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Abstract

Ultrafast techniques allow an unprecedented look at the electronic and bosonic in-

teractions that govern the macroscopic properties of materials. These processes

can now be accessed on their fundamental timescale—the attosecond to picosecond

range. Most ultrafast measurements involve using high energy excitation to bring

a system out of equilibrium and then probing the subsequent relaxation processes.

The development of ultrafast methods to selectively target collective excitations

promises to transform ultrafast science into a tool not just of observation, but of

precise control over material behavior.

Two examples of selective excitation will be explored in this thesis. Both studies

involve targeting phonon modes of cuprate materials in order to manipulate their

superconducting behavior. However, the pathway by which the light interacts with

the phonon and electronic degrees of freedom is distinct in each case.

First, in Chapter 4, I present a study of resonant mid-infrared excitation of the lan-

thanide cuprate La1.8−xEu0.2SrxCuO4. This family of compounds exhibits a strong

suppression of superconductivity near the doping x = 0.125, the so-called “1/8th

anomaly.” The suppression appears to be due to competition with charge and spin

stripe order. This study expands on a previous investigation that found that su-

perconducting transport appears to be restored by selective excitation of a phonon

mode that couples to the electronic charge order. The transient superconducting

behavior is characterized in the THz optical response by the appearance of a plasma

mode associated with intrinsic Josephson tunneling in the material.

Here, I report that the transient plasma mode can be generated up to 65 K,

near the charge ordering temperature. Two key observations are extracted from

the relaxation dynamics. First, the plasma mode relaxes through a collapse of the

carrier coherence length and not the carrier density, consistent with a Josephson
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plasmon. Second, the relaxation dynamics were found to be quite different above

and below the spin ordering temperature TSO, with the regime below TSO showing

an anomalous temperature-independent lifetime. These results will be discussed in

the context of recent theories that propose the 1/8th regime hosts an intertwined

order of superconducting and charge ordered components.

The second study, introduced in Chapter 5, attempts to directly target the super-

conducting condensate of YBa2Cu3Ox, rather than aim at destroying a competing

order. The superconducting response of cuprates has been found to be sensitive to

the position of certain atoms in the unit cell, including the apical oxygen atoms that

sit above and below the bilayer of CuO2 planes in YBa2Cu3Ox. Selectively driving

a c-axis apical oxygen mode (perpendicular to the planes) results in a stiffening of

the Josephson plasma mode associated with Cooper pair tunneling between sets of

planes.

Above Tc, the same excitation induces a transient plasma mode at frequencies

comparable with the Josephson mode. Five compounds were investigated, four

in the underdoped regime and one at optimal doping. The transient plasma mode

could be induced in all underdoped compounds, with a plasma mode that blue shifts

towards optimal doping, tracking the blue shift of the Josephson mode. The mid-

infrared excitation targets the apical oxygen atoms only at sites that are undoped,

therefore the lack of response in the optimally doped compound may be tied to the

resonant nature of the excitation.

This non-uniform excitation, perhaps along with intrinsic inhomogeneity of the

compound, is reflected in an inhomogeneous optical response of the system. The

response above Tc is captured quantitatively by an effective medium of a super-

conductor and the unperturbed bulk. Below Tc, the blue shift of the Josephson

plasmon is seen to be inhomogeneous as well, with one component remaining near

the equilibrium plasma frequency.

The relaxation pathway of the transient mode is explored in Chapter 7. The

principal finding is that the relaxation of the transient plasmon is driven by a loss

of coherence, characterized by a decrease in carrier mobility, rather than a drop

in carrier density as one might expect from quasiparticle excitation. Furthermore,

during the relaxation, the transient plasmon splits, with one component centered

near the equilibrium Josephson frequency and one component shifted to the blue.

This may be related to the generation of (zero field) vortices, in a manner similar

to the thermal vortex regime that forms an extended dome above Tc in the cuprate

phase diagram in equilibrium.
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I close this thesis by returning to the topic of research I pursued at the start

of my graduate career. Chapter 8 presents a departure from the area of ultrafast

science, turning to another (equilibrium) probe of superconductivity, point contact

spectroscopy. Point contact spectroscopy (PCS) probes the superconducting order

parameter via Andreev reflection and is sensitive to bosonic modes that couple to

the quasiparticle spectrum. Recent work has shown that PCS can be used to detect

a variety of correlated states that couple to electronic degrees of freedom. The

technique has been widely applied to the study of order parameter symmetry, and

has proven sensitive to the d-wave order parameter of cuprates and heavy fermion

compounds, the multigap s++-wave order of MgB2, as well as p-wave and anisotropic

s-wave symmetries.

I will present some work exploring the superconducting state of the pnictide su-

perconductor Sr(Fe1−xCox)2As2. The iron-based high temperature superconductors

are unique in that multiple Fermi surfaces, with either electron-like or hole-like

character, participate in the condensate. They are believed to exhibit a novel pair-

ing mechanism, mediated by spin fluctuations and an s-wave order parameter that

changes sign between each type of Fermi surface. Detecting this s±-wave order

has become one goal of recent point contact measurements and theoretical devel-

opments. I describe the multigap behavior of Sr(Fe1−xCox)2As2 and find that the

point contact spectra can be well-described by two independent bands, placing re-

strictions on proposed models of s±-wave order. Additional modes, detected in the

electron-boson spectrum α2F (ω), have been ascribed in literature to possible spin

excitations. I show that these modes can in fact be tied to Raman-active phonon

modes of the 122 structure.
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Chapter 1

Introduction

Femtosecond lasers mostly operate in the near-infrared (NIR), making this excita-

tion regime a popular target for ultrafast excitation. In unconventional supercon-

ductors, like most correlated systems, excitations in the eV range generally lead to

a redistribution of quasiparticles into the conduction bands of the material. The

resulting relaxation dynamics can reveal information about the underlying ground

state [8–10] and unveil competing orders [11–15]. The transfer of charges can also

lead to highly modified exchange interactions [16] and even produce crystallographic

distortions [17–19].

The development of ultrafast methods to selectively target collective excitations

promises to transform ultrafast science into a toolset not just of observation, but

of precise control over material behavior. The goal of targeted pumping schemes is

to populate a specific excitation channel without delivering excess energy to other

excitation pathways.

Collective modes of complex materials have resonant frequencies that extend from

GHz frequencies to deep in the mid-infrared. Tools for extending the frequency

range of femtosecond lasers (see Chapter 2) now allow direct access to some of these

excitations. Optical parametric amplification and difference frequency generation

techniques can reach excitations down to ∼16 THz (550 cm−1). This range covers

phonon modes of light atoms such as oxygen, which play an important role in deter-

mining the macroscopic behavior of complex oxides like manganites and cuprates.

Advances in THz sources have made it possible to also drive modes in the ∼0.5-3

THz range, where phonons of heavier atoms lie and where interesting collective exci-

tations occur, for example the Josephson plasma resonance which we will encounter

often in this thesis.
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In this chapter I will provide some context for the work presented in this thesis by

discussing a few examples of recent research that utilize targeted optical excitation

to modify the properties of superconductors and manganites. These materials host

collective charge, magnetic, and superconducting orders that are highly sensitive

to small perturbations of the system’s electronic and lattice properties. I will also

discuss methods to probe the transient electronic and lattice response.

1.1 Controlling lattice deformation

Targeting phonon modes is the most direct way to trigger atomic motion in materi-

als. Exciting infrared active modes does not produce a net distortion of the lattice,

but rather generates resonant oscillations around the equilibrium atomic positions.

However, nonlinear coupling of an infrared (IR) active mode to a Raman-active

mode can indirectly excite oscillations of the Raman mode as well as produce a

rectified, displacive distortion of the lattice along the Raman coordinate [20]. The

mechanism for this coupling is discussed in more detail in Chapter 6.

The matrix elements that govern the coupling amplitude between IR and Raman

modes are generally quite small; however, for many correlated materials, the macro-

scopic state of the system is highly sensitive to the underlying lattice structure.

Changes in atomic positions of just a few percent can drive metal-insulator transi-

tions [21], and control magnetic [21, 22], charge [23], and superconducting [24–27]

orders. A recent review on using resonant IR-active phonon excitation to couple to

Raman excitations can be found in Ref. [28].

The intimate connection between lattice and electronic order can be seen from

the resonant excitation of manganite La0.7Sr0.3MnO3 [20]. Like in the cuprates,

manganites exhibit many competing magnetic and electronic orders that are highly

sensitive to the position of atoms in the lattice [21]. In this case, the Mn-O-Mn

bond angle of the MnO6 octehedra tunes orbital overlap and can drive the system

between ferromagnetic metallic and antiferromagnetic insulating behavior. The au-

thors found that exciting an IR active Mn-O stretching mode leads to a coupling

with a Raman mode that distorts this bond angle. See Figure 1.1 for an illustration

of the modes. In the related compound Pr0.7Sr0.3MnO3, the same excitation gener-

ates a insulator to metal transition, with the quasi-dc conductivity jumping over 4

orders of magnitude [29].
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Figure 1.1: Coupling of manganite Eu mode to an Eg Raman distortion.
Left: Two MnO6 octehedra with arrows indicating the Eu-symmetric mode (left)
and Eg mode (right). Figure from Ref. [20]. Right: Intensity changes of two
Bragg peaks associated with the Eg mode. Lines indicate the expected shift from
Q2
IRQR coupling (see Section 6.3). Figure from Ref. [28].

In YBa2Cu3Ox, it is the relative positions of the Cu and O atoms in the CuO2

planes—and the apical oxygen atoms that surround the planes—which has been

shown to be closely tied to superconductivity. As we will see in Chapters 5, 6, and

7, excitation of a B1u mode, which resonantly drives the apical oxygen atoms along

the c-axis, leads to the formation of a c-axis plasma mode which appears to be

tied to Josephson coupling. The Josephson plasma resonance is a collective mode

produced by the resonant tunneling of Cooper pairs between layers in a stack of

two-dimensional superconducting sheets. These modes occur in cuprates due to the

intrinsic organization of the lattice, with superconductivity organized in the CuO2

planes.

Mankowsky, et al. [3] showed that this B1u mode couples with Ag-symmetric Ra-

man modes, distorting the lattice on the same timescale as the formation of the

transient plasma resonance. The positions of the planar CuO2 atoms and apical O

are rectified along these Ag coordinates, perhaps in a manner that supports super-

conductivity (see discussion in Chapter 6).
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1.2 Controlling electronic response

1.2.1 Resonant pumping of infrared-active phonons

Rectified lattice distortions are just one way phonon excitation can drive changes

in electronic order. The oscillating motion of a driven IR-active phonon can cou-

ple closely to electronic order. For example, resonantly driving the Mn-O stretch-

ing mode the manganite La0.5Sr1.5MnO4 [30], in the same manner as discussed for

La0.7Sr0.3MnO3 above, was shown to drive the electronic system from a low temper-

ature orbitally ordered phase into a high temperature unordered insulating state.

The cause was initially supposed to be related to a phonon-driven relaxing of the

Jahn-Teller distortion, however soft x-ray measurements of the spin and orbital

orders showed only a partial reduction of orbital order [31]. Instead, the Mn-O

excitation directly drives total destruction of antiferomagnetic spin order.

As we will see in Chapter 4, a similar stretching mode of Cu-O atoms in the lan-

thanides resides in the CuO6 octehedra, analogous to the MnO6 octehedra. Excita-

tion of this mode leads to a suppression of the static charge stripe order that forms

within the CuO2 planes [32] (see Figure 1.2). The same excitation generates a high

mobility plasma mode perpendicular to the CuO2 planes in La1.8−xEu0.2SrxCuO4.

As with YBa2Cu3Ox, this plasma mode can be tied to Josephson coupling, which

appears to be restored by the destruction of stripe order [33, 34].

1.2.2 Other collective mode excitations

So far I have focused on driving phonon modes to trigger electronic and lattice exci-

tations. Other collective modes, such as the Josephson plasma resonance, can also

be selectively driven with light. The amplitude and phase of the superconducting

order parameter, and the coherence length scale of the condensate, influence the

shape of the Josephson plasmon response.

Excitations of bound vortex-antivortex pairs, called Josephson plasma solitons,

have been predicted to form in the presence of high electromagnetic fields [35, 36].

This has now been experimentally realized in the optimally-doped lanthanide super-

conductor La1.84Sr0.16CuO4. By driving the system with single-cycle pulses centered

at the 2 THz Josephson plasma resonance, Dienst, et al. [37] could observe optical

signatures of soliton formation.

THz radiation has also been shown to couple to another collective excitation, the

Higgs amplitude mode [38, 39]. Papenkort, Axt, and Kuhn [40] showed theoretically
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Figure 1.2: Suppression of charge stripe order in La2−xBaxCuO4. (A)
Schematic diagram of the mid-infrared pump, resonant soft x-ray probe setup.
(B,top) Intensity map of the charge order peak before and after excitation. (B,
bottom) Time evolution of the charge order peak intensity. Red line is a fit to an
exponential function with time constant 300 fs, the time resolution of the
experiment. Figure from Ref. [32].

that ultrashort pulses could be used to excite the amplitude mode in a BCS super-

conductor. The condensate must be excited non-adiabatically, with pulses shorter

than the response time of the BCS state, τ∆ = ~/∆. They worked out that the re-

sulting coherence between the excited quasiparticle states would cause an oscillation

of the order parameter amplitude.

Matsunaga, et al. [41] used single cycle THz pulses with τpump = 1.5 ps (= 0.57τ∆)

to excite the Higgs amplitude mode in the BCS superconductor Nb1−xTixN. They

chose THz pulses centered at the superconducting gap energy since higher frequency

light, such as near-infrared pulses, would excite other electronic and phonon degrees

of freedom that would cause additional pair breaking. They found that the excita-

tion produced an oscillation in the THz response at a frequency that agreed well

with theoretical predictions for the amplitude mode.
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1.3 Probing transient dynamics of correlated

systems

We have seen that optical excitation of phonons can couple directly to electronic

order. The electronic excitation may also be indirect, with the pumped phonon

mode first driving additional modulation of the lattice. Disentangling the excita-

tion pathways and their causal relationships in shaping the transient dynamics can

require several complementary probing methods.

Direct time-resolved measurements of lattice structure dynamics are now possible

thanks to free electron lasers (FELs). The experiments discussed in Section 1.1 were

performed at the Linac Coherent Light Source (LCLS) at Stanford, which is capable

of delivering a high flux of x-rays with a pulse length of 50 ps. The x-ray probe

is synchronized with a femtosecond Ti:Sapphire laser that can be tuned from the

near- to the mid-infrared in order to selectively pump the sample (see Chapter 2).

In a similar vein, an FEL can be used for time-resolved resonant soft x-ray scat-

tering, which is sensitive to collective charge order [32, 42]. As discussed above,

excitation of a B1u phonon mode in YBa2Cu3Ox gives rise to a transient plasma

mode associated with superconductivity. Soft x-ray scattering has revealed that the

B1u excitation also suppresses charge density wave (CDW) order [42]. By compar-

ing the timescales of the optical response and the charge density wave dynamics, we

could determine that while the CDW suppression occurs alongside the formation of

the transient plasmon, the suppression of charge order sets in too slowly to be the

driving mechanism behind the generation of the mode (see Chapter 6 for details).

The projects presented in this thesis mostly entail probing the optical response

of cuprates in the THz range. Definitions of the THz frequency regime vary, but

it extends roughly between ∼0.1-30 THz (3-1000 cm−1, 0.5-120 meV), covering

the resonant frequencies of most phonons. This is also the energy scale of the

superconducting gap, and gapping due to collective charge and spin orders. Other

collective modes, such as the Josephson plasmon, also reside in this spectral range.

The electronic behavior of cuprates is highly momentum-dependent. Certain re-

gions of their k-space are associated with superconductivity and with the pseudogap.

Angle-resolved photoemission spectroscopy (ARPES) can be used to map the Fermi

surface of a material and has become a crucial probe of high Tc superconductors.

This technique has been successfully extended into the time domain and is just

beginning to be utilized to investigate coherent excitation processes [43].
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Chapter 2

Experimental methods for
pump-probe time domain

spectroscopy

2.1 Introduction

This chapter focuses on the subset of ultrafast tools and analysis techniques used

in the experiments described in Chapters 4, 5, and 7. First, I introduce nonlin-

ear optical processes. Most commercial ultrafast lasers are designed to generate

narrowband pulses at a single frequency in the near infra-red (NIR). In order to

access a broader range of frequencies, nonlinear optical processes are employed to

convert the NIR pulses. The full range of nonlinear optics theory has filled books in

itself [44], and as such, the discussion here will be restricted to those areas relevant

to this thesis, primarily optical parametric amplification and difference frequency

generation. These processes are used to produce mid-infrared and THz frequency

radiation.

I will then introduce time-domain THz spectroscopy, the primary probe used in

the experiments presented in this thesis. I describe three methods for THz gen-

eration: optical rectification in nonlinear crystals, photoconductive switches, and

two-color plasma generation. The full amplitude and phase of the THz field can

be measured with electro-optic sampling (EOS) detection. I will describe the EOS

method and how to combine EOS detection with pump-probe measurements. Then

I will discuss the experimental set-up used for most of the measurements covered in

this thesis.

Finally, I will present several models used to extract the pump-induced (transient)

optical response from THz spectra. For a homogeneous sample, the THz response is

related to the refractive index through the Fresnel equations. However, an excited

material has an optical response that changes with distance from the sample surface,

depending on how deeply into the material the pump can penetrate.
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If the pump penetrates much farther into the material than the THz, then the

response is said the be in the “bulk” limit, and the Fresnel equations can still be

applied. In non-metallic materials, the THz radiation often penetrates 10-100 µm

or deeper into the sample. Resonant excitations on the other hand, for example at

the frequency of IR-active phonon modes, are very effectively screened, leading to

pump penetration depths on order 10-100 times less than the THz regime.

Models of layered materials can be used to account for the penetration depth

mismatch. The transient response is defined by the response near the surface of the

material, where the pump-induced changes are greatest. For very large penetration

depth mismatches, analytic models of thin excited layers can be applied. In both

the bulk and thin film limits, the characteristic matrix approach, described in Sec-

tion 2.6, can effectively describe the response of the excited states of cuprates that

are considered in later chapters. In Appendix C, I reproduce the Matlab code used

to implement the models described in this chapter. I have combined this code into

a software package that has become a standard tool used in the Cavalleri group to

model the transient THz optical response.

2.2 Optical parametric amplification

2.2.1 Second order optical processes

An external electric field E will induce a polarization P within a medium. Typically,

the two are linearly related by the susceptibility of the medium, P = χ(1)E. Certain

media also respond non-linearly to an applied field, which we express by expanding

the response as a power series in E,

P = χ(1)E + χ(2)E2 + χ(3)E3 + ... + χ(n)En,

= P (1) + P (2) + P (3) + ... + P (n).
(2.1)

The nonlinear susceptibility terms, χ(n>1), are much smaller than the linear response

term χ(1) in almost all materials and generally only become relevant in the presence

of intense fields. Light interactions involving higher order terms in the susceptibility

are called “nonlinear” processes and several of these effects are key to ultrafast

spectroscopy.
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Second harmonic generation is the simplest nonlinear process, involving the χ(2)

term in the susceptibility. For a laser field,

E(t) = E0e
i~k.~x−iωt + c.c. (2.2)

the second order polarizability becomes

P (2) = χ(2)(E0E
∗
0 + E2

0e
i(2~k.~x−2ωt) + c.c.), (2.3)

with a dc term, which represents a rectification of the applied field, and a second

field that propagates at 2ω. Sum and difference frequency mixing work in a similar

manner. Rather than use the self-interaction of a monochromatic beam, these pro-

cesses rely on mixing two frequencies, ω1 and ω2, which may be either picked from

the spectrum of a single laser beam or from two overlapping beams. An external

field,

E(t) = E1e
i~k1.~x−iω1t + E2e

i~k2.~x−iω2t + c.c., (2.4)

produces a nonlinear polarization of the form,

P (2) = χ(2)(E1E
∗
1 + E2E

∗
2 + E2

1e
i2~k1.~x−i2ω1t + E2

2e
i2~k2.~x−i2ω2t+

2E1E2e
i(~k1+~k2).~x−i(ω1−ω2)t + 2E1E

∗
2e
i(~k1−~k2).~x−i(ω1+ω2)t + c.c.),

(2.5)

where sum terms ω1 + ω2 and difference terms ω1 − ω2 join the second harmonic

terms of the single frequency case. Conservation of momentum between the three

fields, also referred to as phase matching, requires that ~k3 = ~k1 + ~k2 for the process

ω3 = ω1 − ω2. The wavevector k of a field in a medium is related to the frequency

ω via the refractive index k = n(ω)ω/c. Since the refractive index n(ω) is generally

frequency dependent, achieving the phase matching condition is not trivial, but it

is crucial to the efficiency of the nonlinear process.

