 and

the coupling is never completely shut off. For field strengths above E?, the modulation

frequency increases linearly with the field in spirit of the a. c. Josephson effect.

To connect the threshold value E? under these non-equilibrium conditions quanti-

tatively to the material properties of La1.84Sr0.16CuO4, it is most intuitive to make an

argument based on energy scales. If one considers the energy gained by a pair of elec-

trons (2e) tunnelling from one CuO2 layer to the next across a gap of approximately
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0.7 nm (the CuO2 interlayer distance) being subject to electric fields of 75 kV/cm, one

finds that this energy is of about ∼ 10 meV, a number close to the superconducting

gap energy of optimally doped La1.84Sr0.16CuO4 (Ino et al., 1999).

6.5 Concluding Remarks

This voltage to frequency conversion is a new demonstration of nonlinear terahertz

physics† that could be extended to photonic devices and modulators, but also to

nanoplasmonic devices. In these applications, the rapid non-dissipative switching

properties of the electric-field gating effect could be utilised (Chen et al., 2006, 2007).

Secondly, the effect allows for potential applications to nanoelectronics, since it is

known that high-temperature superconductivity can be sustained in a single copper

oxygen plane (Logvenov et al., 2009). Because interlayer transport is determined by

short range tunnelling between neighbouring layers, this phenomenon could be applied

to single nanoscale junctions. Inspired by the present work, it would be interesting

to explore terahertz pulse sequences with voltage integrals that drive the phase by

multiples of π/2, in order to switch the dimensionality at will. These experiments

would be relevant below and above the Berezinskii-Kosterlitz-Thouless temperature,

corresponding to different regimes of stability for two-dimensional superconductivity.

Finally, strong field perturbations of interlayer couplings (Fausti et al., 2011) may be

used to test new ideas of the physics of cuprates, including the case of striped states

for which Josephson de-coupling might be important (Berg et al., 2007).

†It is important to emphasise that the experiment described here is sensitive to the carrier envelope
phase of the pump pulses. The signal observed represents a coherent response and is only present
during the temporal overlap of terahertz pump and probe transients. However, the signal is not due
to a mere “coherent artefact”. In degenerate pump-probe spectroscopy, this notation applies when
interference between the pump and probe pulses takes place, leading to a transient refractive index
grating in the sample, which results in a modulation of the probe traces. Importantly, this type of
wave-mixing is referred to as an artefact only when the time resolution is not high enough to extract
the underlying coherent physics (Lebedev et al., 2005). In this experiment, such an effect would occur
at the frequency of the pump, which is not the case. The clear indicator that the response is not
an artefact is the observation that the probed response changes and develops more oscillations when
the terahertz field strength is increased, while all other parameters, especially the time-dependent
terahertz electric field pulse form, are kept constant.



Chapter 7

Nonlinear Quantum Plasmonics in

a Cuprate Superconductor

An opaque medium can become transparent if absorption through two simultaneous

quantum paths is activated, leading to disruptive interference over a narrow spectral

window. This is a general mechanism that is for example realised in electromag-

netically induced transparency (EIT), as a strong laser field couples different atomic

levels and drives absorption to zero (Fleischhauer et al., 2005). Motivated by potential

applications in quantum technology, recent realisations of related effects have been de-

veloped, making use of plasma excitations in gases and metamaterials (Harris, 1996;

Liu et al., 2009), quantum opto-mechanics (Weis et al., 2010), and circuit quantum

electrodynamics (Joo et al., 2010). Here, strong-field narrowband terahertz pulses

from a free electron laser are used to resonantly excite nonlinear Josephson plasma

waves in the cuprate La1.84Sr0.16CuO4, creating a metastable state that is transparent

over a narrow spectral window. This is interpreted as the result of disruptive quantum

interference between the linear plasma waves propagating in the cuprate and optically

injected Josephson vortices, predicted by the sine-Gordon equation for the time- and

space-dependent order parameter phase. The observations demonstrate the potential

of layered superconductors for quantum nonlinear optics and show how such effects

can make it possible to track vortex excitations on the ultrafast timescale.
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7.1 Experimental Implementation

In the experiment reported in the present chapter, narrowband terahertz pump,

broadband terahertz probe measurements are performed to selectively study mul-

tiple nonlinear optical phenomena, which are expected to occur above, at, or below

the plasma resonance. To this end, an infrared free electron laser, which generates

50 ps pulses over a spectral bandwidth of ∼ 1 %, is combined with a terahertz time-

domain spectroscopy apparatus, and tuned to the 2-THz Josephson plasma resonance

of La1.84Sr0.16CuO4. A schematic of the experimental configuration is depicted in

figure 7.1. Single-cycle probe pulses are generated using a photoconductive emit-

ter excited by a femtosecond titanium-sapphire laser oscillator. The terahertz probe

spectrum covers an extended bandwidth monitoring the frequency-dependent response

around the 2-THz Josephson plasma resonance.

The narrow-bandwidth pump pulses are focused at the sample position reaching

field strengths of ∼ 2.5 kV/cm, a level that significantly perturbs the optical response

near resonance† (Savel’ev et al., 2006). The free electron laser pulses are characterised

using a Czerny-Turner type spectrometer, which is integrated part of the optical beam

diagnostics. The temporal duration of the pump pulses is determined by exploiting

the terahertz Kerr effect in zinc telluride (Hoffmann et al., 2009). Pump-probe time

delays are fine-tuned with an optical delay line, while the coarse timing is achieved

by offsetting the phase-locked loop that synchronises the laser oscillator and the free

electron laser. Both pump and probe are polarised along the c-axis of La1.84Sr0.16CuO4,

perpendicular to the superconducting planes of the cuprate. The multi-cycle free

electron laser pulses are tuned close to the plasma frequency, and the pump-induced

change in the reflection coefficient is probed as a function of relative time delay.

Terahertz time-domain spectroscopy can be applied to observe the linear plasma

resonance in the time- and frequency-domain (Thorsmølle et al., 2001; Tamasaku

†Consider the energy gained by a pair of electrons tunnelling between the CuO2 layers across a gap
of ∼ 1 nm being subject to electric fields of 2.5 kV/cm, one finds that this energy is ∼ 0.5 meV, which
is a sizeable fraction of the ∼ 7 meV phase stiffness energy of optimally doped La1.84Sr0.16CuO4.
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Figure 7.1: Experimental realisation of light-induced transparency. A free electron laser
(right) is combined with a terahertz time-domain spectroscopy apparatus (left), allowing for narrow-
band pump, broadband probe experiments at terahertz frequencies. The pump and probe pulses,
which are both polarised perpendicular to the copper oxygen layers of La1.84Sr0.16CuO4, are over-
lapped at the sample position. The relative time delay is fine-tuned using optical delay lines. The
experiment takes place in a vacuum chamber, which is directly connected to the free electron laser.

et al., 1992). Figure 7.2 reports a measurement of the linear c-axis optical properties

in the unexcited optimally doped cuprate La1.84Sr0.16CuO4, probed with broadband

terahertz pulses. Single-cycle terahertz transients are generated by a photoconductive

antenna illuminated by a femtosecond laser-oscillator, and measured after reflection

from the specimen by electro-optic sampling in a zinc telluride crystal. In the super-

conducting state (T � Tc = 36 K), long-lived 2-THz oscillations appear on the trailing

edge of the pulse (see figure 7.2 A). By calibrating the incoming electric field after

reflection from a gold-coated portion of the sample, the frequency-dependent complex

reflection coefficient is derived via Fourier transformation as r(ω) = Erefl(ω)/Einc(ω).

The frequency spectrum of the probe pulse, covering the Josephson plasma edge, is

plotted in figure 7.2 B, together with the intensity reflectivity |r(ω)|2 at 5 K.

Figure 7.2 C displays the real and imaginary part of the equilibrium relative per-

mittivity ε(ω) = ε1(ω) + i ε2(ω), determined by solving Fresnel’s equations and fitting

the reflectivity edge |r(ω)|2 with the two fluid model as described in chapter 5 above.

The real part Re{ε(ω)} is negative for ω < ωJ , and the reflectivity is nearly unity over

the whole range, as only an evanescent field penetrates into the solid. For ω > ωJ ,
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Figure 7.2: Linear plasmonics in La1.84Sr0.16CuO4. A: Reflected terahertz time-domain tran-
sients recorded above (red line) and below (black line) the critical temperature Tc = 36 K. In the
superconducting state, the plasma resonance is evident in the long-lived oscillations on the trailing
edge of the pulse. B: Frequency-dependent probe spectrum on a logarithmic scale (red line) overlaid
to the linear reflectivity edge (black line) measured at 5 K. C: Real and imaginary part of the com-
plex frequency-dependent equilibrium permittivity ε = ε1 + i ε2, determined at 5 K. D: Normalised
equilibrium loss function f(ω)/f(ωJ), with f(ω) = −Im{1/ε(ω)}, measured in the superconducting
state at 5 K. The loss function captures the Josephson plasma physics, giving rise to a Lorentzian
lineshape peaking at the resonance frequency with a width related to quasi-particle damping.

Re{ε(ω)} is positive and electromagnetic radiation can propagate inside the sample

in the form of plasmon-polaritons. The imaginary part Im{ε(ω)} is small but finite

over the whole frequency range, indicating weak dissipation by non-superconducting

quasi-particles (Tamasaku et al., 1992; Hu and Lin, 2010).