2.2.2 Optical parametric amplifier

Optical parametric amplification uses difference frequency mixing of a high intensity

pump beam at ωp and a second “signal” beam at ωs in order to amplify ωs and

generate a third “idler” beam at ωi = ωp−ωs in the process. The name “parametric”

amplification refers to any driven amplification process where a parameter, in this

case ωs, is populated in proportion to its amplitude by a driving pump at another

frequency, in this case ωp.
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For the experiments described in this thesis, the laser source was a commer-

cial Ti:Sapphire laser1 which emits ∼80 fs pulses centered at 800 nm wavelength

(1.55 eV) at a repetition rate of 1 kHz. Typical power output is 3-4 W. Optical

parametric amplification was used to convert the 800 nm pulses to NIR light in

the 1.2-1.5 µm range. The optical parametric amplifier (OPA) was a commercial

TOPAS from Coherent. It is a two-stage OPA which uses 800 nm light to generate

a near-infrared (NIR) signal beam in the first stage, then uses a second stage to

amplify the NIR light.

A schematic layout of such an OPA is shown in Figure 2.1. The input beam is split

in two, with the majority of the beam power reserved for the second stage. In the first

stage, the beam is split in two again. Part of the beam is sent through a sapphire

crystal to generate “white light”. This white light consists of a supercontinuum

of frequencies generated by a highly nonlinear process that is not yet completely

understood [45]. Self-phase modulation is one key part of the process [46]. The

optical Kerr effect in the sapphire results in an intensity-dependent refractive index

(a χ(3) process), which, for ultrashort pulses, means that the refractive index varies

in time, adding an instantaneous phase to the pulse. This phase shift φ(t) shifts

the frequency of the field ω = dφ(t)/dt, broadening the spectrum. The early part

of the pulse is redshifted, while the trailing edge is blueshifted. Dispersion further

increases the chirp of the pulse.

The temporal dispersion of the white light allows the selection of just a portion

of the continuum for amplification. The white light is mixed with the rest of the

first stage 800 nm beam in a nonlinear crystal, timing the arrival of the 800 nm

pulse using a delay stage to correspond with the chosen color of the white light

spectrum. Phase matching for optical parametric amplification can be achieved

with a birefringent crystal, where the refractive index depends both on the light

polarization and direction of propagation. Phase matching is optimized by selecting

the optimal polarization of the pump and signal beams and tuning the orientation

of the crystal. In the NIR regime, β-barium borate (BBO) is a popular choice for

the nonlinear crystal due to its efficient phase matching in this frequency range.

In Figure 2.1, the mixing is illustrated in a non-colinear geometry, which has the

advantage of spatially separating the signal beam from the pump and idler.

The signal beam is sent on to the second stage, where it is mixed again in a second

BBO crystal with the higher power 800 nm beam. This stage is depicted in Figure 2.1

1Coherent Libra series amplifier with integrated oscillator and pump lasers.
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Figure 2.1: General schematic diagram of an optical parametric amplifier
for the near-infrared. Red lines indicate 800 nm pump path, blue indicates the
white light path, and purple indicates the path of the NIR (signal in pink and idler
in blue). S = sapphire, F = filter, DM = dichroic mirror, and NC = nonlinear
crystal.

in a collinear arrangement, which maximizes the signal and idler amplification. The

pump beam is then separated from the NIR beams using a dichroic mirror.

Dichroic mirrors can also be used to separate the signal and idler beams if desired,

as pictured in Figure 2.1, or, if the beams are cross-polarized, a waveplate can be

used to select a single beam. For mid-infrared generation, we leave the signal and

idler colinear and the OPA output is guided onward to the difference frequency

set-up.

Optical parametric amplifiers have become a standard part of the ultrafast spec-

troscopy toolkit and commercial OPAs are capable of being tuned to generate nar-

rowband, high fluence pulses over a broad spectral range. The typical spectral

capabilities of the TOPAS system are plotted in Figure 2.2. The TOPAS OPA

used in the experiments described in this thesis, combined with difference frequency

generation, is capable of producing pulses up to 17 µm (∼17 THz) in wavelength.
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Figure 2.2: Spectral range for the TOPAS optical parametric amplifier.
Typical output pulse energies over the tunable range of a commercial Coherent
TOPAS (+NDFG) system. System is pumped by 1 mJ, < 40 fs pulses at 800 nm
generated by a Coherent Legend series laser operating at 1 kHz. Figure from [47].

2.2.3 Difference frequency generation

Difference frequency generation (DFG) uses the χ(2) process described in Section 2.2.1

to generate the difference frequency between the signal and idler beams produced

by optical parametric amplification. This process extends the spectral range of

the OPA into the mid-infrared (MIR). The DFG process can be performed in a

colinear or non-colinear geometry. For the experiments reported here, we use a

commercial Coherent NDFG system that operates in a non-collinear geometry, so

the mid-infrared light can be separated from the remaining signal and idler beams

by allowing the beams to spatially separate as they propagate.

Measuring the pulse spectrum in the mid-infrared range is not feasible with a

commercial spectrometer. Instead, we employ a Michaelson interferometer setup.

An example diagram of a Michaelson interferometer is shown in Figure 2.3. The

MIR beam is split between two arms, one on a micron delay stage. The beams

propagate along each arm and then are made colinear again at the beamsplitter

before being focused onto a mercury-cadmium-telluride (MCT) detector. The MIR

beam is modulated by a chopper before the interferometer and the MCT signal is

amplified by a boxcar integrator triggered by the chopper before being sent through

a lock-in amplifier and on to the computer for readout. By tuning the relative length
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of each arm with the delay stage, the intensity of the MIR beam is modulated based

on the phase difference between the two beams, beating at the frequency of the

light.

The resulting interferogram is shown in Figure 2.4 for mid-infrared light centered

at 15 µm. Taking the absolute value of the Fourier transform of the time profile

produces the spectrum of the mid-infrared beam. The spectrum can be fit to a

Gaussian form,

I = I0 exp

(
−(λ− λ0)2

2σ2

)
, (2.6)

where for the spectrum shown in Figure 2.4, the central frequency is λ0 = 15.1 µm

and σ = 1.1 µm.

Figure 2.3: Diagram of a Michaelson interferometer for measuring the
mid-infrared spectrum. The black arrows indicate the delay stage on one arm
of the interferometer. After passing through the interferometer, the MIR beam is
focused with a ZnSe lens onto an MCT detector.
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Figure 2.4: Mid-infrared spectrum centered at 15 µm measured with
Michaelson interferometry. Left: The time-domain interferogram measured
with 1 µm precision. A constant background has been subtracted. Right: The
amplitude of the Fourier transform of the interferogram, reflecting the spectrum of
the mid-infrared pulse. The spectrum is fit to a Gaussian profile with σ = 1.1 µm.

2.3 Time-domain THz spectroscopy

2.3.1 Optical rectification

Optical rectification utilizes ultrashort pulses to generate phase-stable, few- and

single-cycle THz pulses. It is a χ(2) process in which an optical pulse undergoes

difference frequency mixing of its spectral components within a nonlinear crystal.

The shape of the resulting THz field is determined by the envelope of the pump

field. As such, the phase matching condition for rectification requires matching the

group velocity wavevector of the optical pump with the phase velocity wavevector

of the THz pulse.

The most widely used material is ZnTe, which naturally has good phase matching

for NIR light. This material produces a spectrum between 0.2-2.7 THz, with the

window determined partially by the pump beam characteristics and the thickness

of the material. Typically, crystals used for optical rectification require excitation

by sub-100 fs NIR pulses with pulse energies on order 1 mJ. Thicker crystals yield

higher field intensities, at the sacrifice of bandwidth. This is due to balancing the

benefit of having a larger optical path for rectification, and the detriment of a longer

path length over which phase matching is lost. The distance for which the phase

mismatch can be tolerated is called the coherence length. It is a material-specific

value determined by the refractive index mismatch between THz and optical pump

frequencies [48].

14



Other popular materials for optical rectification are GaP [49] and GaSe [50],

which can produce higher frequency broadband spectrums, extending even above

100 THz [51], effectively bridging the gap to the NIR. Higher field, narrow bandwidth

pulses have been made using LiNbO3 [52, 53] and certain organic crystals, such as

4-N-methyl stilbazolium tosylate (DAST) [54]. The THz pulses made with these

sources have fields high enough that they have been used even as pump sources.

DAST has been shown to produce narrowband pulses centered at 2 THz with field

strengths of 1.0 MV/cm. By tuning the pump2 duration and crystal thickness,

DAST can also be used to generate broadband pulses, with a spectral range of

0.1-10 THz reported [55].

2.3.2 Photoconductive antennae

Photoconductive antennae work on a different principle than optical rectification. A

photoconductive, or “Auston”, switch consists of a semiconductor device patterned

with electrodes that apply a bias across a small (µm scale) strip of semiconduc-

tor. A femtosecond laser pulse transiently excites carriers from the valence band

into the conductance band of the semiconductor. The applied bias accelerates the

charges across the electrode, releasing dipole radiation. The timescale of this pro-

cess is closely linked with the frequency of the emitted light. The limiting factor in

determining the spectral range of the THz is the rise time of the photocurrent.

The Auston switch was first pioneered by Auston and collaborators [56–58] for

generating THz along a stripline. They found that they could generate radiation

between 0.1-1 THz [59] by using a colliding-pulse passively modelocked (CPM) dye

laser to pump a dipole antenna fabricated on a substrate of radiation damaged

silicon-on-sapphire. Today, low temperature grown gallium arsenide (LT-GaAs) [60]

and In-doped GaAs have become the materials of choice for photoconductive an-

tennas. Although some novel materials, such as graphene [61], are being actively

researched for their potential as THz emitters.

The first time domain THz spectroscopy measurement was reported by van Exter,

et al. [62], who looked at the THz absorption lines of water vapor. They used

an antenna set-up adapted for free space THz radiation by the addition of a lens

behind the antenna. Typically a hemispherical lens made of Si is used for free space

antennas.

2DAST crystals were pumped at 1.35-1.5 µm wavelength, with 2.4 mJ energy per pulse and
∼70 fs transform-limited pulse duration.
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The geometry of antennae patterns has grown more sophisticated, with designs

borrowed from earlier research on microwaves. The photoconductive antenna used

in Chapter 4 is a commercial GaAs-based Tera-SED antenna produced by Laser

Quantum. This is a large area antenna which is designed as an array of alternating

positive and negative biased electrode strips. The gap between every other strip

is covered by an opaque layer. Thus the light impinges only on areas of the semi-

conductor with the same static electric field direction and all of the emitted THz

interferes constructively, generating a single coherent pulse in the far field. The

design of the antenna is shown in Figure 2.5.

Figure 2.5: Large area photoconductive antenna. A diagram of a commercial
photoantenna. Image from Ref. [63]. Left: An aerial view of the antenna, with
arrows indicating the electric field direction across the semiconductor (light blue).
The antenna array covers a 10×10 mm2 area. Right: A side view of the antenna,
with collimated 800 nm, fs laser light (red) impinging on the surface of the array.
Electrodes are in orange and blue. Black arrows indicate the field direction along
the semiconductor surface. Parts of the surface with counter-aligned fields are
protected (yellow and green) from exposure to the beam. The direction of
propagation of the emitted THz is indicated with blue arrows.

2.3.3 Generating broadband THz in a two color plasma

The spectral range of optical rectification is ultimately limited by the absorption

spectrum of the nonlinear crystal. Even crystals such as GaSe that are capable of
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generating broadband radiation show significant absorption lines within their spec-

trum. THz generation by plasma in air is another method of producing broadband

radiation throughout the mid-infrared [64–66].

There are several methods for plasma generation. The two color plasma scheme

uses tunnel ionization to accelerate electrons in a laser field, releasing broadband

radiation with no sharp absorption lines. The generation scheme works as follows.

An 800 nm beam is passed through a nonlinear crystal (generally, BBO) to generate

second harmonic light at 400 nm. The remaining co-propagating 800 nm beam and

the 400 nm beam are focused in air to create a volume with a fluence beyond the

ionization threshold of the air. Mixing with the 2nd harmonic light introduces an

asymmetry in the electric field, which accelerates the ionized electrons and produces

THz radiation.

2.3.4 Electro-optic sampling

Electro-optic sampling is a detection technique for directly measuring the electric

field profile of a THz pulse. The general procedure involves the use of an optical pulse

with a duration much shorter than that of the THz field to sample the field profile.

(In practice, a beam-splitter reserves a fraction of the femtosecond laser beam that

is used to generate the THz in order to sample the resulting pulse.) The THz field

interacts with the sampling beam in a nonlinear crystal via the Pockels effect, in

which the electric field due to the THz pulse generates birefringence proportional

to the field strength.3 This birefringence leads to a rotation of the polarization

of the sampling beam. The magnitude of the induced rotation depends on which

part of the THz spectrum is timed with the arrival of the sampling beam. Iterative

measurements, shifting the delay of the sampling pulse, allows the recovery of the

full spectrum.

An electro-optic sampling (EOS) scheme is depicted in Figure 2.6. The sampling

beam is initially polarized such that, in the absence of an applied field, a Wollaston

prism will split the beam into two pulses of equal intensity but opposing polarization.

These pulses are detected in two photodiodes, whose signals are subtracted. This

“balanced detection” scheme ensures that whatever net signal is detected reflects

the polarization imbalance produced by the THz field. A linear polarization scheme

is depicted in Figure 2.6, where a half-wave (λ/2) plate rotates the sampling beam

3Note that this is different from the better-known Kerr effect, in which birefringence is propor-
tional to the field intensity.
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into equal horizontal (H) and vertical (V) components. It is also common to use

an elliptical polarization scheme, replacing the λ/2-plate with a quarter-wave (λ/4)

plate, which circularly polarizes the light in the absence of a field.

Figure 2.6: Electro-optic sampling. A depiction of the electro-optic sampling
scheme in which THz light (blue) and a sampling beam (red) are focused into a
nonlinear crystal, which rotates the polarization of the sampling beam in
proportion to the applied THz field E(t) at the arrival time t of the sampling
pulse. The rotation of the polarization is measured by splitting the polarization
components and measuring with a balanced detection scheme. By varying the
arrival time t of the sampling pulse, the full THz spectrum can be measured.

A THz field generated by optical rectification in ZnTe, then reflected from n-

doped GaAs, is plotted in Figure 2.7. The THz profile was measured via electro-

optic sampling with 1 mm thick ZnTe used as the nonlinear detection crystal. This

detection crystal was used for all the work presented in this thesis. Fourier transform

of the field E(t) yields the complex quantity Ẽ(ω), the absolute value of which

corresponds to the spectral range of the field.

This technique is very useful for material characterization as it allow the full

recovery of the complex amplitude and phase response of a material, even over a
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Figure 2.7: THz reflectivity spectrum. Left: The profile of a THz pulse
reflected from n-doped GaAs. Right: The spectrum of the THz field produced by
fast Fourier transform of the field profile.

narrow frequency region. A probe of the reflected or transmitted intensity of the

field, by contrast, requires measuring a very broad spectrum in order to perform

a Kramers-Kronig transform to deduce the phase component of the response. As

with intensity measurements, the THz field reflected or transmitted from a sample

of interest must be normalized with respect to a known material in order to recover

the absolute magnitude and phase of the field.

There are several methods to do this in situ. In reflection, the challenge is refer-

encing the sample without losing phase information, which is extremely sensitive to

the sample position. Moving the sample in a way that changes the arrival time of

the THz pulse translates to a shift in the phase in Fourier space. The evaporation

of a thin Au layer on the sample surface provides one reliable way to reference the

sample without losing phase information, though it can be potentially damaging to

the sample.

In transmission, the phase information is not sensitive to the sample position, but

the risk is rather that it can be distorted by the choice and alignment of a reference

sample. For thin films on a substrate, measuring the bare substrate is an obvious

choice for referencing, however care must be taken to ensure that the thickness and

orientation of the reference precisely match that of the sample substrate.

2.3.5 Pump-probe with THz spectroscopy

As time-domain THz spectroscopy already utilizes ultrashort pulses for material

characterization, it is the ideal tool to probe the far-infrared response of a system
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after optical stimulation. The use of one or more optical pulses to excite, or “pump”

the system, and a subsequent pulse or pulses to “probe” the dynamics is referred

to as a “pump-probe” configuration. Here I will describe a three pulse pump-probe

scheme, where a single pulse is used to pump the system and two pulses, the THz

and sampling beams, are used to probe the transient optical response.

The pump-probe scheme is illustrated in Figure 2.8. There are two time delays

to keep track of.

1. The time t between the sampling pulse and the THz pulse, which maps out

the THz spectrum and is the Fourier conjugate of the THz frequency ω.

2. The time delay τ , which refers to the delay between the sampling pulse and

pump beam and reflects the time after excitation of the sample.

Generally, τ = 0 is defined as when the pump pulse arrives at the sample surface,

though it is sometimes also defined by the peak of the transient response. Through-

out this thesis, we will use the former definition.

Figure 2.8: Timing pump excitation with THz probe.

20



It is common for those unfamiliar with this technique to initially assume that

the broad spectrum of the THz, which can extend in time for several picoseconds,

sets the time resolution of the experiment. However, this is not the case. The THz

profile is not a reflection of a “single shot” measurement, in which different parts of

the THz pulse interact with the sample at different delays with respect to the pump

arrival time. Rather, the THz spectrum is measured over many “shots”, with each

time t measured with the same delay τ between the pump and sampling beam. In

this way, the THz profile encodes the full response of the sample only at time delay

τ . The time resolution of the experiment is limited instead by the spectral content

of the THz.

As with equilibrium measurements, the THz field of the sample after pumping,

Eon(t), must be referenced by the equilibrium reflected field, E(t). The two fields

can be measured directly, using a chopper to modulate the THz beam and a lock-in

amplifier to read out the balanced EOS diodes. However, in practice, when the

pump-induced changes to the field ∆E(t) = Eon(t) − E(t) are small compared to

E(t), the amplifier may not be sensitive enough to detect them with a sufficient

signal-to-noise ratio (SNR). In this case, we instead use the chopper to modulate

the pump beam and acquire the differential changes ∆E(t) directly, at a higher

lock-in sensitivity.

Figure 2.9 shows the THz reflectivity profile of n-doped GaAs with (purple) and

without (grey) mid-infrared excitation. The pump-induced changes in the field are

large enough, in this case, to directly measure by THz chopping (left-hand panel).

The differential changes ∆E(t) are shown in the center panel, measured both by

Eon(t) − E(t) (purple) and direct acquisition (blue). The error bars indicate the

average over several scans, with the direct acquisition technique resulting in far

smaller noise. The normalized, Fourier transformed reflectivity spectrum,

∆E(ω)

E(ω)
=
Eon(ω)− E(ω)

E(ω)
(2.7)

is shown for each case (right-hand panel), and are in good agreement.
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Figure 2.9: Comparison of differential chopping with direct probe. Left:
The THz field reflected from GaAs after pump excitation (purple) and in
equilibrium (grey). Center: The differential changes to the spectrum measured as
the difference between the profiles in the left-hand panel (purple) or measured
directly by modulation of the pump (blue). Right: The normalized Fourier
transformed reflectivity spectra for the two cases.

2.3.6 Potential sources of artifacts

The referencing of the transient changes to the field ∆E(t) to the equilibrium field

E(t) is subject to the same sensitivity to phase as the absolute measurements de-

scribed in Section 2.3.4. However, since the sample does not need to be moved or

otherwise altered, the risk of introducing artifacts during referencing is low, although

there are certain scenarios to be careful of. One source of phase error that can occur

during cryogenic measurements is the shifting of the sample position due to thermal

contraction of the sample stage. An example of this is illustrated in Figure 2.10.

Using a double chopping, two lock-in scheme, both ∆E(t) and E(t) can be ac-

quired simultaneously, preventing these sorts of issues. However, the increase in sta-

bility comes at the sacrifice of SNR. By maintaining a stable environment, sequential

measurement of the transient and equilibrium fields can be performed consistently

and with high SNR.

Convolution of the THz profile with the detector response can be another source

of artifacts [67]. The detector bandwidth can act as a low-pass filter, broadening

the THz pulse. This distortion can even lead to apparent pump-induced changes

appearing before τ = 0. The effect is generally only a problem when the pump-

induced changes are very fast compared with the detector response time. A method

of deconvolving the detector response is described in the supplementary material of

Ref. [67].
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Figure 2.10: Phase error introduced by thermal contraction. An example of
the effect of thermal contraction on the recalculated transient optical properties of
YBCO 6.5. A schematic diagram (top left) shows a cold finger cryostat with a
sample mounted at the end. After cooling from 295 K to 200 K, thermal
contraction over a several hour period shrinks the length of the cold finger,
increasing the optical path of the pump and THz probe. While the motion is small
enough not to disrupt the pump probe overlap, the timing difference is enough to
introduce an artificial phase shift between a THz field measured ∼1-2 hours after
cooling (green) and a second spectrum measured a few hours later (purple), shown
on the lower left. The transient field ∆E(t) was measured shortly after the first
equilibrium spectrum. The transient reflectivity R/Req, has been calculated by
referencing ∆E(t) with the first spectrum ( textbftop right, green) and second
spectrum (lower right, purple). The top figure represents the actual response.

2.4 Experimental design used for the work

presented in this thesis

All time-domain THz spectroscopy measurements presented in this thesis were per-

formed on single crystals in a reflection geometry. The THz was generated and

detected within a vacuum chamber, shown in Figure 2.11, in order to reduce water

absorption, minimize the focal length, and allow the full THz beam to access the

sample without passing through windows. The chamber is capable of reaching base
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pressures as low as 5× 10−7 mbar. A base pressure of 5× 10−6 mbar or lower at 295

K was necessary to prevent ice formation at cryogenic temperatures. The samples

sat at the end of a cold finger cryostat affixed to the vacuum chamber. The cryostat

is able to reach temperatures of 3.5 K with active helium pumping. The sample and

cold finger were allowed to sit for typically 4 or more hours before measurement in

order to reach thermal equilibrium.

Delay stages (not pictured) were set along the pump and sampling probe paths.

The relative change between the pump and sampling beams set the pump-probe

delay τ . The transient changes in the reflectivity ∆E(t) were captured by moving

both stages together to set the relative delay between sampling beam and THz

probe.

Rotating the orientation of a λ/2-plate (on the 800 nm probe path in Figure 2.11)

and the ZnTe generation crystal allowed control over the polarization of the THz

light. For the photoconductive switch, alignment of the switch determined the THz

polarization. The THz polarization was checked with a MIR polarizer placed in

the path of the THz before the EOS optics. The focal size of the THz beam was

minimized by adjusting the cold finger (and sample) position to maximize the low

frequency THz response.

The pump beam profile was measured by sending the MIR light down a path,

outside the chamber, with the same distances and focal lengths as the set-up in the

vacuum chamber. A razor blade was used to measure the profile and optimize the

focusing lens position to match the THz beam width.
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Figure 2.11: The vacuum chamber containing the THz generation and
detection optics. The vacuum chamber is depicted in a photograph (top) and
as a diagram (bottom). The mid-infrared pump (purple) enters the chamber via
a polypropylene window and is focused onto the sample at normal incidence. The
sample sits at the end of a cold finger cryostat. The probe is generated from pulses
of 800 nm light (thick red line) incident on a ZnTe crystal or photoconductive
antenna. The THz beam (blue) is impinges on the sample at 30◦ incidence and the
reflected beam is focused into a second ZnTe crystal. A second beam (thin red
line) is focused on the same position for detection via electro-optic sampling. The
photodiodes used to detect the difference signal are located outside the vacuum
chamber and are not shown in the photograph.
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2.5 Analytic models of photo-excited materials

2.5.1 Bulk excitation

The simplest approximation for calculating the optical response of a photo-excited

material is to assume the sample is homogeneously transformed by the pump. This

is a reasonable approximation in the limit that the pump penetration depth is much

larger than that of the probe. In this regime, the reflection coefficient of the excited

material, r̃′, can be related to its refractive index ñ via the Fresnel equations,

r̃′ =

cos θ0 − ñ

√
1−

(
sin θ0

ñ

)2

cos θ0 + ñ

√
1−

(
sin θ0

ñ

)2
, (TE wave) (2.8)

and

r̃′ =

√
1−

(
sin θ0

ñ

)2

− ñ cos θ0√
1−

(
sin θ0

ñ

)2

− ñ cos θ0

, (TM wave) (2.9)

where θ0 is the angle of incidence on the sample and we have assumed the refractive

index at the sample interface is n = 1.

Figure 2.12: Bulk model. The simplest approximation of a photo-excited media
is to assume we are probing a homogeneously transformed bulk.
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The complex reflection coefficient r̃′ is related to the measured change in the

electric field as,
∆E(ω)

E(ω)
≡ ∆r̃

r̃
=
r̃′ − r̃
r̃

. (2.10)

The relative changes in the electric field ∆E/E are not enough to determine the

absolute optical properties of the excited state r̃′. We require an additional mea-

surement of the equilibrium reflection coefficient, r̃. This can be calculated from an

independent measurement of the broadband reflectivity using Kramers-Kronig anal-

ysis, or from referenced time domain THz spectra. Given the equilibrium response

ñ0, r̃ can be calculated using Equations 2.8 or 2.9. Once we determine r̃′, inverting

Equations 2.8 or 2.9 yields the transient refractive index,

ñ(r̃′) =

√
sin2 θ0 + cos2 θ0

(
1− r̃′

1 + r̃′

)
, (TE wave)

ñ(r̃′) =
1√
2

(
1 + r̃′

1− r̃′

)√√√√1 +

√
1− 4 sin2 θ0 cos2 θ0

(
1− r̃′

1 + r̃′

)2

, (TM wave)

(2.11)

Many important effects are measured with small signal-to-noise ratios, it is there-

fore worthwhile to look at how the measurement uncertainty propagates to our

calculated optical properties. In Appendix A.1, I derive how to analytically prop-

agate the standard deviation due to noise in the measured THz field, σr̃′ , to the

standard deviation of the refractive index, σñ.

2.5.2 High pump-probe penetration depth mismatch: the

thin film limit

An analytical model of the transient response can also be developed in the opposing

limit, when the pump penetration depth d is much less than the probe penetration

depth L. In this limit, we take the THz field to be constant through the film. The

boundary conditions of the electromagnetic field between the vacuum (medium 1)

and the unperturbed bulk of the sample (medium 2) can be written,

ẑ × ( ~H1 − ~H2) = jsd,

ẑ × ( ~E1 − ~E2) = 0,
(2.12)
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where js is the surface current density, js = σE, and ẑ is the unit normal from the

sample surface.

For the TE case, this becomes,

(Hi −Hr) cos θ0 −Ht cos θt = jsd,

Ei + Er = Et,
(2.13)

for the incident (i), reflected (r), and transmitted (t) fields. The light is incident at

angle θ0 and the transmitted light propagates with angle θt from surface normal.

We solve Equations 2.13 in terms of the sample admittance Y = H/E, which is

the inverse of the impedance Z = Z0/ñ and proportional to the complex refractive

index ñ. The constant Z0 is the impedance of free space, which in SI units is

Z0 =
√
µ0/ε0 ≈ 377 Ω. The equation for the reflected field becomes

Er =
(Y1 cos θ0 − Y2 cos θt)Ei − jsd

Y1 cos θ0 + Y2 cos θt
. (2.14)

The reflectivity of the excited film r̃′ = Er/Ei can be expressed just in terms of

the admittance and conductivity by using the definition of the surface current,

jsd = σEd = σ(Ei + Er)d,

r̃′ =
Y1 cos θ0 − Y2 cos θt − σd
Y1 cos θ0 + Y2 cos θt + σd

, (2.15)

or, in terms of the refractive index,

r̃′ =
ñ1 cos θ0 − ñ2 cos θt − Z0σd

ñ1 cos θ0 + ñ2 cos θt + Z0σd
. (2.16)

I now take the case that ñ1 = 1 (vacuum) and ñ2 = ñ0 where ñ0 is the bulk

refractive index following the same notation used in Section 2.5.1. The transmitted

angle θt can be written in terms of the refractive index using Snell’s law, ñ0 cos θt =√
ñ2

0 − sin2 θ0. The refractive index of the unexcited material r̃ follows the Fresnel

form given by Equation 2.8. So for the measured changes in the THz field, ∆Ẽ/Ẽ ≡
∆r̃/r̃,

∆r̃

r̃
=

(
cos θ0 −

√
ñ2

0 − sin2 θ0 − Z0σd

cos θ0 +
√
ñ2

0 + sin2 θ0 + Z0σd

)(
cos θ0 +

√
ñ2

0 − sin2 θ0

cos θ0 −
√
ñ2

0 + sin2 θ0

)
− 1. (2.17)
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Equation 2.17 can be inverted to solve for the conductivity term σ, which actually

represents the pump-induced changes to the conductivity ∆σ̃(ω). Finally we end

up with,

∆σ̃(ω) =

(
1

Z0d

) ∆Ẽ(ω)

Ẽ(ω)
(ñ2

0 − 1)

∆Ẽ(ω)

Ẽ(ω)

(
cos θ0 −

√
ñ2

0 − sin2 θ0

)
+ 2 cos θ0

(2.18)

2.6 Models with intermediate pump-probe

penetration depth mismatch

2.6.1 The characteristic matrix

I will now derive a model for the intermediate pump-probe penetration depth regime

which takes into account that the refractive index changes as a function of depth,

ñ(ω, z). The first step in this analysis is to define the characteristic matrix of a

material. The discussion in this section follows the derivation found in Born and

Wolf’s Principles of Optics, Section 1.6 [68].

We are interested in deriving the reflectivity of a beam incident on a slab of

material that has been optically excited and thus has a refractive index that varies

with depth. From Maxwell’s equations, we can describe a TE wave incident on the

y-z plane of a medium by

Ex = U(z)ei(k0βy−ωt)

Hy = V (z)ei(k0βy−ωt)

Hz = W (z)ei(k0βy−ωt)
(2.19)

where β = ñ sin θ for a homogeneous plane wave, and k0 = 2π/λ0, where λ0 is the

incident wavelength propagating in vacuo. Note that, in accordance with Snell’s

law, β is a constant.1

We define the characteristic matrix, M , of the media which will map the EM field

at some thickness z back to z = 0,(
U0

V0

)
= M

(
U(z)

V (z)

)
(2.20)

1The term β is labeled as α in Born and Wolf.

29



where U(0) = U0 and V (0) = V0. We begin by using Maxwell’s equations to define

second order differential equations for U and V (note that βU + µW = 0).

d2U

dz2
− d [lnµ]

dz

dU

dz
+ k0 (ñ2 − β2)U = 0

d2V

dz2
− d [ln (ε− β2/µ)]

dz

dV

dz
+ k0 (ñ2 − β2)V = 0

(2.21)

The solutions to these differential equations may be expressed as a weighted sum of

two solutions, U1,U2 and V1,V2, which satisfy the first order differential equations,

U ′1 = ik0µV1, U ′2 = ik0µV2,

V ′1 = ik0

(
ε− β2

µ

)
U1, V ′2 = ik0

(
ε− β2

µ

)
U2.

(2.22)

For convenience, we define the initial conditions as U1(0) = V2(0) = 0 and U2(0) =

V1(0) = 1. Note that throughout the following discussion we will assume µ = 1.

Then the solutions to Equations (2.22) have the form,

U(z) = U2(z)U0 + U1(z)V0,

V (z) = V2(z)U0 + V1(z)V0,

⇒

(
U(z)

V (z)

)
=

[
U2 U1

V2 V1

](
U0

V0

)
.

(2.23)

From Equations (2.22) we can derive ∂z(U1V2−U2V1) = 0 and thus that the matrix

above must have a constant determinant, independent of z. We can use our initial

conditions to explicitly solve that det(M−1) = 1 at z = 0.

Finally, we invert Equation (2.23) and arrive at our characteristic matrix,(
U0

V0

)
=

[
V1 −U1

−V2 U2

](
U(z)

V (z)

)
. (2.24)
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Equations (2.21) can be simplified by assuming ñ, the complex refractive index,

is constant throughout the medium,

d2U

dz2
+ (k2

0ñ
2 cos2 θ)U = 0,

d2V

dz2
+ (k2

0ñ
2 cos2 θ)V = 0.

(2.25)

Solving these equations using the initial conditions given above leads us to the final

form of our characteristic matrix,

M(z) =

 cos(k0ñz cos θ) − i
p

sin(k0ñz cos θ)

−ip sin(k0ñz cos θ) cos(k0ñz cos θ)

 , (2.26)

where p =
√
ε/µ cos θ ≡ ñ cos θ.

The above matrix form can be applied to the TM case as well if we make the

substitution p→ cos θ/ñ.

2.6.2 Single excited layer model

The characteristic matrix has been derived assuming a uniformly excited media.

In this section I will use the characteristic matrix to describe a uniformly excited

single layer of thickness d on an unperturbed bulk. The terms of the characteristic

matrix can be used to calculate the reflectivity coefficient, r̃′, for the excited medium.

Defining I, R, and T as the amplitude of the incident, reflected, and transmitted

waves, respectively, then

U0 = I +R, U(d) = T,

V0 = p1(I −R), V (d) = pdT.
(2.27)

where we define p1 for the material from which the field enters the medium and pd

for the material a distance d into the medium. So p1 = cos θ0, where θ0 is the angle

of incidence, and pd = ñ(d) cos θd = ñ0 cos θd, where θd is the angle at which the

field leaves the pumped region. Using Snell’s law, cos θd =
√

1− (sin θ0/ñ0)2.

31



Figure 2.13: Single layer model. The material is modeled as a single excited
layer on an unperturbed bulk.

Using M to solve Equations (2.27), we find that the reflectivity coefficient for the

excited layer is,

r̃′ =
R

I
=

(m11 +m12pd) p1 − (m21 +m22pd)

(m11 +m12pd) p1 + (m21 +m22pd)
, (2.28)

where mij is the i,jth component of the matrix M .

The code implementing this model can be found in Appendix C. The experimen-

tally obtained r̃′ is expressed as a function of the pump-induced refractive index,

ñ. The form of the matrix M makes explicit calculation of ñ(r̃′) not analytically

feasible. However, we can recursively “guess” ñ and try to fit the resulting r̃′ to our

data. The method used to fit r̃′ is discussed in Section 2.6.4.

2.6.3 Multilayer model

In order to model a material with a refractive index that evolves as a function of z,

we consider the case of many thin layers stacked together, where ñ(z) = constant

for each layer. The characteristic matrix of this total medium is just a product of

the matrices for each layer,

M(zN) = M1(z1)M2(z2 − z1)...MN(zN − zN−1). (2.29)

The surface is an excited layer with a refractive index, ñ, that exponentially decays

to the bulk, ñ0,

ñ(z) = ñ0 + ∆ñe−αz, (2.30)
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Figure 2.14: Multilayer model. The system is modeled as a multilayer, with the
the pumped volume described as a stack of thin layers with z-independent
refractive index, ñ. From layer to layer, the refractive index decays exponentially
to the bulk value.

where the penetration depth of the pump, d, sets the decay rate, α = 1/d. So

p1 = cos θ0, where θ0 is the angle of incidence, and pL = ñ(L) cos θL, where θL

is the angle at which the field would leave the probed region. Using Snell’s law,

cos θL =
√

1− (sin θ0/ñ(L))2.

This model has been implemented in Matlab and can be found in Appendix C.

In order to improve calculation speed, the program sets a tolerance for the value

for ñ(zi+1) − ñ(zi) at which it assumes the bulk refractive index has been reached.

In this limit, where the probe penetrates much deeper than the pump, the program

produces quantitatively similar answers to the single film model.

For thin layers, δz << k0, the characteristic matrix form can be approximated

and the matrix elements solved for analytically. This is described in Appendix A.3.

An analytic version of the multilayer model was derived for the TE polarization case

and is discussed in Appendix A.4.

2.6.4 Implementing the non-analytic models

The code for each of the non-analytic models is given in Appendix C. They are

designed to take as an input the guess value of the transient changes to the refrac-

tive index at the sample surface, ∆ñ at a single frequency ω. They also take the

equilibrium refractive index ñ0 at frequency ω as well as other necessary parameters,

as described in the code. The output is the resulting transient reflectivity r̃′(ñ) for

a refractive index ñ = ñ0 + ∆ñ. The reflectivity is related back to the measured

quantity ∆Ẽ/Ẽ via Equation 2.10.
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The key is to choose a good quantity to optimize in order to match the model value

of ∆Ẽ/Ẽ at each frequency to the experimentally measured value. I implemented

an algorithm in Matlab which uses the built-in minimization function fsolve() and

the Levenberg-Marquardt fitting algorithm. The algorithm minimizes the set of two

quantities [δ<(ñ), δ=(ñ)] which I have defined as,

δ<(ñ) =

∣∣∣∣∣∆ẼẼ
∣∣∣∣∣
−1 ∣∣∣∣∣<

(
∆Ẽ

Ẽ
− r̃′(ñ)− r̃

r̃

)∣∣∣∣∣ ,

δ=(ñ) =

∣∣∣∣∣∆ẼẼ
∣∣∣∣∣
−1 ∣∣∣∣∣=

(
∆Ẽ

Ẽ
− r̃′(ñ)− r̃

r̃

)∣∣∣∣∣ ,
(2.31)

where r̃′(ñ) is calculated by the model and ∆Ẽ/Ẽ is the experimentally measured

changes in the THz field.

2.7 Model comparison

Finally, I present a comparison of the various models derived here. The example case

is the a-axis and c-axis response of YBa2Cu3O6.5 (YBCO 6.5) after MIR excitation

along the c-axis. See Chapter 5 for the experimental details. YBCO is highly

anisotropic; in the pseudogap phase, the optical response in the 0-3 THz range is

dominated by extended Drude metal-like behavior [69] along the a, b-axes while the

c-axis response is gapped. The penetration depth of the THz regime reflects this

anisotropy. The pump penetration depth, d = 0.7 µm, is much higher than the THz

probe in-plane, where the THz is effectively screened. Along the c-axis, however,

the THz probes on order 10 times as deeply as the pump, putting the excitation

well into the thin film limit.