Figure 7.2 D exhibits the normalised equilibrium loss function f(ω)/f(ωJ), where

f(ω) = −Im{1/ε(ω)}. The physics of the Josephson plasma resonance is well encap-

sulated by this function, which exhibits Lorentzian lineshape and peaks at the plasma

frequency. Thereby, the width of the loss function is determined by quasi-particle

damping (Dordevic et al., 2003).
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7.2 Frequency-Selective Nonlinear Plasmonics

Figure 7.3 reports the time-dependent changes in reflectivity recorded for pump-probe

excitation at 2.3 THz (panel A), 2.2 THz (panel B), 2.05 THz (panel C), and 1.9 THz

(panel D). Three qualitatively different dynamics are observed. For excitation well

above the plasma edge (ωFEL > ωJ) as displayed in figure 7.3 A, a small increase of

the reflectivity closely above the resonance frequency is recorded, which is suggestive

of a marginal redshift of the edge. When the free electron laser is tuned closer to the

resonance as reported in figure 7.3 B, the redshift of the plasma edge becomes more

pronounced. The reflectivity decreases for frequencies below the Josephson plasma

frequency (ω < ωJ), while it increases for frequencies above (ω > ωJ).

Contrary, when the free electron laser is tuned on resonance (ωFEL ≈ ωJ) as shown

in panel 7.3 C, a drop in reflectivity at almost all frequencies is observed. Finally, for

pump frequencies below the Josephson resonance (ωFEL < ωJ) reported in figure 7.3

D, an increase in reflectivity for all frequencies above that of the pump (ω > ωFEL),

and decreases for frequencies below (ω < ωFEL) is detected. This latter observation

is suggestive of a mere reduction in the amplitude of the plasma edge, without a shift

to lower frequencies.

To understand the different types of dynamics in more detail, the time-dependent

optical properties of the photo-excited superconductor are extracted as follows. Start-

ing from the equilibrium reflection coefficient r0(ω) reported in figure 7.2 above, the

amplitude- and phase-resolved non-equilibrium coefficient r0(ω) + 6∆r(ω) is fitted for

each pump-probe time delay with a model that considers a surface layer of unknown

permittivity over an unperturbed semi-infinite superconductor (see chapter 2.4). The

scaling factor is motivated by the fact that the response is probed at 78 MHz, while

the pump repetition rate is 13 MHz. The thickness of the excited surface layer is fixed

to the pump-wavelength penetration depth. From these measurements, the time- and

frequency-dependent loss function is extracted, which is displayed in figure 7.4.

When the free electron laser is tuned well above the Josephson plasma frequency
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Figure 7.3: Reflectivity change for different excitation wavelengths. The upper panel of
each subfigure reports the measured free electron laser spectrum overlaid to the low-temperature
reflectivity of La1.84Sr0.16CuO4. The lower panels depict the corresponding relative change in the
frequency-dependent reflectivity as a function of time delay between the pump and probe pulses,
compared to the Kerr signal of the excitation (Hoffmann et al., 2009). The pump frequency in each
panel reads: A: ωFEL ≈ 2.3 THz. B: ωFEL ≈ 2.2 THz. C: ωFEL ≈ 2.05 THz. D: ωFEL ≈ 1.9 THz.
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(ωFEL > ωJ) as shown in figure 7.4 A, the loss function is minimally shifting to

the red, but essentially remains unperturbed. However, for excitation just above the

resonance, a rigid shift of the loss function to lower frequencies can be observed in

figure 7.4 B. The dynamics are short-lived and persist only as long as the pump field is

present. The redshift is readily understood by noting that, as the tunnelling current

depends nonlinearly on the phase difference (J ∝ sinφ), the inductance follows as

L ∝ 1/ cosφ, and in turn the Josephson plasma resonance frequency decreases as

ωJ ∝
√

cosφ, moving to the red for a strong applied field (Savel’ev et al., 2006).

As the excitation is tuned onto the resonance (ωFEL ≈ ωJ) as reported in figure

7.4 C, the nonlinear response becomes more pronounced and new features emerge.

During the first 50 ps, the time-dependent loss function shows a broadening to the

red, accompanied by a strong re-shaping. In the un-driven regime for time delays

greater than 50 ps, the formation of a long-lived dip is observed, extending over the

whole temporal window of our measurement. A similar dip is observed for excitation

closely below the resonance (ωFEL < ωJ), as depicted in figure 7.4 D. The upper panels

in figure 7.4 C and D show lineouts of the loss function in the un-driven regime at

time delays of 110 ps. The dips in the loss functions represent a significant reduction

of the coupling of the electromagnetic probe radiation to the Josephson plasma wave

excitations, implicating the development of a narrow transparency window.