We examine first the response in the bulk limit, shown in Figures 2.15 and 2.16.

The multilayer model (Section 2.6.3) and the single layer model (Section 2.6.2) both

reproduce the bulk response calculated from the Fresnel equations (Section 2.5.1). In

Appendix A.3 I derive an approximate form of the multilayer model. This model also

works well in the bulk limit. Figure 2.15 shows the optical conductivity calculated

by these methods, and the residuals between these methods and the bulk response.

The analytical model, based on the approximate multilayer model, (Appendix A.4)

over-exaggerates the response, while the thin film model (Section 2.5.2) under-

reports the magnitude of the pump-induced changes to the optical response. The
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Figure 2.15: Model comparison in the bulk limit: accurate models. The
a-axis response of YBCO 6.5 at 100 K after 15 µm excitation along the c-axis. The
changes in the optical conductivity ∆σ̃(ω) = σ̃(ω)− σ̃eq(ω) are shown in the left
and center panels, as calculated by four models described in the main text. The
residuals are plotted with respect to the response calculated with the bulk model
(green dots). The penetration depth mismatch between pump d and probe L(ω) is
plotted at right.

calculations using these methods, and their residuals with respect to the bulk re-

sponse, are shown in Figure 2.16.

The thin film limit is shown in Figures 2.17 and 2.18. Here, the thin film model

redeems itself. Both the single layer model and multilayer model also reproduce the

response well. We find that in this limit, the approximations made to the multilayer

model and the analytic solution both fail to capture the transient response, showing

constant offsets from the single layer model response (plotted for comparison in

Figure 2.18). The bulk model also fails to capture the transient response in this

regime.
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Figure 2.16: Model comparison in the bulk limit: inaccurate models. The
a-axis response of YBCO 6.5 at 100 K after 15 µm excitation along the c-axis. The
changes in the optical conductivity ∆σ̃(ω) = σ̃(ω)− σ̃eq(ω) are shown in the left
and center panels, as calculated by three models described in the main text. The
residuals are plotted with respect to the response calculated with the bulk model
(green dots). The penetration depth mismatch between pump d and probe L(ω) is
plotted at right.

Figure 2.17: Model comparison in the thin film limit: accurate models.
The c-axis response of YBCO 6.5 at 100 K after 15 µm excitation along the c-axis.
The changes in the optical conductivity ∆σ̃(ω) = σ̃(ω)− σ̃eq(ω) are shown in the
left and center panels, as calculated by three models described in the main text.
The residuals are plotted with respect to the response calculated with the single
layer model (dark blue dots). The penetration depth mismatch between pump d
and probe L(ω) is plotted at right.
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Figure 2.18: Model comparison in the thin film limit: inaccurate models.
The c-axis response of YBCO 6.5 at 100 K after 15 µm excitation along the c-axis.
The changes in the optical conductivity ∆σ̃(ω) = σ̃(ω)− σ̃eq(ω) are shown in the
left and center panels, as calculated by four models described in the main text.
The residuals are plotted with respect to the response calculated with the single
layer model (dark blue dots). The penetration depth mismatch between pump d
and probe L(ω) is plotted at right.
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Chapter 3

The Josephson plasma resonance

The Josephson plasma resonance (JPR) is one unique signature of superconductivity

in the optical response of cuprates [70, 71]. The appearance and behavior of this

plasma mode is intimately tied to the amplitude and phase of the superconducting

order parameter and the coherence lengthscale of the condensate. In this chapter I

will introduce the theoretical concept of the Josephson plasmon and present how this

collective mode can be measured. The experiments described in Chapters 4, 5, and

7 use the physics of the Josephson plasmon to describe and interpret the transient

states generated by optical excitation. In Chapter 5, I discuss more details of the

equilibrium JPR in the context of the optical response of the cuprate superconductor

YBa2Cu3Ox.

3.1 A stack of intrinsic Josephson junctions

Cuprates are organized as stacks of quasi two-dimensional (2D) superconductors,

with pairs primarily occupying the Cu d-orbitals and O p-orbitals of the CuO2

planes [72, 73]. The anisotropy of the system geometry means that while Coulomb

interactions between carriers are three-dimensional (3D), electronic motion is con-

fined to be mostly 2D. In the superconducting state, intrinsic Josephson coupling

between CuO2 planes along the c-axis allows full, 3D superconductivity [74, 75].

This Josephson tunneling between these planes produces, amongst other collective

excitations [76], a longitudinal mode polarized along the c-axis. The organization

of the La1.8−xEu0.2SrxCuO4 (LESCO x) lattice is illustrated in Figure 3.1. The il-

lustration highlights the CuO6 octehedra, in blue, with the CuO2 planes bisecting

their center in the ab-plane.
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Figure 3.1: The optical response due to a Josephson plasma mode. Top
row: The LESCO crystal structure (left) is organized as stacks of CuO2 planes
(illustrated at center). In the superconducting state, the crystal response is
analogous to a stack of RLC circuits, with Josephson coupling providing the
inductive channel. Bottom row: The Josephson plasma resonance appears as an
edge in the optical reflectivity (left), a peak in the energy loss function =(−1/ε̃),
and a zero crossing in the real dielectric response ε1(ω).

The optical signature of a Josephson plasma mode is a c-axis reflectivity edge

near the plasma frequency ωp, as shown in the lower lefthand panel of Figure 3.1 for

the near-optimally doped superconductor La0.85Sr0.15CuO4 (red). The mode is also

distinguishable in the energy loss function =(−1/ε̃(ω)) as a peak in the response

(center panel) and in ε1(ω) as a zero crossing near the plasma frequency (right-hand

panel).

The JPR frequency depends upon several factors, including the crystal geome-

try, superfluid density, and compressibility of the material [77]. However, within a

single family of compounds, the relative position of the resonance can be related
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to the superfluid density, nS ∝ ω2
p. Therefore as one approaches optimal doping,

the resonance blue shifts as more carriers are available to condense.1 The plasmon

frequency falls in the 0-3 THz range for lanthanides. This frequency regime is free

from other IR-active excitations, with the response remaining flat above Tc in super-

conducting compounds and featureless at all temperatures in non-superconducting

LESCO 12.5% (see responses in pink and blue respectively in Figure 3.1).

The optical response for the Josephson plasmon can be described by the Lawrence-

Doniach model for a Josephson junction between two 2D superconducting layers [74,

75]. The Josephson plasma resonance in cuprates can be modeled as a stack of 2D

superconducting sheets [78], where Josephson coupling produces a resonant plasma

mode with a dispersion,

ω2
p(
~k, q) = ω2

ab

((
λab
λc

)2

+
k2

Q(q)2 + λ−2
ab

)
, (3.1)

where ~k is the ab-plane wavevector and −π ≤ q ≤ π is the dimensionless momentum

along the c-axis, with Q(q)2 = 2(1 − cos q)/L2, where L relates to the length of a

single junction. The frequency ωab = c/λab
√
ε0 is just the plasma frequency for a

field in-plane and λab (λc) is the in-plane (c-axis) penetration depth. In the limit

that q = 0, Equation 3.1 reduces to that of a Josephson junction.

We will limit our discussion to the small ~k regime, ~k → 0. The dielectric function

has the form,

ε̃p = ε̃c −
ωp(q)

2

ω2 − iωΓ
, (3.2)

where for a bare plasmon, ε̃c is the high-frequency dielectric constant, ε∞ = 4.5, a

standard value for cuprates [79]. The response of a Josephson stack is analogous

to that of a Drude metal, described by a single longitudinal mode. The effective

mobility of the collective mode is described by Γ. In the original derivation for a

Josephson stack, Γ is determined by thermally activated quasiparticles; however,

generically, this term encompasses all processes that impact mobility along the c-

axis. Fluctuations in the superconducting correlation length and time scale, for

instance, have been shown to give rise to an effective Γ term near Tc in supercon-

ducting La2−xSrxCuO4 [80] and Bi2Sr2CaCu2O8+x [81].

In the limit Γ → 0, this equation gives rise to a pole at ω = 0, which has

a transverse polarized character and represents the “effective” condensate density

1This relationship is discussed in more detail in the context of YBa2Cu3Ox in Section 5.3.1.
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along the c-axis. The condensate density is effective in the sense that it comprises

only those pairs that contribute to Josephson tunneling.

Figure 3.2: Current flow across a stack of equivalent Josephson junctions.
The superconducting planes are depicted as grey lines, with the arrows depicting
the direction of current flow. The longitudinal mode has ~k ⊥ planes and a zero
frequency transverse “mode” with ~k ‖ planes describes the effective condensate
along the perpendicular direction.

3.2 A stack of inequivalent junctions

If the stack of intrinsic junctions are not identical, then multiple Josephson reso-

nances can form. Three distinct situations involving the formation of two resonances

in YBa2Cu3Ox will be encountered in this thesis.

1. The equilibrium YBa2Cu3Ox crystal intrinsically has two plasma modes due to

its bilayer structure. The response of only one mode, the interbilayer plasmon,

is considered in Chapters 5 and 7. In Section 6.2, I will present the response

of the higher frequency bilayer plasmon.

2. The transient blue shift of the interbilayer Josephson resonance which is seen

below Tc is actually inhomogeneous, with a resonance also remaining near the

equilibrium plasma frequency. (Discussed in Section 7.2.)

3. The transient plasmon induced above Tc splits into two modes as it relaxes.

(Discussed in Section 7.3.)

41



Although the origin of the two plasmons is different in each case, their theoretical

description is effectively the same. In this section, I will first introduce methods of

modeling two inequivalent junctions. I will then show how a split resonance impacts

the optical response when the geometry of the planes leads to an intrinsic splitting

of the resonance, as in the case of bilayer cuprates.

3.2.1 Theoretical picture

Not long after this intrinsic Josephson plasma mode began to be understood, at-

tention was drawn to the case of two inequivalent junctions [82]. YBa2Cu3Ox was

the first cuprate discovered to have a bilayer structure, naturally containing two

inequivalent junctions. Compounds in the Bi, Tl, and Hg families can also contain

two or more CuO2 planes per unit cell. The simplest model for such a stack was

proposed by van der Marel and Tsvetkov [82], effectively summing the junctions in

series,

ε̃ =

(∑
m

zm
ε̃m

)−1

, (3.3)

where the weighting factor zm is predominantly determined by the relative length of

each junction. They described the normal state contribution to c-axis transport as

a parallel component to the conductivity, 4πσ̃0 = Γ0, replacing Equation 3.2 with

the form,

ε̃ = ε∞

(
1−

ω2
p

ω2

)
+
iΓ0

ω
. (3.4)

For two junctions a and b, this yields a response [77],

ε∞
ε̃

=
ω2za

ω2 − ω2
a + iωΓa

+
ω2zb

ω2 − ω2
b + iωΓb

. (3.5)

Immediately striking is the similarity between this response and that of two RLC

circuits in series,

ε∞
ε̃− ε∞

=
ω2(ε∞/4πCa)

ω2 − (1/LaCa) + iω (1/RaCa)
+

ω2(ε∞/4πCb)

ω2 − (1/LbCb) + iω (1/RbCb)
. (3.6)

where the Γa,b term describes the resistive channel. The relationship between the

weight factors za,b and the geometry of the junction becomes clear (recall that for

a parallel plate capacitor with plates separated by a distance d, C ∝ 1/d). In this
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picture, the Josephson coupling can be thought of as an inductive coupling between

planes.

The two junction case has two poles in the response, the zero frequency pole and a

finite frequency transverse mode. This can be visualized by inverting Equation 3.5,

ε̃

ε∞
=

(ω2 − ω2
a) (ω2 − ω2

b )

ω2 (ω2 − ω2
T )

. (3.7)

We’ve taken Γa,b → 0 for clarity. The frequency of the transverse mode can be

related to the longitudinal modes by ω2
T = zbω

2
a + zaω

2
b . The longitudinal and

transverse modes can both be visualized in terms of the current flow across the

junction, as depicted in Figure 3.3.

Figure 3.3: Plasma modes of two inequivalent junctions. The
superconducting planes are depicted as grey lines, with the arrows depicting the
direction of current flow. The shading of the lines is meant to represent the
relative charging of the planes. Left: The two longitudinal modes have ~k ⊥
planes. Right: The two transverse modes with ~k ‖ planes. The top excitation is a
zero frequency pole in the response, describing the effective condensate along the
perpendicular direction. The lower mode is a finite frequency excitation that
shares spectral weight with the zero frequency mode.
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The two longitudinal modes are depicted as decoupled excitations; however they

are generated by the response of coupled charge planes. We see how these modes

arise by following the derivation of Equation 3.7 from Ref. [77] which starts from the

Hamiltonian for the charge fluctuations on two inequivalent planes, Q2m = Q2e
imφ

and Q2m+1 = Q1e
imφ, with periodic boundary conditions and with the addition of

a Josephson coupling term HJ = −
∑

m J
m+1
m cos(φm − φm+1),

H = −
∑
m>n

|xm − xn|
2C0

QmQn +HJ . (3.8)

The separation of planes m and n is L|xm − xn| and the capacitance term is C0 =

A/(4πL). The internal charge of plane m, Qi
m = Qm − Qe

m, forms a conjugate

variable with the Josephson phase of the plane, φm, giving the equations of motion,

~
2e

dφm
dt

=
∂H

∂Qi
m

~
2e

dQi
m

dt
= − ∂H

∂φm

(3.9)

These coupled equations can be diagonalized by recasting the charged planes in a

new basis, Qa = Q1 +Q2 and Qb = Q1 +Q2e
iϕ. In this basis, we have separated out

the voltage potential across junctions a and b, Va ∝ zaQa and Vb ∝ zbQb. Solving

Equations 3.9, the charge response to an external charge Qe is then,

Qe
a = εaQa, εa = 1− ω2

a/ω
2,

Qe
b = εbQb, εb = 1− ω2

b/ω
2,

(3.10)

where the Josephson plasma frequency ωi of junction i = a, b can be related to the

Josephson energies, Ji, of each junction,

ω2
i =

(
2e

~

)2
ziJi
Cav

, (3.11)

with the average capacitance defined as Cav = Aεav/4πL. The average dielectric

constant is a mixing of the dielectric constants of each junction, εi,0, such that

1/εav = xa/εa,0 + xb/εb,0. The relative weights for each junction are zi = xiεav/εi,0.
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3.2.2 Josephson plasmon in bilayer cuprates

Because YBCO has a bilayer structure, with two CuO2 planes per unit cell, the

tunneling across each gap–the smaller bilayer and larger interbilayer–both deter-

mine the effective c-axis carrier density and thus the macroscopic superconducting

behavior.

We have seen that two inequivalent Josephson junctions in series gives rise to a

finite frequency transverse plasma mode. In equilibrium YBCO 6.5, this transverse

mode appears as a broad peak in the Ohmic conductivity σ1(ω) at about 400 cm−1

(12 THz). This mode shares spectral weight with the condensate at ω = 0 [83]. The

equilibrium broadband response of YBCO 6.5 at 5 K is shown in Figure 3.4 (grey

lines) along with a fit to the two longitudinal Josephson plasma modes at 33 and

570 cm−1 (1 and 17 THz) using Equation 3.5 (red lines). The transverse mode is

highlighted in blue, along with an arrow indicating the delta function distribution

of the ω ≈ 0 condensate2.

The Hamiltonian in Equation 3.8 is missing one term relevant for cuprates, the po-

tential energy due to the electronic compressibility [77]. The compressibility leads to

a mixing of the bare plasmons and, importantly, a reduction of the effective volume

fraction of the short junction and a corresponding reduction in the magnitude and

frequency of the transverse plasmon from what would be predicted from geometrical

considerations alone.

Interestingly, there is evidence that Josephson coupling within the bilayer junc-

tion survives even above Tc. This is illustrated in Figure 3.5, with YBCO 6.5 at

60 K (Tc = 51 K). The fit is the same as that in Figure 3.4, but with the interbilayer

plasma frequency ωIB = 0. The transverse mode still survives as long as the bilayer

plasmon ωB > 0. A careful study of the transverse mode in a range of compounds

RBa2Cu3Ox (R = Y, Gd, Eu) [85] found a dome that extends deep into the pseudo-

gap state in which bilayer coupling survives (see Figure 3.6). The existence of this

regime indicates that even after global phase coherence is lost, the closely-spaced

bilayer planes may retain local coherent coupling.

2The condensate would form a perfect London-like delta function distribution in the Ohmic
conductivity, σ1(ω) ∝ nSδ(0) if there were no pair-breaking processes.
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Figure 3.4: The bilayer and interbilayer Josephson plasmons. Left: The
Cu (blue) and O (red) atoms of YBCO, organized into pairs of CuO2 planes (pink)
separated by an interbilayer gap (green). The coupling between planes can be
considered using the analogy of an RLC circuit. Right: Calculations (red) of the
bilayer and interbilayer tunneling contributions to the optical response of YBCO
6.5 (grey). The two peaks in the loss function =(−1/ε) correspond to interbilayer
Josephson tunneling (low frequency, green) and tunneling within the bilayer (high
frequency, pink). A transverse plasmon appears as a peak in the Ohmic
conductivity σ1(ω) (blue) and shares spectral weight with the condensate at ω = 0
(red arrow). Static YBCO 6.5 data from [84].
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Figure 3.5: The bilayer Josephson plasmon above Tc. Left: To calculate the
optical response, Josephson coupling across the interbilayer gap (green) is turned
off above Tc, though tunneling within the bilayer (red) remains. Right:
Calculations (red) of the bilayer and interbilayer tunneling contributions to the
optical response of YBCO 6.5 (grey). Only one peak remains in the loss function
=(−1/ε), corresponding to intrabilayer Josephson tunneling (high frequency,
pink). The transverse plasma mode remains, though the condensate at ω = 0 is
fully depleted.

Figure 3.6: Regime of bilayer coupling in R-123 compounds. The regime
beneath T ons shows evidence of coupling within the bilayer.
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Chapter 4

Generating Josephson coupling in
La1.675Eu0.2Sr0.125CuO4 by the
suppression of charge order

4.1 Introduction

In materials for which the electronic behavior is confined to be quasi two-dimensional,

superconductivity is often found to lie in close proximity to various forms of charge

order, for example in the BCS superconductor 2H-NbSe2 [86, 87], cuprates [88],

and even certain organic compounds [89] and pnictides [90]. In cuprates, while

the proximity of antiferromagnetic spin ordering was long understood to be ubiqui-

tous across all families of compounds, evidence of charge ordering was found to be

confined to a few materials, notably the lanthanum copper-oxides. Recently, the dis-

covery of charge density wave behavior in YBa2Cu3Ox [91] and then—all in the past

year—in Bi2Sr2CaCu2O8+x [92], Bi2Sr2−xLaxCu2O6+δ [93], and HgBa2CuO4+δ [94],

has established that the charge ordering instability is in fact a generic feature of

cuprates.

However, the nature of the interplay between superconductivity and charge or-

der remains a subject of much debate. Superconductivity in cuprates is thought

to be supported in two-dimensional CuO2 planes and made three dimensional by

Josephson tunneling between planes. Both in-plane and out-of-plane coherence can

be strongly affected by ordering of charges and spins, which also organize within the

CuO2 planes. Small perturbations in doping, applied field, or pressure can tune the

energy landscape between orders, suppressing or supporting the superconducting

state.

This phase competition is especially dramatic in the lanthanum copper oxides,

which exhibit striped spin and charge-ordered states, typically stabilized by an

underlying lattice distortion [95, 96]. Static stripe order was first discovered in

La1.6−xNd0.4SrxCuO4 (LNSCO x) [88, 97] and has since been detected in La2−xBax-
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CuO4 (LBCO x) [98, 99] and La1.8−xEu0.2SrxCuO4 (LESCO x) [23, 100]. Charge

stripes are associated with the suppression of superconductivity in this family of

compounds, with bulk superconductivity completely destroyed at x = 1/8 (12.5%)

doping [101, 102], where the lattice spacing and charge order enter into lock-step

and charge stripes develop at every fourth CuO2 plaquette. This is illustrated in the

top part of Figure 4.1, with the copper and oxygen atoms depicted in blue and red

respectively and yellow highlighting indicating the plaquettes that host the charge

stripes.

Recent theoretical [103–105] and experimental [15, 102, 106] work suggests that

this suppression is not due to simple competition between orders, but instead that

superconductivity may coexist with charge stripes. In this framework, charge order-

ing imposes a space dependence on the superconducting order parameter phase [104].

The spatial modulation—often referred to as a “pair density wave” state—suppresses

the total Josephson tunneling by disruptive interference [105]. Stripes in neighbor-

ing planes alternate between alignment along the a and b crystallographic axes,

and aligned stripes in next-nearest planes shift by half a period to reduce Coulomb

interactions (see Figure 4.1) [106]. This stripe orientation effectively quadruples

the unit cell to four CuO2 planes, with Josephson coupling only possible between

every fourth plane. Two-dimensional superconducting fluctuations would still be

supported, and 3D superconductivity achieved below the temperature at which the

superconducting c-axis coherence length exceeds the quadrupled unit cell spacing.

This assessment is supported by susceptibility [102] as well as resistivity and

thermopower [106] measurements which suggest a fluctuating 2D superconductivity

regime survives in the spin order state, up to TSO = 40 K in LBCO 12.5%, and

1D correlations persist up to the charge order transition, TCO = 54 K. Scanning

tunneling spectroscopy and angle-resolved photoemission also detect evidence of

fluctuating superconductivity throughout the charge ordered regime [107].

Using mid-infrared (MIR) excitation, Fausti, et al. [33] showed that it was possible

to generate c-axis interlayer coupling reminiscent of Josephson coupling in LESCO

12.5%. The transient THz response is characterized by the appearance of a plasma

mode near the Josephson plasma resonance of related superconducting compounds.

The MIR light targets a phonon mode associated with stretching of the Cu-O bonds

in the CuO2 planes, and they posited that the excitation was distorting the lattice

structure of the compound, destabilizing the charge and spin stripes and restoring

superconducting coupling. The effect was detected up to 10-20 K, near the spin

order transition temperature.
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Figure 4.1: Charge ordering along the c-axis of lanthanides. Top: The
CuO2 planes of LESCO with the LTT distortion. Cu atoms are in blue and O in
red. Arrows indicate the spin alignment between charge stripes, which are
illustrated as yellow plaquettes. At x = 1/8 doping, the periodicity of the stripes
syncs with every fourth CuO2 plaquette. Bottom: The grey sheets represent a
stack of CuO2 planes and the yellow lines indicate the location of the charge
stripes. The charges alternate alignment between the a and b axes, with the stripe
location moving two lattice spacings in next-nearest planes to reduce Coulomb
interaction between stripes. Figure adapted from Ref. [32].

The same MIR excitation was found to cause a suppression of charge stripe order

in LBCO 12.5%. The magnitude of the charge ordering peak, measured with soft

x-ray scattering (SXR) at the Linac Coherent Light Source (LCLS), was promptly

reduced by ∼60% within the 300 fs resolution of the experiment [32]. The lattice

structure, however, was only weakly modified and the distortion occurred much

more slowly, over a 15 ps timescale, suggesting the electronic suppression of stripes,

rather than the lattice distortion, is key to the formation of the transient coupling

measured by Fausti et al.

In this project we examine in more detail this light-induced plasma mode, tak-

ing a careful look at the temperature and timescales of the transient state. Most

of the results reported here have been published in Ref. [34]. We find that coher-

ent interlayer coupling can in fact be generated up to the charge-order transition

TCO ≈ 80 K, far above the equilibrium superconducting transition temperature of
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any lanthanide cuprate. The relaxation kinetics of the interlayer coupling support

the assignment of Josephson coupling as the origin of the transient plasmon.

Two key observations are extracted from the relaxation. First, the plasma mode

relaxes through a collapse of the carrier coherence length and not the carrier density.

Second, two distinct kinetic regimes are observed for this relaxation, above and

below spin-order transition TSO ≈ 25 K. In particular, the temperature-independent

relaxation rate observed below TSO is anomalous and may indicate coexistence of

superconductivity and stripes rather than competition. Both observations support

arguments that a low temperature coherent stripe (or pair density wave) phase

suppresses c-axis tunneling by disruptive interference rather than by depleting the

condensate. Preliminary results extending this study to LESCO x < 1/8 will be

presented that suggest the transient coupling is enhanced as x→ 1/8.

4.2 Experimental design and methods

4.2.1 The La1.8−xEu0.2SrxCuO4 phase diagram

La1.8−xEu0.2SrxCuO4 (LESCO x) has a tetragonal crystal structure consisting of

stacks of CuO6 octehedra, spaced by the La, Eu, and Sr atoms. The lattice un-

dergoes a structural transition at ∼130 K [108], transitioning from the “high tem-

perature tetragonal” phase, in which the octehedra are vertically aligned along the

c-axis, and entering the “low temperature tetragonal” (LTT) phase, in which the

octehedra become canted. The structural and electronic phase diagram of LESCO

is shown in Figure 4.2. The black line tracks the LTT distortion temperature. The

LTT phase crystal structure is illustrated in Figure 4.3.A and the canting is depicted

in Figure 4.3.B.

In both LNSCO and LBCO, the transition to static charge stripe order occurs at

the same temperature as the onset of the LTT phase [98], whereas in La2−xSrxCuO4

(LSCO x), the LTT phase is never realized and static charge stripes fail to develop.

This might suggest that the LTT distortion drives static stripe formation. However,

LESCO throws a wrench into that picture, with the LTT distortion occurring nearly

50 K above the charge ordering temperature (blue line in Figure 4.2). While the

LTT distortion certainly plays a role in stabilizing stripes, the charge order transition

appears to be ultimately determined by electronic factors.

Strong spin fluctuations are found throughout the charge ordered state [109, 110],

and static spin stripes form at a lower temperature, about TSO = 25 K for LE-
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Figure 4.2: Electronic and structural phase diagram of
La1.8−xEu0.2SrxCuO4. Phase diagram from Ref. [108].

SCO 12.5% [100, 108] (see red line in Figure 4.2). Superconductivity is completely

suppressed at 12.5% doping. The single crystals measured in this experiment were

confirmed to be non-superconducting down to 5 K by resistivity and magnetization

measurements. Hard X-ray diffraction and Hall coefficient measurements show the

appearance of the static stripe ordering below 80 K [33].

4.2.2 Phonon pumping

The low temperature tetragonal (LTT) phase of LESCO has D16
4h-P42/ncm sym-

metry and four IR-active Eu modes associated with the motion of its CuO6 octa-

hedra [111]. We targeted the Cu-O stretching mode along the a-axis1, which has

a resonant frequency at 20.5 THz (14.5 µm wavelength). This mode is illustrated

in Figure 4.3.C. The crystal was excited at normal incidence with ∼300 fs mid-

infrared (MIR) pulses with a central frequency at ∼15 µm, polarized along the

crystallographic a-axis. The MIR spectrum is plotted in Figure 4.4 along with the

a-axis optical conductivity σ1(ω), which peaks at the mode resonance frequency.

1Note that the a- and b-axes are equivalent in the LTT phase.
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Figure 4.3: Phonon pumping of the CuO2 planes in LESCO. (A) The
crystal structure of LESCO in the LTT phase. Figure by Jörg Harms. (B)
Illustration of the LTT distortion of the CuO6 octehedra. (C) Illustration of the
atomic motion of the CuO6 octehedra due to the Cu-O stretching mode.

Figure 4.4: The mid-infrared pump spectrum and the phonon resonance.
The pump spectrum (purple) fit by a Gaussian (dotted line) with a beam waist of
σ = 1.6 THz. The Ohmic conductivity σ1(ω) (black) is plotted in units of 1/Ω-cm.
The conductivity peaks at the Cu-O stretching mode resonance.

4.2.3 Probing with time-domain THz spectroscopy

The optically excited sample was probed with time-domain THz spectroscopy as

described in Chapter 2. Single cycle THz probe pulses were generated via 800 nm

excitation of a photoconductive antenna. The time resolution of the experiment

was limited by the THz bandwidth to about 300 fs. The experiment was performed

with THz pulses s-polarized (TE) along the c-axis at 30◦ angle of incidence. The low

frequency spectral cutoff was limited by the sample size and day-to-day alignment

to between 0.2 and 0.4 THz.
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4.2.4 Calculation of the transient optical response

The equilibrium optical reflectivity of LESCO 12.5% was measured by Fourier trans-

form infrared spectroscopy (FTIR) up to 9000 cm−1 and by time-domain THz spec-

troscopy between 1 and 2.5 THz by Fausti, et al.. The reflectivity below 7 THz has

been fit with a simple single Lorentzian oscillator model of the conductivity, which

explicitly maintains Kramers-Kronig consistency.

The THz probe samples a crystal volume on order 100 times greater than the

15 µm pump. The full transient optical response of the photo-excited volume alone

was calculated by modeling the system as an excited surface on an unperturbed bulk,

following the procedure described in Chapter 2 (see Figure 4.6). Both the single

layer model and multilayer model produce equivalent results (see Appendix B.1).

The transient optical response calculated from the single layer model is reported in

the following sections.

Figure 4.5: The low frequency THz response in equilibrium. Top row:
The broadband (left) and low frequency (right) reflectivity of LESCO 12.5%. The
broadband (light blue) and THz (dark blue) was measured by Fausti, et al. (See
supplemental material of Ref. [33].) A fit to the low frequency spectrum (grey)
models the conductivity with a single Lorentzian oscillator. The spectral range
probed in the present study is indicated by the shaded region of the right-hand
figure. Bottom row: Low frequency conductivity σ1(ω) + iσ2(ω) and real part of
the dielectric function ε1(ω) modeled by the Lorentzian oscillator.
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Figure 4.6: Pump-probe penetration depth mismatch. Left: The ratio
between the pump penetration depth dpu = 85 nm and the probe penetration
depth dpr of LESCO 12.5% in the range from 0 to 3 THz. Right: Illustrations
depicting the two models used to calculate the full transient optical response at
the surface of the crystal.

4.3 Restoration of c-axis coupling

4.3.1 Generation of a transient plasma mode

Figure 4.7 summarizes the primary results of Ref. [33]. Upon optical excitation, a

transient plasma mode develops, as measured by the appearance of a reflectivity

edge in the reflected THz field Ẽ(ω), ∆r/r ≡ |(Ẽ(τ, ω)− Ẽ(ω))/Ẽ(ω)|. This mode

is located near the frequency of the equilibrium Josephson plasma resonance (JPR)

mode of superconducting lanthanides. Note that the small 0.1% change in the raw

reflectivity can be ascribed to the high pump-probe penetration depth mismatch.

The plasma mode is shown in Panel 4.7.A at 10 K. The mode could be detected up

to between 10-20 K.

The JPR magnitude, ∆R, measured as the difference between the maximal and

minimal reflectivity changes, scales with the log of the fluence, ∆R ∝ ln(F/Fsat),

where Fsat is the fluence above which the optical response would reach saturation.

Panel 4.7.B shows the fluence dependence at three pump wavelengths. The ampli-

tude of the raw ∆R response more than doubles between 1 mJ/cm2 of 15 µm excita-

tion (the fluence used in Panel 4.7.A and throughout the main text of Ref. [33]) and

4 mJ/cm2, the highest fluence measured. A quantitative analysis of the full optical
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response would be required to determine if the increase in the size of the signal can

be accounted for by a stiffening of the plasma mode. However, this trend may also

be a result of inhomogeneous excitation, due to inhomogeneity of the sample itself.

Even the most pristine cuprate materials exhibit inherent spatial variation in their

equilibrium properties, including the superconducting order parameter [112].

The magnitude of the plasma edge was also found to track the Cu-O stretching

mode resonance. Panel 4.7.C plots 1/Fsat at several wavelengths, illustrating that

the saturation fluence is optimal at resonance.

Figure 4.7: Resonant behavior of the transient plasmon. (A) A transient
plasmon induced in LESCO 12.5% at 10 K after 15 µm excitation at a fluence of 1
mJ/cm2. The raw reflectivity, ∆r/r ≡ |(Ẽ(τ = 5 ps)− Ẽ)/Ẽ| is shown at 5 ps
after excitation. (B) The fluence dependence of the JPR amplitude for three
pump wavelengths. (C) The saturation fluence shows resonance behavior with the
Cu-O stretching mode frequency, indicated as a Gaussian (dashed line). Figures
adapted from Ref. [33].

4.3.2 Transient c-axis coupling throughout the charge

order regime

The transient plasmon was reported in Ref. [33] to persist up to 10-20 K, near the

spin ordering temperature TSO ≈ 25 K. We now report the observation of the same

mode throughout the charge order (CO) regime [34]. Figure 4.8.A shows the phase

diagram of LESCO, with the SO+CO region highlighted in red and the CO region in

blue. The three dots on the phase diagram indicate the three temperatures at which

the transient change in reflectivity |∆Ẽ(ω)/Ẽ| = |(Ẽ(τ, ω)− Ẽ(ω))/Ẽ(ω)| is plotted
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in Panels 4.8.B. A transient plasma mode, like that reported in Figure 4.7.A, can

be seen at 5 K (red, Figure 4.8.B.1) and 30 K (blue, B.2), above the spin ordering

temperature. The spectrum above TCO, which is featureless and increasing with

frequency, is shown in Panel 4.8.B.3 at 100 K. Panel 4.8.C shows the temperature

dependence of the edge height ∆R at the peak of the transient response. The edge

was measured up to 65 K, near the charge order transition TCO ≈ 80 K.

Figure 4.8: The transient plasma mode throughout the charge order
regime. (A) Phase diagram of LESCO, based on Ref. [108], indicating regions of
bulk superconductivity (SC) and static spin (SO) and charge (CO) order. The
static stripes suppress c-axis coupling of the CuO2 planes (inset cartoon, left),
with bulk superconductivity restored at dopings in which the stripe order is
reduced (inset cartoon, right). (B) The raw transient reflectivity changes
measured 1.8 ps after MIR excitation. At 5 K (B.1) and 30 K (B.2), an edge is
apparent at 1.5-2 THz. The black lines indicate the reflectivity spectrum
(rescaled) due to a longitudinal plasma mode, shown as a guide to the eye. Above
the charge-ordered transition temperature TCO no edge is observed [shown at 100
K; (B.3)]. (C) The size of the reflectivity edge (dark grey circles) and the change
in the THz amplitude E(τ peak)/Emax (light grey squares) as a function of
temperature. This figure adapted from Ref. [34].
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Note that the size of the plasma edge is ∼0.7% at 10 K, much larger than that

reported in Ref. [33]. We attribute the ability to detect the plasmon above TSO to

improvements in the experimental apparatus2 and to an increase in pump fluence,

which for all measurements reported here is ∼4 mJ/cm2.

We define another quantity that is useful in characterizing the transient response,

the normalized transient changes in reflectivity,

∆E(τ)

Emax
=
E(τ, tmax)− Eeq(tmax)

Eeq(tmax)
, (4.1)

measured at the maximum amplitude of the THz response, Emax = Eeq(tmax). The

peak change in reflectivity, at time delay τ peak, is plotted in Panel 4.8.C (light grey).

This quantity, ∆E(τ peak)/Emax, which represents a mix of frequencies, tracks the

size of the reflectivity changes and completely disappears above TCO.

We now address the full transient optical response. Figures 4.9 and 4.10 show

the peak of the optical response of LESCO 12.5% at at five temperatures, below

(red) and above (blue) the spin-order transition TSO ≈ 25 K. In both regimes, the

transient response (dots) is characterized by the appearance of a longitudinal plasma

mode at ∼1 THz. This mode is most clearly discerned in the real dielectric response

ε1(ω), shown in the top row of Figure 4.9, which exhibits a zero crossing near the

mode resonance. The highest temperature at which the longitudinal mode could

be seen in ε1(ω) in the THz spectral window was 65 K. The Ohmic conductivity

σ1(ω) is only weakly affected by the pump, maintaining a gapped response (bottom

row of Figure 4.9), suggesting the pump is not producing significant quasiparticle

excitations.

The dashed black lines in Figures 4.9 and 4.10 represent a fit to a single longitu-

dinal Josephson plasma mode, which we saw in Chapter 3 has the Drude form,

ε̃(ω) = ε̃c −
ω2
p

ω2 − iωΓ
. (4.2)

where ε̃c = ε̃eq, the equilibrium dielectric function3.

2Particularly, improvements in the THz focusing and signal-to-noise can be attributed to moving
the THz generation and detection to a vacuum environment. See Chapter 2 for a discussion of the
experimental design.

3An additional small, flat increase in σ1(ω) may be the result of either a slight quasiparticle
heating or a phonon reshaping, either of which primarily modifies frequencies beyond our THz
range. An additional constant term has been added to account for this effect, however it does not
impact the best-fit values of ωp or Γ. See Ref. [34], including supplementary material.
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The advantage of the Drude formalism is that it includes just two free param-

eters, ωp and Γ. Within this model, the scattering rate term Γ encompasses all

transient processes that impact the mobility along the c-axis. Fluctuations in the

superconducting correlation length and time scale, for instance, have been shown

to give rise to an effective Γ term near Tc in superconducting LSCO x [80] and

Bi2Sr2CaCu2O8+x [81]. At resonance, transport occurs across the CuO2 planes with

a velocity 2ωpL, where L is the CuO2 plane separation. The rate can be related to

the coherence length d of the c-axis plasma by d = 2ωpL/Γ.

The transient response is best fit by ωp = 2.45 THz (1.65 THz) at 5 K (30 K)

with a scattering rate of Γ ≈ 0.25 THz. Note that the reflectivity edge and the

zero crossing of ε1(ω) do not appear exactly at the plasma resonance, ωp, but are

shifted due to decoherence, as well as other higher frequency intra- and interband

contributions to ε1,eq which can be captured in the THz regime by a single parameter

εFIR. For long coherence (or scattering) lengths, d → ∞, the zero crossing occurs

Figure 4.9: The transient plasmon generated in LESCO 12.5% at 5
temperatures. Upon MIR excitation, LESCO 12.5% develops a high-mobility
state, shown here at the peak of the response (dots). The transient plasmon is
characterized by a zero crossing in the real part of the dielectric function, ε1(ω)
(top row). The real conductivity σ1(ω) (bottom row) remains gapped, showing
only minimal signs of quasiparticle heating at lowest temperatures. The dashed
lines are a fit to Equation 4.2, as described in the text. The left-hand column
shows a fit to the response at 5 K.
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near the screened frequency ω̃p = ωp/
√
εFIR and shifts to the red as d decreases. If

Γ > ω̃p, the zero crossing is entirely lifted. For the plasma mode ω̃p reported here,

we take εFIR = 30, a standard value for cuprates [113].

The inductive conductivity, σ2(ω), which is negative in equilibrium (grey line)

and approaches zero as ω → 0, instead increases towards low frequency in the

photoexcited state (bottom row of Figure 4.10). The response turns positive below

0.75 THz at 5 K, 0.5 THz at 30 K, and 0.3 THz at 65 K. At the peak of the

response, the conductivity change, ∆σ2(ω) = σ2(ω) − σ2,eq(ω), scales as 1/ω, as

shown by the dotted line in Figures 4.10. This divergent behavior is the hallmark

of a high mobility state.