The interpretation of this transparency effect is discussed in the following sec-

tions. In the proposed scenario, long-lived large amplitude nonlinear plasma waves,

excited by the narrowband free electron laser, destructively interfere with the probed

Josephson plasma waves. It has to be emphasised that spectral hole burning is a

further possible explanation for the transparency dip (Moerner and Bjorklund, 1988).

However, the fact that the unperturbed Josephson plasma resonance does not give

rise to an inhomogeneously broadened lineshape (one of the key requirements for hole

burning), and the observation that the loss function dip persists much longer than the

decoherence time of linear plasma waves, make this alternative scenario less likely.
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Figure 7.4: Time-dependent loss function. The lower panel of each subfigure reports the
frequency-dependent loss function, measured for different time delays between a 2.5 kV/cm multi-
cycle pump field and the probe pulse. The upper panel depicts lineouts of the loss function at relevant
time delays, overlaid to the spectrum of the free electron laser (grey line). The pump frequency for
each panel is: A: ωFEL ≈ 2.3 THz. B: ωFEL ≈ 2.2 THz. C: ωFEL ≈ 2.05 THz. D: ωFEL ≈ 1.9 THz.
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7.3 Quantum Plasmonics in Cuprates

The low-temperature optical properties of cuprate superconductors are, for terahertz

probe radiation polarised perpendicular to the copper oxygen planes, determined by

interlayer tunnelling. A layered cuprate can be thought of as a stack of long Josephson

junctions, with a tunnelling inductance L connecting capacitively coupled supercon-

ducting planes (see chapter 5). In the linear regime, a Josephson plasma resonance

ωJ = 1/
√
LC occurs at terahertz frequencies, where C is the capacitance of the planes.

Thus, a plasmonic response is observed, having a resonance frequency determined by

the superconducting interlayer tunnelling strength (Josephson, 1964). An external

small-amplitude terahertz field propagates into the superconductor for frequencies

larger than the resonance ω > ωJ , and is damped for ω < ωJ (Thorsmølle et al.,

2001; Tamasaku et al., 1992). For strong applied electromagnetic fields, pronounced

nonlinearities are expected to arise (Josephson, 1964; Savel’ev et al., 2006, 2010).

For large fields with frequency below the plasma resonance (ω < ωJ), as the

driving amplitude is attenuated over the c-axis penetration depth λc, the nonlinear

electrodynamics can be captured by local models (Josephson, 1964). In brief, as

the Josephson supercurrent scales as J ∝ sinφ, where φ is the order-parameter-phase

difference between the layers, the current grows sub-linearly and the Josephson plasma

resonance frequency shifts to the red for high electric fields (Dienst et al., 2011a).

For applied radiation with frequency close to the Josephson resonance, propagating

plasma modes arise, and both spatial and temporal phase dependence must be taken

into account. This regime is described by the sine-Gordon equation, which in one

dimension and in absence of dissipation reads (Hu and Lin, 2010)

λ2
c

∂2φ

∂x2
− 1

ω2
J

∂2φ

∂t2
− sinφ = 0 . (7.1)

In the case of small interlayer phase differences (sinφ ≈ φ), the sine-Gordon equation

reduces to a linear wave equation with solutions of the type φ = φ0 exp{i(kx−ωJt)}.
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Figure 7.5: Schematic of a Josephson vortex train in a light field. The upper panel depicts
the interlayer phase difference φ as a function of the spatial coordinate x. As the phase difference is
resonantly driven beyond π, the normal mode of the sine-Gordon equation becomes a train of phase
kinks, at which the current J changes sign, and the magnetic field B peaks, as shown in the lower
panel (Savel’ev et al., 2005; Alfimov and Popkov, 2006).

The plane electromagnetic waves propagate along the layers as Josephson plasmon-

polaritons, with dispersion relation ω2 = ω2
J + c′2k2, where c′ = c/

√
εr.

The functional forms of the normal modes of the nonlinear sine-Gordon equation

have been discussed in chapter 4.2 for long Josephson junctions. Two types of soliton-

like solutions exist, typically referred to as kinks and kink-antikink pairs. Single kinks,

which have been observed in various experiments (Eilbeck et al., 1981; Kleiner and

Müller, 1994), are regions of space in which the interlayer phase difference slips by 2π

along the superconducting link over one Josephson length.

In layered cuprates, the normal modes of the sine-Gordon equation are 2π phase

kinks of the general form (Savel’ev et al., 2005; Alfimov and Popkov, 2006)

φ = π + 2 arctan

(
2(x− vt)

l

)
. (7.2)

Here, the lateral vortex size l = sλc/λab = sγ in an intrinsic junction, defining the

core region in which the supercurrent is highly nonlinear, is determined by the su-

perconducting anisotropy γ and the interlayer spacing s. The maximum velocity of a

kink is given by vc = ωJ l, which is much smaller than the Swihart velocity limiting
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Figure 7.6: Dispersion relations and principle of quantum interference optical trans-
parency. A: Dispersion relations of linear (black line), and weakly nonlinear plasma waves (black
dotted line). These are shown in contrast to the dispersion of the Josephson vortex lattice (red
line). The nonlinear dispersion becomes one in which the group velocity is significantly reduced
in the vortex regime, limiting the region over which phase matched optical coupling to the plasma
waves can be achieved (Eilbeck et al., 1981; Savel’ev et al., 2006). B: Schematic of the three-level
quantum interference optical transparency process. The broad Josephson plasma resonance (JPR)
of frequency ω1 is probed linearly. The plasma waves interfere destructively with the coherent vortex
lattice (CVL), which represents a dark excitation and is spectrally narrow. ν denotes the coupling.

the vortex motion in a single long Josephson junction.

For a strong light field comprising many cycles spaced by one optical wavelength

λ� l, as is the case for terahertz radiation, the solution of the nonlinear sine-Gordon

equation is that of a train of such kinks. It should be emphasised that each kink

is to be thought of as a highly anisotropic Josephson vortex with the magnetic field

confined in the dielectric layers, and thus without a normal core (Kleiner et al., 2000).

A one-dimensional picture of the phase φ, current J , and magnetic field B is shown

in figure 7.5. The vortex structure exhibits a periodicity of one wavelength along the

propagation direction x, and of one interlayer spacing perpendicular to the planes. In

the following, this excitation is called coherent vortex lattice (CVL).

Figure 7.6 A shows the dispersion relations for the linear Josephson plasma waves

(black) and for the coherent vortex lattice (red), the latter having a linear dispersion

with slope v < vc. A coherent vortex lattice couples effectively to the plasma excita-

tions if phase- and group-velocity matching are simultaneously achieved, a condition

fulfilled only for frequencies ω ≈ ωJ , which is achievable with free electron lasers.
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7.4 Transparency Through Quantum Interference

Evidence for the coupling between linear plasma waves and the coherent vortex lattice

is found for excitation above the Josephson resonance (ωFEL > ωJ) only when pump

and probe pulses are temporally overlapped at the sample (see figure 7.4 B). Due to

enhanced phase matching, coupling to the vortex lattice is stronger if the free electron

laser is tuned on, or closely below, the plasma resonance (ωFEL / ωJ). Then, a dip

in the loss function and a broadening to the red are observed in the un-driven regime

after ∼ 50 ps (see figures 7.4 C-D). The dynamic formation of the vortices in the

driven regime is a highly nonlinear process requiring significant simulation effort, and

will thus not be detailed here (Eilbeck et al., 1981; Lomdahl et al., 1984).

Figures 7.6 B highlights the proposed interpretation of the transparency effect.

Linearly excited Josephson plasma waves, which are broad in energy as they rep-

resent radiative excitations, are an-harmonically coupled to the Josephson vortex

lattice, which is a non-radiative mode with significantly longer lifetime and narrow

linewidth. The nature of the coupling is magnetic, as the (along the x-axis) spa-

tially inhomogenous magnetic field B̃y of the Josephson plasma waves applies a force

Fx = My(∂B̃y/∂x) on the vortices acting parallel to the mutual propagation direction,

with My being the vortex magnetic moment. Because the magnetic field gradient is di-

rectly proportional to the superconducting phase difference across the layers (Savel’ev

et al., 2010), this situation is well described by a system of two differential equations

(see section 4.1) that have been applied in the past to model electromagnetically- and

plasmon-induced transparency in terms of coupled oscillators (Lukin and Imamoǧlu,

2001; Liu et al., 2009). In the situation encountered here, the two excitations of the

order parameter phase φ1 and φ2 correspond to the Josephson plasma waves and the

Josephson vortices, respectively (Joe et al., 2006; Miroshnichenko et al., 2010)

φ̈1 + γ1φ̇1 + ω2
1φ1 + νφ2 = A exp(iωt) , (7.3)

φ̈2 + γ2φ̇2 + ω2
2φ2 + νφ1 = 0 . (7.4)
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Here, ω1 and ω2 are the resonance frequencies of the excitations, γ1 and γ2 the damp-

ing, and A exp(iωt) is the probe field, which acts only on the Josephson plasma reso-

nance as the Josephson vortex lattice is a dark state. The coupling between the two ex-

citations is described by ν. The amplitude of the harmonic solution φ1 = |φ1| exp(iωt)

for the first oscillator describing linear plasma waves can be expressed as

|φ1| =
∣∣∣∣ ω2

2 − ω2 + iγ2ω

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω)− ν2
A

∣∣∣∣ . (7.5)

Thus, for finite coupling ν 6= 0, the Lorentzian response function of the first oscillator

is altered, corresponding to interference between the linear Josephson plasma waves

and the vortex train†. As the loss function is directly proportional to the amplitude

response of the linear Josephson plasma waves (Koshelev, 2007), this model can be

scaled to fit the dip in the non-equilibrium loss function.