The 1/ω divergence of ∆σ2(ω) corresponds to Equation 4.2 in the limit Γ = 0

(d → ∞). The London equations give a conductivity of the same form, with the

superconducting component of the inductive conductivity ωσ2 ∝ nS. For the c-axis

response of a cuprate, only the portion of the superfluid density nS that contributes

Figure 4.10: The transient inductive conductivity of LESCO 12.5% at 5
temperatures. The appearance of the transient plasmon is accompanied by a
divergent behavior in the transient component of the inductive response,
∆σ2(ω) = σ2(ω)− σ2,eq(ω) (top row). A fit to 1/ω is shown as a dotted line. The
total inductive conductivity σ2(ω) (bottom row) goes positive at lowest
frequencies. The dashed lines are a fit to Equation 4.2 (the same fit shown in
Figure 4.9).
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to Josephson tunneling produces the divergent behavior, with ω∆σ2(ω) ∝ ω2
p ∝ nS.

See Chapter 5.3.1 of this thesis for a more detailed description of the equilibrium

low frequency c-axis optical response of a cuprate superconductor.

Taking ω∆σ2(ω) as a rough measure for the magnitude of the transient response,

we find that the plasmon seems to disappear somewhere around 70 K. The response

was fit in two ways, shown in Figure 4.11. First a simple linear fit, which crosses

ω∆σ2(ω) = 0 at 67 ± 14 K. In the spirit of the parallel with superconductivity, mean

field fits of the type
√

1− T/T ′ were also employed for the SO+CO and CO regions,

with T ′ values of 26 K and 66 K respectively. While the first value corresponds well

to TSO, the second temperature scale is a bit lower than TCO. It may be that this

temperature scale is underestimated, reflecting the fact that the 1/ω divergence at

65 K sets in primarily below the THz frequency window (< 0.2 THz).

Figure 4.11: The temperature dependence of the inductive response. The
inductive response at early times is characterized by a relatively flat ω∆σ2(ω).
The maximum ω∆σ2(ω) at each temperature, averaged over the frequency regime
in which the response remains flat, is shown here (blue dots) up to 80 K. The
response is fit in two ways. A simple linear fit (grey line) of all values below 80 K
suggests ω∆σ2(ω)→ 0 at 67 ± 14 K. A second set of fits assumes mean field
behavior ω∆σ2(ω) ∝

√
1− T/T ′ (dashed lines). Below TSO, the fit uses T ′ = 26 K

and for TSO < T < TCO, T ′ = 66 K.
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4.4 Mid-infrared excitation of

La1.8−xEu0.2SrxCuO4, x < 1/8

While the same overall trends in the transient response are seen at lower dopings, the

magnitude of the response, characterized by the plasma frequency ω2
p, is greatly re-

duced. Figures 4.12 and 4.13 show the response of LESCO 8% and 10% respectively

at 5 K. In both compounds, the Ohmic conductivity σ1(ω) is virtually unchanged.

The inductive conductivity σ2(ω) shows a small diverging increase, corresponding

to the generation of the plasmon and the drop in ε1(ω). The dielectric function does

not cross zero within the THz frequency window, which was limited by the sample

size and THz focal area to 0.5 THz.

As a preliminary measure of the plasmon, we fit to Equation 4.2 in the limit

that Γ = 0. The strength of the transient plasmon, ω∆σ2(ω) ∝ ω2
p, is plotted

as a function of doping x in Figure 4.14. The plasmon is sharply dependent on

doping, rising dramatically at x = 1/8. Future investigations at x > 1/8 would be

required to conclude whether the transient effect peaks with the charge and spin

order parameters, or perhaps tracks the “suppressed” superconducting dome that

survives in LSCO and other cuprates.

Figure 4.12: Transient optical response of LESCO 8% at 5 K. From left to
right: The Ohmic conductivity σ1(ω), the inductive conductivity σ2(ω), the
transient changes to the inductive conductivity ∆σ2(ω) = σ2(ω)− σ2,eq(ω), and the
real part of the dielectric response ε1(ω). Dashed lines are fits to a single
longitudinal mode, as described in the main text.
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Figure 4.13: Transient optical response of LESCO 10% at 5 K. From left to
right: The Ohmic conductivity σ1(ω), the inductive conductivity σ2(ω), the
transient changes to the inductive conductivity ∆σ2(ω) = σ2(ω)− σ2,eq(ω), and the
real part of the dielectric response ε1(ω). Dashed lines are fits to a single
longitudinal mode, as described in the main text.

Figure 4.14: Doping dependence of the inductive response at 5 K. The
inductive response ω∆σ2(ω), expressed in units of THz/Ω-cm, rises towards
x = 1/8, the highest doping measured. This doping corresponds to the peak of the
charge and spin ordering parameters.

4.5 Two temperature regimes for the relaxation

of the transient plasmon

The relaxation pathway of the transient mode is determined in part by the equi-

librium ground state it emerges from. Studying the evolution of the mode after

excitation can therefore reveal something about how these states compete. Two

ground states give rise to the plasma mode: spin and charge stripes below TSO, and
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charge stripes above. I will now present a quantitative analysis of the relaxation

pathway of the transient state of LESCO 12.5% in both regimes.

Figure 4.15 shows the transient inductive conductivity and loss function at several

delays after excitation. Figure 4.16 shows the corresponding time evolution of ε1(ω)

at 5 K (A.1), 35 K (A.2), and 65 K (A.3). Fits to the optical response using

Equation 4.2 are used to extract the time evolution Γ, expressed as a coherence

length d (Panel 4.16.B), and the screened plasma mode ω̃p (C). After the transient

state is formed, both quantities initially decay following a 2 ps (1 ps) time scale

at 5 K (35 K). At longer time delays, the plasma frequency stabilizes to a finite

value, indicating that the carrier density does not reduce significantly throughout

the relaxation. Rather, the decay of the plasma mode is characterized by a dramatic

decrease in the correlation length from ∼15 unit cells (10 nm) to zero.

The relaxation time scales are also captured by the changes in reflectivity mea-

sured at the peak of the THz field, ∆E(τ)/Emax, which could be measured with

finer delay steps. Figure 4.17.A shows ∆E(τ)/Emax as a function of pump-probe

delay τ . Two lifetimes could be extracted, shown in blue in Figure 4.17.B. The life-

times measured from the coherence length decay are shown in red for comparison.

In both the spin-ordered and charge-ordered regimes, the time scales of the double

exponential decay are commensurate with the decay of the coherence length. Both

lifetimes exhibit two distinct regimes. Below TSO , the lifetimes remain temperature

independent. Above TSO, where only static charge order remains, the lifetime drops

exponentially with base temperature.

The exponential dependence of the relaxation between TSO < T < TCO can be

reconciled with the expected kinetic behavior for a transition between two distinct

thermodynamic phases separated by a free energy barrier. This is quantitatively

captured by the slope of the logarithmic plot in Figure 4.17.B, which reflects an

activated relaxation of the type exp(−Ebarrier/kBT ). From a double exponential

relaxation with lifetimes τ1 and τ2, we extract an energy scale Ebarrier ∼40 K (4 meV)

and 9 K (0.8 meV), respectively. Interestingly, this energetic regime corresponds to

the energy scale of strong spin fluctuations measured in LSCO 12.5% [114–116] and

in LBCO 12.5% [117], suggesting that the transition between the two phases may be

regulated by spin rearrangements. This would be consistent with the temperature

regime of strong spin fluctuations, which develop abruptly below TCO and persist to

TSO [109, 110]. The departure from activated behavior for T < TSO may therefore

be related to the freezing out of spin fluctuations.
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Figure 4.15: The time evolution of the transient plasmon. (A) One
dimensional traces of ∆E(τ)/Emax as a function of delay time after excitation τ .
Dashed lines indicate a double exponential fit, described in the main text.
Diamonds indicate the time delays shown in Panels (B)-(D). The transient changes
in the energy loss function ∆=(−1/ε) and inductive conductivity ∆σ2(ω) are
shown at (B) 5 K, (C) 30 K, and (D) 65 K. Grey lines indicate a 1/ω fit and
black dashed lines show a fit to Equation 4.2.
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Figure 4.16: The relaxation of the transient plasmon. (A) The real
dielectric function ε1(ω) (alternating circle and square dots) as a function of
pump-probe delay at 5 K (A.1), 35 K (A.2), and 65 K (A.3). The response is fit
with a single longitudinal mode, as described in the main text (solid black and
dashed lines). The drop in coherence length causes a flattening in the low
frequency ε1(ω). (B) The c-axis coherence length of the transient plasma as a
function of delay for three temperatures: 5 K (circles), 35 K (squares), and 65 K
(triangles). The length is expressed in units of the CuO2 plane spacing. The decay
can be fit with a double exponential (dashed lines) with time constants 2 ps (1 ps)
and 45 ps (4 ps) at 5 K (35 K). (C) The plasma frequency ω̃p = ωp/

√
εFIR

redshifts at early times, decaying to a constant value following single exponential
(dashed lines) of 2 ps (1 ps) at 5 K (35 K). Figure adapted from Ref. [34].
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Figure 4.17: Two kinetic regimes for the relaxation of the transient state.
(A) The time profile of the transient state as a function of pump-probe delay. The
vertical axis indicates the transient change of the peak of the THz probe field. For
clarity, each point shown represents an average of ten delay measurements. The
lifetime of the transient state was extracted using a double exponential fit (dashed
lines), with each exponential given roughly equal weight, 50% ± 10%. (B) An
Arrhenius plot of the relaxation rate as a function of temperature. The short
lifetime τ1 (dark blue squares) and the long lifetime τ2 (light blue circles) track the
decay of the coherence length of the transient plasma. Lifetimes used in the fits
shown in Figure 4.16 are plotted in red. The lifetime of the transient state remains
temperature independent (horizontal grey dashed line) below the spin- order
transition temperature, TSO ≈ 25 K. Above this transition, the lifetime exhibits an
exponential temperature dependence, with an energy scale of 4 meV for τ2 and 0.8
meV for τ1 (grey dashed line). Figure adapted from Ref. [34].
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4.6 Mid-infrared c-axis excitation of

La1.675Eu0.2Sr0.125CuO4

The pump wavelength dependence of the transient plasmon indicates that it is

resonant to the excitation of the planar Cu-O stretching mode. However, Nico-

letti, et al. [15] have shown that a transient plasmon can be induced in charge-

and spin-ordered LBCO with c-axis excitation at 800 nm, suggesting that resonant

excitation is just one method of generating transient coupling. In Appendix B.2,

I show preliminary results that the same excitation appears to generate a plasmon

in LESCO 12.5% as well. With all this in mind, I attempted c-axis excitation at

15 µm pump wavelength. Along the c-axis, there is no resonant mode at 15 µm, as

illustrated in Figure 4.18.

Figure 4.18: The mid-infrared pump spectrum and the c-axis Ohmic
conductivity. The pump spectrum (purple) fit by a Gaussian (dotted line) with a
beam waist of σ = 1.6 THz. The Ohmic conductivity σ1(ω) (black) is plotted in
units of 1/Ω-cm. The conductivity shows no resonant mode at 15 µm (20 THz).

Figure 4.19 shows the c-axis response after MIR excitation. We find that there is

no pump-probe response in the THz range. The fluence of the pump, ∼4 mJ/cm2,

is higher than that used for 800 nm excitation; however, this energy is distributed

over a volume 10 times as large since the penetration depth along the c-axis is 5 µm

for 20 THz excitation. So the lack of response may perhaps be due to the excitation
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being insufficient to completely suppress stripe order, as in the case of LBCO 12.5%

after 800 nm excitation [15].

Figure 4.19: Transient response of LESCO 12.5% after c-axis MIR
excitation. The transient response (dots) shows no change from the equilibrium
response (grey) after c-axis MIR excitation.

4.7 Discussion of these results

The origin of a plasma mode at such low frequency with an anomalously high mo-

bility, Γ << ωp, requires some careful consideration. The transient plasmon was

initially identified by Fausti et al. [33] as a Josephson plasma mode. This is an

exciting interpretation, because if true, it lends strong credence to the pair density

wave picture of stripe competition. And these newest results would suggest that the

lanthanides, long relegated to the lowest Tc’s of the copper oxide materials, may in

fact have “hidden” superconducting pairing that survives up to the ∼100 K regime

of their cuprate brethren. Before considering this interpretation, I will examine some

alternative ideas in the context of the data presented in the preceding sections.

The most intuitive picture would perhaps be that of quasi-particle excitation. We

can immediately rule out any significant contribution to the transient state from

incoherent quasi-particle heating, for example from excitations of the reststrahlen

band, which for the optically gapped ground state of LESCO would result primarily

in an increase in σ1(ω) in the 0-3 THz range. While a small excitation of this kind

might account for the slight increase in σ1(ω) observed at low temperatures, such
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incoherent excitation could not, in any event, account for the appearance of a narrow

THz frequency plasmon and the accompanying divergent σ2(ω).

A sharp Drude-like mode at THz frequencies is seen in some materials, notably

in doped semiconductors. In principle, transient quasi-particle “doping” at simi-

lar levels as the condensate density of superconducting lanthanides could produce

a plasma mode in this frequency range. The photoinduced state emerges out of

a charge ordered ground state that gaps out the same regions of Fermi surface as

the superconducting condensate [107], and one could envision that, absent super-

conducting pairing, the destruction of charge order might cause these carriers to

become highly mobile quasi-particles.

However, the relaxation pathway of the mode we observe does not support this

interpretation. The transient plasma mode relaxation is driven by a decrease in

coherence, plotted in Figure 4.16.B as the decay of the coherence length d or, equiv-

alently an increase in the effective scattering rate Γ of Equation 4.2. In contrast,

the generalized Drude plasmon produced by excited quasi-particles in doped semi-

conductors has been found to relax through a depletion of the carrier density ∝ ω2
p,

at constant scattering [118, 119] or with a decrease in the scattering rate [120, 121].4

A sliding charge density wave (CDW) state [122–124] could be a more exotic

explanation for the plasmon, where the pump acts to de-pin the charge stripes

and the Γ term accounts a pinning rate that increases as the system relaxes. This

would be corroborated by the observation that, at least on the underdoped side,

the transient high mobility state is most enhanced at dopings where charge ordering

is strongest. A sliding CDW was recently observed in the manganite compound

La0.5Ca0.5MnO3, where the sliding occurred along the a-axis, corresponding to the

reciprocal lattice vector a∗ of the CDW superstructure wavevector [124]. However,

a c-axis sliding CDW, or an a-axis sliding state producing the c-axis mode, remains

an intriguing but unlikely scenario. Equilibrium generation of a sliding CDW state

in this compound, for example through electronic depinning of charge order in the

vein of Ref. [124], would lend further support to such an interpretation.

The labeling of the plasmon as a Josephson mode was motivated by several ob-

servations. First and most apparent, the mode appears at a frequency commen-

surate with the Josephson plasmon in superconducting LESCO and other related

lanthanides. There are no other equilibrium IR active excitations in this frequency

regime. As a plasma mode generated by pair tunneling, the transient state reported

4The decrease in scattering rate may be attributed to the decrease in scattering pathways
available as the excited quasiparticles lose energy.
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here corresponds to a condensate density of roughly half that of near-optimal doped

La1.85Sr0.15CuO4 in equilibrium.

Second, recent theoretical models [104, 105, 125] support the idea that supercon-

ductivity and charge order competition is not a simple battle between instabilities,

but in fact coexist together, even in the absence of bulk 3D superconductivity. The

temperature-independent relaxation rate below TSO would be compatible with quan-

tum coherent tunneling between two states, for instance between superconducting

and pair density wave phases at constant carrier density. In this picture, Cooper

pairing would be superimposed or intertwined [126–128] with the stripe phase, where

the dynamical destruction of stripes allows a finite Josephson current rather than

driving pairing directly. Indeed, as discussed in Ref. [33], the prompt timescale of

the appearance of the longitudinal mode renders it unlikely that the optical exci-

tation is causing pair formation [8] but rather suggests that pairing in the planes

persists in equilibrium.

Most recent discussion of the pair density wave has focused on intertwined or-

der between charge stripes and superconductivity, neglecting the role of spin order-

ing [126]. Experimental evidence for two-dimensional superconductivity fluctuations

in the stripe phase, however, has primarily been found below TSO [102, 106]. The

observation here of transient coupling between TSO and TCO lends support, then, to

the pair density wave picture and the important role of charge order in suppressing

Tc. The reduced strength of the coupling we find above TSO may help explain why

other probes are less sensitive to this order in this temperature regime.
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Chapter 5

Manipulating superconductivity
with phonon pumping in
underdoped YBa2Cu3Ox

5.1 Introduction

Increasing the superconducting transition temperature Tc of cuprate materials has

been a long-standing goal, ever since this family of compounds was discovered to

have overcome the Tc limits imposed by BCS electron-phonon coupling. Tuning

chemical doping, applied pressure or strain, and external magnetic field are some

of the most common ways to manipulate Tc in an adiabatic (equilibrium) manner.

Changing these parameters may promote superconductivity directly, for example

by increasing the pair density with chemical doping. Or they may instead target a

competing order, for example by favoring charge order over superconductivity under

an applied field.

Superconductivity in underdoped YBa2Cu3Ox (YBCO x) lies in close proximity

to the so-called pseudogap phase, a partially gapped state that has long defied

theoretical explanation—including whether or not this state is in fact a true phase

with an accompanying order parameter. The problem is not a dearth of theory, but

rather nearly 30 years of strong and compelling theoretical and experimental work

that mainly falls into two competing categories of interpretation [129].

The first is that the pseudogap state is in fact a competing regime, with its own

hidden order, that robs the condensate and suppresses Tc. Theoretical pictures have

focused on how holes dope the parent Mott state [130, 131], with emergent behavior

generally tied to the CuO2 plane geometry [132, 133]. The earliest proposed model

of the pseudogap is the resonating valence band (RVB) picture, first developed by

P. W. Anderson in 1987, in which the CuO2 planes host a frustrated lattice of

antiferromagnetically coupled spin singlets [134–136]. This idea is the basis of a

recently proposed “Amperean pairing” mechanism [128]. Another class of theories
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propose the spontaneous generation of circulating currents [137–139], which break

various combinations of time-reversal, rotational, and translational symmetries. A

nematic phase which breaks rotational symmetry [140], electronic liquid crystal

phases [141], and other forms of spatially segregated charge and spin order [142],

have also been put forward.

Experimentally, distinguishing between these scenarios is difficult. Some of these

proposed phases are found to only occupy a portion of the pseudogap. There is

evidence of broken time reversal [143, 144] and rotational [133, 140, 145] symme-

try developing at the onset temperature of the pseudogap. So far no theoretical

approach has conclusively encapsulated the rich and complex phenomenology re-

ported across the pseudogap regime.

The second interpretation is that the pseudogap is not in fact a distinct phase,

but rather, arises in connection with phase fluctuations of the superconducting or-

der parameter, which survive after the bulk condensate is depleted. A wide variety

of experimental probes have detected signatures of superconductivity extending far

above Tc [15, 85, 102, 106, 146–148], though generally not all the way to the pseu-

dogap temperature T ∗. Recent theoretical works suggests that the competition and

coexistence pictures might not be opposed after all. Instead, the pseudogap and

superconducting states may both represent different regimes of one many-faceted or-

der parameter that includes charge ordering and superconducting components [149].

Similar schemes, as we saw in Chapter 4, have been invoked for the charge ordering

state of the lanthanides [105, 125, 126]. Regardless of the nature of the pseudogap,

there is compelling evidence that, unlike BCS materials, it is the loss of global phase

coherence that drives the suppression of superconductivity and sets Tc [81, 85, 150–

152].