When the free electron laser is tuned well above the resonance frequency as shown

in figure 7.7 A, the coupled oscillator model reproduces the marginal redshift of the

loss function in the driven regime. The same accounts for the strong redshift when

the excitation is tuned closely above the plasma frequency as depicted in figure 7.7 B.

Figure 7.7 C depicts the situation when the free electron laser is tuned on res-

onance. Here, the model faithfully reproduces the transparency window at the ex-

citation frequency, but fails to account for the broadening on the red side of the

loss function. The low-frequency shoulder can be modelled by allowing ω1 to be-

come frequency-dependent over a narrow interval below the plasma resonance. This

is equivalent to equation (7.5) including, as the driving field is Gaussian, a distribu-

tion of plasma frequencies ω1 (Dordevic et al., 2003), which is allowed to decrease,

over a window defined by the 1 % bandwidth of the excitation laser, from ω1 = ωJ at

ω > ωFEL to ω1 = 0.95ωJ for ω < ωFEL. Microscopically, this approach accounts for

†This set of coupled differential equations represents one of the simplest systems that give rise
to the Fano resonance (Miroshnichenko et al., 2010; Luk’yanchuk et al., 2010). The fundamental
criterion for the occurrence of destructive interference is the overlapping of a broad with a spectrally-
narrow resonance, which is given here, since the vortex lattice represents a dark resonance with
γ2 < γ1, and the excitation frequency is tuned close to the Josephson plasma resonance (ω2 ≈ ω1).
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Figure 7.7: Fit of the loss function with the coupled oscillator model. The equilibrium loss
function (grey line) is fitted with |φ1| from equation (7.5), yielding γ1 = 0.12 THz, whereas ω1 = ωJ

and ν = 0 are kept constant. A: When the free electron laser is tuned well above the resonance
frequency (ωFEL ≈ 2.3 THz), the coupled oscillator model reproduces the marginal redshift of the
loss function in the driven regime using the fitting parameters ω2 = ωFEL, γ2 = 0.12 THz, and
ν = 0.35 1/µs2. B: For excitation closely above the plasma frequency (ωFEL ≈ 2.2 THz), the
pronounced redshift is well-captured using the parameters ω2 = ωFEL, γ2 = 0.12 THz, and ν = 0.35
1/µs2. C: When the free electron laser is tuned on resonance (ωFEL ≈ 2.05 THz), the model
reproduces the emergence of the transparency window, but fails to account for the low-frequency
shoulder (black dotted line). The asymmetric broadening can be incorporated by allowing ω1 to
become frequency-dependent over a narrow interval below the plasma frequency (black dashed line).
The fitting parameters read ω2 ≈ ωFEL, γ2 = 0.06 THz, and ν = 0.35 1/µs2. D: For excitation
well below the Josephson plasma resonance (ωFEL ≈ 1.9 THz), the physics is well-captured by
the coupled oscillator model, as the transparency window emerges at the excitation frequency (black
dashed line). The out-of-equilibrium fitting parameters are ω2 ≈ ωFEL, γ2 = 0.04 THz, and ν = 0.35
1/µs2.

the fact that close to the vortex core, the phase difference is highly nonlinear, effec-

tively reducing the Josephson resonance frequency as ωJ ∝
√

cosφ, and thus allowing

for the propagation of weak plasma waves with ω < ωJ (Savel’ev et al., 2010).

Figure 7.7 D shows a fit of the loss function for excitation below the Josephson

plasma resonance. The simple model captures the main features of destructive inter-
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ference between the linear plasma waves and the dark vortex modes in the specimen,

resulting in a narrow window of transparency at the excitation frequency.

The dip in the loss function is long lived, and its decay can be extrapolated to a

single exponential of 150 ps. As the decay time of vortex excitations due to quasi-

particle dissipation accounts for several nanoseconds in layered cuprates (Gulevich

and Kusmartsev, 2006), this lifetime is interpreted as a propagation effect, related to

the vortex group velocity. As the penetration depth at the plasma frequency is circa

∼ 15 µm, vortices propagating at a velocity of v ≈ 105 m/s would leave the probed

volume on this timescale. This corresponds to ∼ 70 % of the theoretically predicted

maximum vortex velocity vc ≈ 1.4 · 105 m/s in La1.84Sr0.16CuO4 (Savel’ev et al., 2005).