As we’ve seen in Chapter 4 on light-induced Josephson coupling in the lan-

thanide cuprate La1.675Eu0.2Sr0.125CuO4, ultrafast light excitation can act in a man-

ner counter to an applied magnetic field, promoting superconductivity indirectly by

suppressing charge order. In the project presented in this chapter, rather than aim

at destroying a competing order, the mid-infrared excitation was chosen to directly

manipulate superconductivity in underdoped YBa2Cu3Ox (YBCO x). We targeted

the motion of the apical oxygen atom, whose relative position in the lattice has been

shown to be closely tied with the superconducting transition temperature, both

within a single family of compounds [4, 27] and across cuprate families [153, 154].

As in the LESCO experiment, we use the Josephson plasma resonance as a mea-

sure of superconducting coupling. This chapter lays out our primary findings, most
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of which are published in Refs. [1, 2]. Below Tc, we find that c-axis superconducting

coupling is enhanced by the excitation, as evidenced by a blue shift in the Joseph-

son plasmon. More remarkably, we find that above Tc a transient plasma mode

is generated at similar frequencies to the Josephson plasma mode. This mode has

been seen in all of the four underdoped compounds investigated, including the non-

superconducting doping YBCO 6.3 (p = 0.05). The transient mode frequency blue

shifts as one approaches optimal doping, tracking the blue shift of the Josephson

plasmon.

The light-induced plasma mode survives throughout the pseudogap state. Its

behavior can be divided into two temperature regimes. Below a cusp temperature

T ′′, the c-axis coupling is enhanced as base temperature increases. Above T ′′, this

trend reverses and the mode diminishes following a mean field behavior, finally

disappearing at a temperature T ′ that tracks the pseudogap transition temperature

T ∗. The T ′′ temperature coincides with the onset of spin fluctuations, suggesting

they may play a role in suppressing the transient plasmon.

The light excitation appears to be inhomogeneous. I modeled the plasma mode

as an effective medium, finding that the decrease in c-axis coupling with base tem-

perature is actually related to a decrease in the fraction of the material volume

that is photo-excited, rather than a drop in the carrier density. The maximum

photo-excited volume remains below the percolation threshold for all dopings and

temperatures measured. I discuss in what circumstances this threshold might be

exceeded, generating a bulk high mobility response.

Finally I discuss the possible origins of the transient mode above Tc, which in

Refs. [1, 2] we attribute to being a consequence of Cooper pair tunneling. If in

fact the apical oxygen excitation is driving a stiffening of the superconducting order

parameter phase, then the appearance of this plasmon would support the idea that

some fluctuating superconductivity state survives in equilibrium throughout the

pseudogap regime.

5.2 Experimental design and methods

5.2.1 Phonon pumping

YBa2Cu3Ox (YBCO x) is a bilayer cuprate, consisting of pairs of CuO2 planes

oriented in the ab-plane with each pair of planes separated by a gap containing

chains of Cu-O atoms aligned along the b-axis. Above and below these chains sit
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the apical oxygen O(4) atoms. We resonantly drive a B1u mode of the apical oxygen

atom with 15 µm mid-infrared (MIR) pump pulses at field strengths of up to ∼3

MV/cm. The excitation is illustrated in Figure 5.1.

Figure 5.1: The YBa2Cu3Ox crystal structure and the apical oxygen
modes. The YBCO 7 crystal structure is illustrated (left) with copper atoms in
blue and oxygen atoms in red. The pink square highlights the Cu-O chains (along
the b-axis) and the apical oxygen atoms (above and below the Cu(1) atoms). The
motion of the apical oxygen B1u mode is illustrated (center) with the YBCO 7
structure in pink and the YBCO 6 structure in purple. These modes produce
peaks in the Ohmic conductivity response (right) at around 670 cm−1 (YBCO 6
mode, purple) and 570 cm−1 (YBCO 7 mode, pink). Conductivity figure from
Homes, et al. [84]

There are two B1u modes of the apical oxygen atom, one associated with the

YBCO 6 crystal structure, in which the chain oxygen O(1) atoms are depleted, and

a second associated with YBCO 7, in which the chains are filled [155]. These modes

are illustrated in the purple and red squares, respectively, in the center of Figure 5.1.
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We excite the mode associated with the YBCO 6 crystal structure.1 The 15 µm

pulses are generated with a commercial TOPAS optical parametric amplifier (OPA)

and difference frequency generator (DFG). The pump impinges on the single crystal

samples at normal incidence with polarization aligned along the c-axis.

5.2.2 Probing with time-domain THz spectroscopy

The optically excited sample was probed via time-domain THz spectroscopy as de-

scribed in Chapter 2. The optical response of YBCO below 2.5 THz was interrogated

using single-cycle THz pulses generated via optical rectification of ∼100 fs, 800 nm

pulses in a 1 mm thick ZnTe crystal. The spectral regime covered by the THz probe

(blue) and the MIR pump (purple) are indicated as colored regions in Figure 5.2.

The experiment was performed in reflection geometry, with the THz p-polarized

(TM) along the c-axis (s-polarized along the a-axis) at a 30◦ angle of incidence.

Figure 5.2: Pump and probe spectral regimes. The reflectivity of YBCO 6.5
at 5 K (black). Data from Ref. [84]. The width of the purple region indicates the
full width half maximum of the spectrum of the mid-infrared pump pulse and the
blue region indicates the spectral range of the THz probe.

1The YBCO 7 B1u mode is outside the frequency range of most OPA + DFG systems (see
Chapter 2).
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5.2.3 Calculation of the transient optical response

The full transient optical response was found by measuring the pump-induced

changes in the THz spectrum and referencing off the equilibrium spectrum, fol-

lowing the procedure described in Chapter 2. The method for determining the

equilibrium spectrum is described in Appendix B.3.

Calculation of the transient response requires accounting for the mismatch in

the MIR pump and THz probe penetration depths. Figure 5.3.A shows the pump

penetration depth d of YBCO 6.5 near the pump wavelength. The Gaussian-shaped

pump spectrum is illustrated in purple. We take the pump penetration depth as

d ≈ 0.7 µm, assuming resonant absorption of the light at the phonon frequency.

The THz probe samples a crystal volume on order 10 times greater than the 15

µm pump, as illustrated in Figure 5.3.B. The full transient optical response was

calculated by modeling the system as an excited surface on an unperturbed bulk.

Both the single layer model and multilayer model, described in Chapter 2, produce

equivalent results (see a model comparison in Section 2.6.3). The transient optical

response calculated from the single layer model is reported in this chapter.

Figure 5.3: Penetration depth mismatch between 15 µm pump and THz
probe. (A) The penetration depth of YBCO 6.5 at four temperatures (grey).
The pump spectrum (purple) is centered around a B1u phonon mode at 15 µm. A
Gaussian fit to the spectrum (dashed line) indicates a width of ±1.5 µm. (B) The
penetration depth mismatch between the pump (d ≈ 0.7 µm) and the THz probe.
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5.2.4 Samples

In this study we considered four different underdoped compounds of YBa2Cu3Ox

(YBCO x), x = 6.3, 6.45, 6.5, 6.6 and optimally doped x = 7, which correspond

to holed dopings of p = 0.05, 0.07, 0.09, 0.12, and 0.16 respectively. The lowest

doping, p = 0.05, shows some diamagnetic response at low temperature, but the

bulk remains non-superconducting down to 4.2 K. The other four compounds range

in Tc from 35 K to 90 K. The crystals were grown in Y-stabilized zirconium crucibles

and had typical dimensions of 2x2x1 mm3 [2, 156]. The Tc values were determined

by dc magnetization measurements in a SQUID, as shown in Figure 5.4 [157]. For

all crystals, including YBCO 6.5, the YBCO 6 and YBCO 7 crystal structures are

inhomogeneously mixed and not in the Ortho II phase.

Figure 5.4: SQUID measurements of YBa2Cu3Ox (YBCO x) with x = 6.3
(purple), 6.45 (blue), 6.5 (red), 6.6 (green), and 7 (orange). Throughout this
chapter, each doping will be indicated following this color code, except where
otherwise stated. Superconducting dopings have Tc values of 35 K (6.45), 51 K
(6.5), 62 K (6.6), and 90 K (7).
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5.3 Enhancement of Josephson coupling, T < Tc

5.3.1 Equilibrium c-axis optical response

The far-infrared response of a superconductor is characterized by two features associ-

ated with superconductivity, making time-domain THz spectroscopy an ideal ultra-

fast probe of the superconducting state. The first feature is unique to cuprates, the

Josephson plasma resonance (JPR) [70, 71, 82, 84]. This longitudinal mode appears

due to the resonant tunneling of Cooper pairs between CuO2 planes. See Chapter 3

for a discussion of the Josephson plasmon. The bilayer structure of YBCO, with

two closely spaced CuO2 planes per unit cell (illustrated in Figure 5.5), gives rise to

two longitudinal JPR modes [77]. The mode associated with tunneling across the

inter-bilayer gap occurs in the 0-7 THz frequency range in underdoped compounds,

and a resonance identified as the bilayer mode is seen at ∼17 THz. This study fo-

cuses primarily on the transient response of the inter-bilayer mode. In Section 3.2,

I address in more detail the full landscape of modes that develop due to the bilayer

structure and in Section 6.2 I present a study on how the mid-infrared excitation

impacts higher frequency modes.

The inter-bilayer JPR can be measured in the optical response as a peak in the

loss function, =(−1/ε̃), near the plasma resonance frequency ωp. The left-hand

panel of Figure 5.6 plots =(−1/ε̃) of YBCO 6.5 at four temperatures below Tc =

51 K. As the condensate is depleted, the mode frequency redshifts, following the

“effective” condensate density nS ∝ ω2
p. The condensate density is effective in the

sense that only those pairs that tunnel contribute to the density along the c-axis,

making nS also an indirect measure of the tunneling rate, which is ∝ ωp [158]. Above

Tc, the loss function is featureless in this frequency regime. (See Appendix B.3 for

a discussion of how the equilibrium response is measured.)

The second THz frequency feature of superconductivity is a divergent inductive

conductivity, σ2(ω). The divergent component scales as 1/ω and is the Kramers-

Kronig equivalent of the spectral weight of the Ohmic conductivity σ1(ω) ∝ nsδ(ω =

0) . It is this component which gives rise to the zero resistivity state of a supercon-

ductor, making σ2(ω) an ac measure of the dc condensate.

The density can be extracted exactly from the quantity nS ∝ ωσ2(ω)|ω→0. At

ω = 0, the normal state component of the inductive conductivity, shaped by higher

frequency phonons, is zero and only the superfluid component remains. Within the

THz range, the total inductive conductivity above Tc, σ2(ω, T > Tc), is very close
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Figure 5.5: Bilayer structure of YBCO. Left: YBCO crystal structure,
highlighting the CuO2 planes in grey. The apical oxygen atoms sit in the
inter-bilayer gap, between pairs of planes. Right: Illustration depicting the
organization of the crystal structure into pairs CuO2 planes (blue) spaced by a
small bilayer gap (pink) and separated by a larger inter-bilayer gap (green).

Figure 5.6: Equilibrium response of YBCO 6.5 between 5 K and 100 K.
Left: The loss function, which peaks at the Josephson plasma frequency below
Tc = 51 K. Right: The inductive conductivity, which diverges to low frequency.
Conductivity expressed in units of 1/Ω-cm. Dashed lines indicate a 1/ω fit, as
described in the main text.
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to the normal state component below Tc. Thus ωσ2(ω)|ω→0 ≈ ω∆σ2(ω), where

∆σ2(ω) = σ2(ω)− σ2(ω, T > Tc).

The right-hand panel of Figure 5.6 shows the divergent behavior of σ2(ω). The

dashed lines indicate a fit to σ2(T < Tc) = σ2(100 K) + ñS/ω. The fit to the loss

function =(−1/ε̃) uses the dielectric response,

ε̃ = ε∞ −
4πi

ω
[σ1,0 + iσ2(T < Tc)] , (5.1)

where the constant σ1,0 accounts for broadening of the plasma mode due to an

increase in quasiparticles as T → Tc.
2 Thus the appearance of the plasmon is a

direct result of the ñS/ω term, illustrating that it is the same pairs that contribute

to tunneling that generate the diverging inductive response along the c-axis. Indeed,

the measured σ2(ω) response along the ab-plane is typically 1000× that measured

along the c-axis, as illustrated in Figure 5.7.

Figure 5.7: Comparison of the a-axis and c axis inductive response. The
superfluid density at 30 K in terms of nS ∝ ω∆σ2(ω) = ω(σ2(30 K)− σ2(60 K)).
Units are THz/Ω-cm. The c-axis response is in red, the a-axis in pink. The a-axis
response is taken from Hwang, et al. [69].

The effective c-axis pair density follows the typical BCS mean field behavior with

temperature, as shown in Figure 5.8. The left panel of Figure 5.8 illustrates the flat

2Inhomogeneities intrinsic to the sample also lead to a broadening of the plasmon in cuprates [82,
112], even in the highest quality samples [27]. In practice, the σ1,0 term effectively takes into
account all broadening contributions. In Equation 5.1 we take ε∞ = 4.5 for the high-frequency
dielectric constant, a standard value for cuprates [79]. Note that for a conductivity in units of
1/Ω-cm and frequency in THz, the cgs prefactor 4π → 1.8.
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behavior of ω∆σ2(ω) ∝ nS at low frequency. We find that the temperature depen-

dence of ω∆σ2(ω) can be well-fit with the mean field equation nS ∝
√

1− T/Tc.
For convenience, throughout this thesis the quantity ñS = ω∆σ2(ω) is expressed

in units of THz/Ω-cm, which is close to unity for the densities found here. Using

the conversion, Z0 =
√
µ0/ε0 ≈ 377 Ω→ 4π/c ≈ 419 cm−1/THz, this quantity can

be recast as ñS [THz/Ω-cm] → ∼1000 ñS [cm−2].

Figure 5.8: Superfluid density of YBCO 6.5. The vertical axes are in units of
THz/Ω-cm. Left: The superconducting component of the inductive conductivity
diverges as 1/ω. The quantity ω∆σ2(ω) is flat and proportional to the superfluid
density, nS. Right: The mean value of ω∆σ2(ω) follows a mean field temperature
dependence, with nS ∝

√
1− T/Tc (dashed line fit). Error bars indicate the

standard deviation to the average low frequency ω∆σ2(ω).

The frequency of the Josephson plasma resonance depends upon several factors,

including the crystal geometry, superfluid density, and compressibility [77]. How-

ever, within a single family of compounds, the relative position of the resonance can

be related to the superfluid density. Therefore as one approaches optimal doping,

the resonance blue shifts as more carriers are available to condense. In the doping

region between YBCO 6.3 and 6.6, the hole content p scales roughly linearly with

ωp, as plotted in the top panel of Figure 5.9. The relationship between the superfluid

density and plasma frequency, nS ∝ ω∆σ2(ω) ∝ ω2
p is illustrated in the lower panel.
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Figure 5.9: Josephson plasma mode tracking hole doping. Top panel: The
plasma frequency ωp tracks the doping level p of the material. In this hole doping
range, the relationship is roughly linear. Bottom panel: Along the c-axis, the
divergence in the inductive response ω∆σ2(ω) is proportional to the square of the
plasma frequency, ω2

p. The dashed line indicates a linear fit.

The Josephson plasma modes of three dopings, YBCO 6.45, 6.5, and 6.63, are

shown at 5 K in Figure 5.10. The first row shows the THz reflectivity R. The edge

in reflectivity tracks the plasma resonance, as can be seen by comparing with the

peaks in the loss function plotted in the second row. The third row panels show the

full inductive conductivity σ2(ω), which goes positive at low frequency as the 1/ω

component starts to dominate the response. The fourth row panels show the Ohmic

conductivity, which is partially gapped by the condensate.

3A small “wiggle” is seen in the conductivity and reflectivity of YBCO 6.6 below 1 THz in
Figure 5.10. This is a result of diffraction effects due to the small sample size, which are amplified
by the high reflectivity below ωp.
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Figure 5.10: Equilibrium response of underdoped YBCO below Tc at
three dopings. Top row: The reflectivity R show the appearance of a edge at
ωp. Second row: The loss function =(−1/ε), which peaks near the resonance
frequency ωp. Third row: The inductive conductivity σ2(ω) which goes positive
as it diverges to low frequency. Fourth row: The real conductivity σ1(ω) which is
partially gapped.

5.3.2 Response after optical excitation

The transient response below Tc is characterized by an enhancement in the inductive

conductivity and a blue shift of the loss function peak associated with the Josephson
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plasma resonance. Figure 5.11 plots the transient optical response of YBCO 6.5 at

5 K, 0.6 ps after excitation. The loss function peak broadens, with its central

frequency shifting to the blue. The net blue shift of the loss function corresponds

to an increase in the low frequency σ2(ω), just as expected for an increase in ω2
p.

Part of the broadening of the loss function can be attributed to some transient

quasiparticle excitation, which also produces a flat increase in σ1(ω). However,

as I will show in Chapter 7, some of the apparent broadening is actually due to

a splitting of the Josephson mode which is more apparent at later delays, and is

likely a consequence of inhomogeneous excitation. This splitting also leads to an

the increase in σ1(ω).

It is the enhancement of interbilayer tunneling, characterized by a blue shifted

ωp, that I will refer to as “enhanced” superconductivity. In principle, such a blue

shift could either originate from an increase in the pair density or an increase in

the tunneling rate. As I will discuss in Section 6.2, the latter seems to be the most

likely scenario.

Figure 5.11: Transient response of YBCO 6.5 at 5 K. The loss function
=(−1/ε) (left), Ohmic conductivity σ1(ω) (center), and inductive conductivity
σ2(ω) (right), at 0.6 ps after excitation. The transient response is shown in red
and the equilibrium response in grey.

The pump-induced increase in σ2(ω) drops with increasing temperature, as illus-

trated in Figure 5.12. The magnitude of the transient inductive response ω∆σ2(ω) =

ω(σ2(ω, τ)−σ2,eq(ω, T > Tc)) appears to deviate from a mean field behavior, roughly

scaling linearly with temperature to a critical value of ∼55 K (Tc = 51 K).

The same trends are seen in the superconducting state of all underdoped com-

pounds. Figure 5.13 shows the transient response of YBCO 6.45, 6.5, and 6.6 at
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Figure 5.12: Transient enhancement of superconductivity in YBCO 6.5,
5-40 K. Left: The inductive conductivity σ2(ω) at three temperatures 5 K, 30 K,
and 40 K (top to bottom). The equilibrium response is in grey, the transient
response 0.8 ps after excitation is in red. Right: The temperature evolution of the
transient response (red) and the static response (grey, from Figure 5.8). Dashed
grey line indicates a linear fit to the transient response.

5 K, 0.6 ps after excitation. All compounds show a similar broadening and blue

shift of the Josephson plasmon loss function peak and corresponding increase in the

inductive response.
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Figure 5.13: Transient response of underdoped YBCO T < Tc. The loss
function =(−1/ε) (top row), inductive conductivity σ2(ω) (second row), and
Ohmic conductivity σ1(ω) (bottom row) for YBCO x = 6.45 (blue), 6.5 (red),
and 6.6 (green) at 0.6 ps after excitation. The equilibrium response is in thick pale
lines for comparison.

5.4 Generation of a transient plasmon, T > Tc

5.4.1 Equilibrium c-axis optical response

There are no IR active excitations above Tc in the 0-3 THz spectral range of un-

derdoped YBCO and the conductivity in this regime is flat and featureless. Unlike

below Tc, where the position and shape of the Josephson plasmon is highly sensitive

to the temperature and doping of the individual sample, the response above Tc be-

tween 0-3 THz remains relatively unchanged even up to 300 K. The most significant

feature is the slight increase in σ1(ω) due to thermally populated carriers, as shown

in Figure 5.14.