7.5 Concluding Paragraphs

As discussed above, it has to be emphasised that the interpretation of optically induced

quantum interference possibly does not represent the only reasonable explanation of

the transparency effect observed in the present work. Therefore, it would be highly

interesting to validate the nature of the coherent vortex lattice in an independent

experiment, for instance using sophisticated imaging techniques (Moler et al., 1998)

in combination with the applied free electron laser excitation. Further terahertz pump,

terahertz probe spectroscopy experiments, along the lines presented above but taking

into account the full temperature- and doping-range of La2−xSrxCuO4 available, would

also be of considerable interest to gain insight into the intriguing dynamics observed.

Under the assumption of the validity of the present interpretation it shall be noted

that, since Josephson vortex lattices do not couple to probe radiation linearly, the ex-

perimental geometry presented here is highly attractive, as vortex excitations are key

to a number of fundamental properties of superconductors. Indeed, superconducting

vortices have been studied statically in a number of geometries, including magneti-

sation (Xu et al., 2000), calorimetry (Schilling et al., 1996), optical spectroscopy

(Dordevic et al., 2005; Thorsmølle et al., 2006), and neutron scattering (Cubitt et al.,
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1993). However, their out-of-equilibrium dynamic response has largely remained out

of reach.

At the current state of technology, these propagating vortices are not easily con-

trolled, as the narrowband sources needed to inject them are limited to terahertz free

electron lasers. However, the potential of the present effect for quantum technologies

(Longdell et al., 2005; Fleischhauer et al., 2005; O’Brien et al., 2009), extending some

features of gas-phase electromagnetically induced transparency to the solid state at

relatively high base temperatures, should be noted, especially if one envisages coupling

with solid state terahertz laser technology, which is also evolving rapidly (Ferguson

and Zhang, 2002; Tonouchi, 2007; Kumar et al., 2011).

More specifically, the experiment demonstrated here might open a number of new

possibilities for solid-state nonlinear optics. The nature of the coherent vortex lattice

is completely determined by quantum-mechanical phenomena, and the effect could

serve for sensing of local magnetic fields or even computation, along the lines of

what has been proposed for electromagnetically induced transparency in atomic gases.

The development of femtosecond spatio-temporal shaping of narrowband pulses in

the terahertz range would allow control of such coherent vortex lattices individually,

opening the way to new applications in plasmonics. All solid state technologies, the

use of superconducting cuprates may yield to integrated platforms, if combined with

solid state terahertz sources (Köhler et al., 2002). Finally, command of such processes

may also allow for progress in the ability to manipulate quantum matter, optimising

light control of cuprates (Fausti et al., 2011).



Chapter 8

Summary and Outlook

This thesis reports on how recent technological advances in terahertz science can

benefit materials research. The utilised methods of high-intensity terahertz generation

represent state of the art technology, opening the opportunity to observe phenomena

that were inaccessible before. At the beginning, an introduction to terahertz science

is given, outlining how light-matter interaction can be exploited to gain physical

information using spectroscopy. Terahertz time-domain techniques are discussed as

amplitude- and phase-sensitive probes of matter that allow to extract the real and

imaginary part of the frequency-dependent optical properties. The combination of this

sensitive probe technique with recent advances in high-intensity terahertz generation

allows time-resolved studies of systems far from equilibrium. The sources employed

for the pump-probe measurements are characterised based on experimental data.

In the following, superconductivity is outlined by introducing different theoretical

approaches that capture the fundamental physics observed. Layered cuprates are

presented as prototype high critical temperature superconductors. Emphasis is put

on the out-of-plane electrodynamics, which can be understood by considering adjacent

copper oxygen layers as superconducting planes coupled by the Josephson effect.

Thereafter, Josephson physics are discussed by exhibiting how interlayer coupling

leads to intriguing collective phenomena in stacks of junctions. It is shown that charge

transport in cuprates can be described by the sine-Gordon equation for the relative
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order parameter phase. Nonlinear large-amplitude soliton solutions are introduced,

which physically correspond to vortices carrying one quantum of magnetic flux. Small

amplitude plane wave solutions are shown to exist, which can be experimentally ob-

served through the Josephson plasma resonance in layered superconductors.

Subsequently, the cuprate La1.84Sr0.16CuO4 is introduced in more detail as a pro-

totypical layered compound. Attention is devoted to the anisotropic charge transport.

The linear optical properties of the layered superconductor are determined experimen-

tally using terahertz time-domain spectroscopy, reproducing the well-characterised

Josephson plasma resonance for probe light polarised perpendicular to the planes.

In a first time-resolved experiment, it is unveiled that out-of-plane transport in

La1.84Sr0.16CuO4 can be gated at terahertz frequencies. The gating effect becomes

possible because charge transport along the c-axis depends on the interlayer order pa-

rameter phase difference, which is sensitive to applied fields. In equilibrium, the phase

difference is close to zero, and the quasi-particles are optimally shorted by the super-

conducting electrons. As a large amplitude electric field is applied perpendicular to

the layers, the relative phase is driven out of equilibrium, and through a critical value

at which the Josephson interlayer coupling is switched off. At this point the response

becomes resistive, and superconductive transport along the c-axis is depleted. To

achieve this effect, the terahertz probe apparatus is combined with a tilted pulse front

excitation setup, allowing to perform time-resolved spectroscopy. In accordance with

the integral of the time-dependent pump transient, the layered superconductor shows

sub-picosecond oscillations between superconductive and resistive states. Remarkably,

the density of Cooper-pairs within the layers stays constant throughout this process.

Since in-plane transport remains unperturbed, this situation amounts to an intriguing

state in which the superconductivity features a time-dependent dimensionality. The

oscillation frequency depends on the applied electric field strength and increases with

amplitude in spirit of the a. c. Josephson effect. This latter phenomenon encapsulates

a voltage to frequency conversion on ultrafast timescales, which in principle could be
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extended to single nanometre-scale junctions and plasmonic devices.

In a second time-resolved experiment, a free electron laser is used to excite non-

linear Josephson plasma waves in La1.84Sr0.16CuO4. Excitation at frequencies well

above the plasma edge leads to the propagation of large-amplitude plasmon-polariton

modes in the sample. The resulting large phase differences give rise to sub-linear

growth in the Josephson tunnelling current, or, to a larger equivalent inductance, and

thus a weakening of interlayer coupling. For excitation frequencies on resonance, a

metastable state is created that shows transparency over a narrow spectral window.

In the proposed interpretation of the observed effect, a long-lived vortex excitation

with the periodicity of the driving electromagnetic wave is created in the solid, uncou-

pled to a weak external electromagnetic field, but coupled anharmonically to linear

plasma excitations. In this picture, the reduced coupling of the probe radiation to

the Josephson resonance is the result of disruptive quantum interference between the

linear plasma waves and the Josephson vortex lattice. The findings are well-described

theoretically by a system of differential equations used in the past to discuss plasmon-

induced transparency in classical systems. Here, the transparency effect demonstrates

the potential of layered superconductors for quantum nonlinear optics and shows how

such experiments allow to study coherent vortex excitations on the ultrafast timescale.

In the future, the availability of high-field radiation covering the whole terahertz

spectral region at unmatched intensities may be used for interlayer perturbations

of similar kind (Fausti et al., 2011; Dienst et al., 2011a) to probe new theories on

cuprates, for instance in stripe-ordered materials in which Josephson de-coupling

might be relevant (Berg et al., 2007; Wollny and Vojta, 2009). In this respect, it

would be very interesting to combine the high-intensity terahertz sources with x-ray

diffraction techniques (Ehrke et al., 2011), as this might allow to probe the interrela-

tionship between interlayer coupling and the electronically-ordered state.

Regardless of the experimental approaches chosen, high-temperature cuprate su-

perconductors will probably remain the subject of intense research for a long time.
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Appendix A

Photos and Cover

Figure A.1: Photograph of the Oxford vacuum chamber exterior. The vessel is closed and
evacuated, while a window on the top allows to adjust the spatial overlap between the laser beams
at the sample position. The optics in the foreground split the beam into pump, probe, and EOS
component, which can be temporally delayed with respect to each other using optical delay lines. A
data acquisition programme allows real-time analysis of the experimental results.
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Figure A.2: Photograph of the Oxford vacuum chamber interior. Within the vessel, a
terahertz time-domain spectroscopy apparatus is assembled together with a tilted pulse front setup.
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Figure A.3: Photograph of the Dresden vacuum chamber exterior. The vessel is directly
connected to the free electron laser output such that all terahertz propagation takes place in vacuum.
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Figure A.4: Photograph of the Dresden vacuum chamber interior. In the vessel, the free
electron laser polarisation is rotated by 90◦, and the beam is subsequently focussed onto the specimen.
The time-dependent sample properties are then probed by delayed time-domain spectroscopy pulses.
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Figure A.5: Cover of the August 2011 issue of Nature Photonics. The magazine also
contains a News and Views article featuring the interlayer gating experiment (Gabay and Triscone,
2011). The illustration of charge transport across the superconducting planes is courtesy of J. Harms.