At higher frequencies, phonon reshaping leads to larger changes in the conductiv-

ity. These changes are most significant between Tc and 100 K. They do not impact

the conductivity near the apical oxygen mode frequency.
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Figure 5.14: Equilibrium conductivity of YBCO 6.5. The normal state
conductivity (grey) and the superconducting state at 5 K (black dashed line) are
data from Ref. [84]. The superconducting response at 5 K measured with THz
spectroscopy on the sample used in this work is shown in red. Top row: The
Ohmic conductivity σ1(ω) over a broadband range (left) and between 0-3 THz
(right). Bottom row: The inductive conductivity σ2(ω) in the same frequency
regimes.

5.4.2 Response after optical excitation

The strengthening of superconductivity below Tc in the form of a blue-shifting

Josephson plasma frequency ωp suggests that we may hope to increase the super-

conducting transition temperature of the excited material. What we find in practice

is that throughout the pseudogap regime, the pump excitation generates a plasma

mode at roughly the same frequency as the equilibrium Josephson plasma mode

below Tc.
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The top row of Figure 5.15 shows the equilibrium change in reflectivity above and

below Tc, |∆Ẽ/Ẽ| ≡ ∆R/R where

∆Ẽ

Ẽ
=
Ẽ(T < Tc)− Ẽ(T > Tc)

Ẽ(T > Tc)
, (5.2)

for three superconducting compounds, YBCO 6.45, 6.5, and 6.6. In non-superconduct-

ing YBCO 6.3, by comparison, there is no plasmon and the reflectivity is nearly

unchanged between Ẽ(5 K) and Ẽ(100 K) (top left-most figure).

Figure 5.15: Transient reflectivity of underdoped YBCO T > Tc. Top row:
The equilibrium change in reflectivity above and below Tc, ∆R/R ≡ |∆Ẽ/Ẽ|. For
non-superconducting YBCO 6.3, we take Ẽ(5 K) and Ẽ(100 K). Bottom row:
The transient changes in reflectivity above Tc, at 0.6 ps after excitation. Evidence
of an edge appears in YBCO 6.3 at the lower limit of our THz spectrum window.
The frequency of the transient plasmon blue shifts with doping, tracking the
equilibrium Josephson plasmon. Fits (dashed lines) described in Section 5.5.

Above Tc, the pump induces a transient plasma mode in all four underdoped

compounds. The pump-induced changes to the equilibrium reflectivity, ∆R/R =

[R(ω, τ)−Req(ω)] /Req(ω), are plotted in the bottom row of Figure 5.15. YBCO 6.3

(purple) develops an edge right at the low frequency cut-off of our THz spectrum.

For higher doped samples, the transient mode blue shifts, tracking the equilibrium

Josephson plasmon.
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Figure 5.16: Comparing the transient response above Tc and the
equilibrium superconducting response. The transient conductivity is shown
for YBCO 6.45 (blue) and 6.5 (red) at 100 K, and 6.6 (green) at 85 K. The
equilibrium conductivity at 100 K is shown in grey. Top row: The Ohmic
conductivity σ1(ω). Middle row: The inductive conductivity σ2(ω). Bottom
row: The transient changes to the inductive conductivity
∆σ2(ω) = σ2(ω)− σ2,eq(ω). The equilibrium superconducting response (thick pale
lines), ∆σ2,eq(ω) = σ2,eq(ω, 5 K)− σ2,eq(ω, 100 K), is shown for comparison.

The full optical conductivity of underdoped YBCO is shown in Figure 5.16 for

the three underdoped superconducting compounds. The equilibrium conductivity

in the normal state, well above Tc, is shown in grey. The transient response at the

same temperature is shown in blue, red, and green for YBCO 6.45, 6.5, and 6.6

respectively. In all dopings, the appearance of the plasma mode corresponds with
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an increase in the inductive conductivity σ2(ω). The equilibrium superconducting

response at 5 K is shown for comparison.

The transient changes in the optical response of all measured dopings, from

YBCO 6.3 to 7, are shown in Figure 5.17. For the underdoped compounds, a

common theme emerges: a positive and diverging ∆σ2(ω) accompanied by the ap-

pearance of a peak in the loss function. The dotted lines in the ∆σ2(ω) plots indicate

a fit to ñ/ω.

While YBCO 6.6 still exhibits a marked increase in σ2(ω), the shape deviates

from 1/ω. This can be accounted for by the influence of transient incoherent con-

tributions to the conductivity, which are easiest to identify by the uniform increase

in Ohmic conductivity, ∆σ1(ω) [159]. The changes in ∆σ1(ω) remain negligible at

lower dopings, but in YBCO 6.6 they have a size scale on the same order as the total

inductive changes. As a result, the inductive component of the incoherent part of

the excitation reshapes ∆σ2(ω). The doping dependent increase in σ1(ω) suggests

that quasiparticle excitations increase with equilibrium hole concentration.

The magnitude of the loss function and inductive features are comparable across

all underdoped materials, however in YBCO 6.3 the changes appear somewhat

smaller. As of the writing of this thesis, I cannot be certain if the magnitude of

the optical changes are accurate for this compound since the equilibrium response

of YBCO 6.5 was used to extract the transient response. This was a practical con-

straint, since the equilibrium c-axis response has not yet been measured on this

sample and could not be found in literature.4 The shape of the transient changes

should not be impacted by the choice of equilibrium response, since the compounds

are so similar at these temperatures. However the magnitude of the changes may

be slightly off due to differences in the pump-probe penetration depth mismatch of

YBCO 6.3 and 6.5.

The transient response of YBCO 7 (orange in Figure 5.17) is qualitatively quite

different from the underdoped compounds. If a transient mode were to appear

following the trend at lower dopings, the loss function would peak near the Josephson

plasma frequency, 7.5 THz at 5 K [84], which is outside our spectral range. Yet there

should still be a divergent behavior in ∆σ2(ω) between 0-3 THz if a higher frequency

plasmon were being generated. Instead the inductive conductivity decreases.

4Measurements of the equilibrium response on the same YBCO 6.3 crystal are underway.
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Figure 5.17: Optical response of underdoped YBCO T > Tc. The
pump-induced changes in the loss function ∆=(−1/ε) (left column), inductive
conductivity ∆σ2(ω) (middle), and Ohmic conductivity ∆σ1(ω) (right column), for
YBCO x = 6.3 (purple), 6.45 (blue), 6.5 (red), 6.6 (green), and 7 (orange). Thick
grey lines are fits to ∆σ2(ω) ∝ 1/ω. Dashed lines on conductivity plots indicate
the “zero changes” level.
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The excitation targets a phonon mode of the YBCO 6 crystal structure, which is

essentially absent at this doping, therefore the absence of a transient plasma mode

may be due to the lack of resonant excitation of the apical oxygen.

As an analogy with superconductivity, we consider again the quantity ω∆σ2(ω),

where ∆σ2(ω) = σ2(ω)− σ2,eq(ω) captures the inductive response due to pumping.

Figure 5.18.A shows ω∆σ2(ω) for YBCO 6.45 at four temperatures. The mean

ω∆σ2(ω) was extracted by averaging the response in the range where it remains

frequency-independent.

Figure 5.18: Temperature dependence of the inductive response of YBCO
6.45. Left: The inductive response ω∆σ2(ω) of YBCO 6.45 at four temperatures.
The dashed line indicates the mean value of the response. Right: The mean
ω∆σ2(ω) is plotted for several temperatures. The error bars indicate the standard
deviation of the mean ω∆σ2(ω) over the averaged region. The temperature
dependence is fit to a mean field response ω∆σ2(ω) ∝

√
1− T/T ′ (dashed line),

with T ′ ≈ 390 K.

Interestingly, we find two temperature regimes emerge. Starting just above Tc, the

inductive response increases somewhat linearly with increasing temperature until a

crossover point T ′′. Above T ′′ the response follows the mean field behavior typical

of a superfluid, dropping to zero at a temperature T ′. Both regimes are illustrated

for all dopings in Figure 5.19. The T ′′ crossover temperature is estimated by the

intersection of a linear fit to the low temperature response (grey dashed line) and

the mean field fit to the high temperature response (black dashed line).

The temperature scales T ′ and T ′′ are plotted on the phase diagram in Figure 5.20.

Immediately striking is the similarity between the T ′ temperature scale and the T ∗
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Figure 5.19: Critical temperatures of the transient response. For each
ω∆σ2(ω) vs T plot, the superconducting regime below Tc is shaded grey and the
regime below T ′′ is shaded in color. The equilibrium superfluid density for each
doping is indicated by the empty circles. The solid circles represent the pump
induced inductive response, ω∆σ2(ω) ≡ ωσ2(ω)|ω→0. A linear fit to the inductive
response below T ′′ is indicated by the grey dashed lines. A mean field fit of the
form ∝

√
1− T/T ′ is indicated by the black dashed lines. The crossover point T ′′

marks the peak ω∆σ2(ω). The temperature T ′ marks when ω∆σ2(ω) = 0.

line associated with the transition to the pseudogap phase. The T ′′ crossover ap-

pears to track the TELC temperature scale identified by Haug, et al.5 [160, 161] as

the electronic liquid crystal (ELC) temperature, where there is an onset of nematic

behavior due to collective excitations between spins (see Figure 5.21). The sup-

pression of ω∆σ2(ω) below this temperature suggests that spin fluctuations may be

competing with the transient plasmon.

5The YBCO 6.3 sample I studied is from the same batch as the YBCO 6.3 sample used in
Ref. [160].
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Figure 5.20: Transient phase diagram of YBCO. The crossover point T ′′ (blue
triangles) indicates the temperature with the peak transient inductive response.
The transient response disappears above T ′ (red circles). Green squares indicate
the equilibrium superconducting transition temperatures.

Figure 5.21: The electronic liquid crystal regime. Above the spin density
wave transition there is a regime of nematic behavior due to collective excitations
between spins. The scale TELC was defined by neutron resonant spin-echo
measurements as the onset temperature for in-plane anisotropy of the
incommensurate peaks of the spin excitation spectrum. Figure reproduced from
Ref. [160].
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5.5 Inhomogeneity of the transient state

The transient response has several features that indicate the response is inhomoge-

neous. The amplitude of the reflectivity does not reach R = 1 below the plasma

frequency ωp. Although the inductive response ω∆σ2(ω) drops with increasing tem-

perature, the plasma frequency does not red shift a corresponding degree, marking a

deviation from ω∆σ2(ω) ∝ ω2
p behavior. As we will see in Section 7.2, the Josephson

plasmon below Tc also shows obvious signs of inhomogeneity. The plasmon splits

into two peaks after excitation, with one component remaining at the equilibrium

plasma frequency.

The inhomogeneous behavior can be quantitatively captured with the Bruggeman

effective medium model [162], which has the form,

f
ε̃a(ω)− ε̃E(ω)

ε̃a(ω) +
(

1−q
q

)
ε̃E(ω)

+ (1− f)
ε̃b(ω)− ε̃E(ω)

ε̃b(ω) +
(

1−q
q

)
ε̃E(ω)

= 0, (5.3)

where medium a with optical response ε̃a(ω) occupies a volume fraction f and

medium b occupies volume 1 − f . The effective optical response is ε̃E(ω). This

model was developed for dc response, but is applicable whenever the size scale of the

inclusions are small compared with the probing wavelength, in this case 120-600 µm.

The depolarization factor q sets the shape of the inclusions of each material [163].

We assume simple spherical inclusions, q = 1/3. See Appendix B.4 for a discussion

on how q shapes the response and influences the percolation threshold.

We model medium a with the optical response of a single longitudinal Josephson

plasma mode, which we saw in Chapter 3 has the Drude form,

ε̃(ω) = ε̃c −
ω2
p

ω2 − iωΓ
. (5.4)

The advantage of the Drude formalism is that it includes just two free parameters,

ωp and Γ. Within this model, the scattering rate term Γ encompasses all transient

processes that impact the mobility along the c-axis. For incoherent carriers, this re-

lates to their effective mean free path; for a superconductor, it is associated with the

superconducting coherence length and time scales. For a “perfect” superconductor,

Γ→ 0.

The ε̃c(ω) term accounts for the other components of the response in the su-

perconducting state besides the Josephson plasmon—the higher frequency phonon

modes which add small contributions to the THz conductivity, but most dramati-
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cally impact the shape of the response outside our spectral window. The influence of

these modes can be described well using two Lorentzian oscillators, ε̃lor(ω), resulting

in ε̃c(ω) = ε∞ + ε̃lor(ω). Figure 5.22 plots the equilibrium conductivity σ̃(ω) and

reflectivity R(ω) of YBCO 6.5 at 5 K (red) along with the response calculated from

ε̃c(ω) (grey). A fit to the equilibrium response using Equation 5.4 with Γ = 0 is also

shown (dashed line). Note that even in the superconducting state, some broadening

is needed to account for the inhomogeneity of the sample [82, 112] and incoherent

contributions to the response [77].

Figure 5.22: Superconducting medium for effective medium fits.
Superconducting response of YBCO 6.5 at 5 K (red) and the response of two
Lorentzian oscillators (grey). The oscillator response was combined with a single
plasma mode to model the optically excited regions of YBCO. An example of this
is shown (black dashed line).

The response for medium b was taken from the equilibrium material, ε̃b(ω) =

ε̃eq(ω). At higher temperatures and as we move towards optimal doping, a small

quasiparticle contribution to the transient response must be accounted for. This can

be done in one of two equivalent ways. First, to be fully Kramers-Kronig consistent,

we add a small Drude component to ε̃b(ω). In practice, since the major features of

this contribution are far outside the THz spectral range, this is equivalent to sim-

ply adding a small frequency-independent contribution to the Ohmic conductivity

instead, ε̃b(ω) = ε̃eq(ω) + 4πiσ1,0/ω.

Figure 5.23 plots the peak transient optical response of YBCO 6.45 at 250 K

(dots). Effective medium fits are shown in black and red (top row). The first fit

(black) uses a small constant σ1,0 = 5 1/Ω-cm and the second (red) employs the
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Drude model to account for the quasiparticle contribution. The fits are virtually

identical in the 0-3 THz spectral range. The components of both effective medium

fits are plotted in the second row. The two models of medium b are shown in black

and red for the respective black and red fits in the top row. Each fit used the same

superconducting response for medium a, plotted in blue.

For comparison, the equilibrium superconducting response of YBCO 6.45 at 5 K

is plotted in light blue. The transient plasma mode of medium a is blue shifted

with respect to the equilibrium plasmon, implying that the tunneling strength of

the transient state is enhanced compared to the equilibrium superconductor.

Figure 5.23: Effective medium fit of YBCO 6.45 at 250 K. Top row: The
transient response (dots) fit with two effective medium models (black and red).
Equilibrium data in grey. Bottom row: The two materials used in each effective
medium model. Both utilize the same superconducting inclusions (blue lines). For
comparison, the equilibrium response at 5 K is also shown (light blue). The
medium b optical response is taken from the equilibrium spectrum (grey) with
either a small Drude component added (red) or a constant addition to σ1(ω)
(black).
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Effective medium fits at three temperatures calculated using the above method

are shown in Figures 5.24 (YBCO 6.45), 5.25 (YBCO 6.5), and 5.26 (YBCO 6.6).

The grey region indicates the lower limit of the trusted THz spectral range, where

some spectral content remains but is noisy due to diffraction fringes at frequencies

comparable to the sample size. The volume fraction values f extracted from the fits

and ω∆σ2(ω) are plotted in Figure 5.27. The volume fraction tracks the inductive

response, ω∆σ2(ω) ∝ f , suggesting that primary effect of increasing temperature is

not a softening of the mode, but rather a reduction in the volume fraction of the

material that is excited. For all dopings and temperatures, the maximum super-

conducting volume fraction f did not not exceed 20%, well below the percolation

threshold fc ≈ 33%.

The origin of the inhomogeneity of the transient response is probably tied to

inhomogeneity of the samples. The inherent inhomogeneity of cuprate crystals has

been shown to produce spatial variation in their equilibrium properties, including the

superconducting order parameter [82, 112]. Inhomogeneous excitation is especially

unsurprising here, given that the mid-infrared pump targets a mode associated with

just the YBCO 6 sublattice. Resonant absorption would only occur in those regions

of the lattice where the chain oxygen atoms are absent. The volume fraction of

the crystal occupied by the YBCO 6 sublattice reduces as the doping increases to

x = 7. Accordingly, we find that the volume fraction occupied by the transient

plasmon decreases with increased doping, as shown in Figure 5.276.

6The YBCO 6.3 response has not yet been fit with the inhomogeneous model described here.
It will be fit once the equilibrium spectrum has been measured.
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Figure 5.24: Effective medium fits for YBCO 6.45 at three temperatures.
The transient (blue dots) and equilibrium (grey line) Ohmic conductivity σ1(ω) is
plotted in the first row and inductive conductivity σ2(ω) in the second row. The
changes in the inductive conductivity, ∆σ2(ω) = σ2(ω)− σ2,eq(ω) (third row) are
fit to ñ/ω (grey dashed line). The change in reflectivity ∆R/R is plotted in the
fourth row. Effective medium fits are indicated with black dashed lines. The grey
shaded regions indicate the low frequency limit of the THz spectrum.
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Figure 5.25: Effective medium fits for YBCO 6.5 at three temperatures.
The transient (red dots) and equilibrium (grey line) Ohmic conductivity σ1(ω)
(first row), inductive conductivity σ2(ω) (second row) and the change in reflectivity
∆R/R (third row). Effective medium fits are indicated with black dashed lines.
The grey shaded regions indicate the low frequency limit of the THz spectrum.
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Figure 5.26: Effective medium fits for YBCO 6.6 at three temperatures.
The transient (green dots) and equilibrium (grey line) Ohmic conductivity σ1(ω)
(first row), inductive conductivity σ2(ω) (second row) and the change in reflectivity
∆R/R (third row). Effective medium fits are indicated with black dashed lines.
The grey shaded regions indicate the low frequency limit of the THz spectrum.
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Figure 5.27: Temperature dependence of the transformed volume
fraction. The temperature dependence of the volume fraction f (diamonds)
tracks the inductive response ω∆σ2(ω) (circles). Dashed lines indicate a mean field
fit,
√

1− T/T ′. Equilibrium superfluid density at 5 K indicated by empty circles.
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5.6 Transient a-axis optical response, T > Tc

So far we have only considered the optical response along the c-axis. The enhanced

coupling of the planes may also indicate a change in the response within the CuO2

planes as well. The a-axis inductive conductivity below Tc reflects the total conden-

sate density, as we saw in Section 5.3.1, and one may suppose that a stiffening of

the condensate phase between planes may also imply a stiffening within each plane

as well. Unfortunately, the THz reflectivity in-plane is nearly 1.0 below Tc due to

screening by Cooper pairs below the superconducting gap. Accurately measuring

the full transient response with such high reflectivities is a challenge, because even

relatively small amounts of noise in the THz source or in the phase of the reflected

field are amplified to the point where they can qualitatively distort the response.

Even above Tc, the THz response is metal-like, with a reflectivity on order ∼0.98.

However, in this regime we were able to accurately and repeatably measure the

transient response. After excitation of the apical oxygen, the transient conductivity

does not show evidence of an enhanced mobility. Rather, the changes in the response

are quite small and consistent with quasiparticle heating. Figure 5.28 shows the

transient response at 70 K along with the equilibrium response at 70, 100, and 150 K.

Unlike the c-axis response, the in-plane Ohmic conductivity in the THz regime drops

with increasing temperature, due to increased quasiparticle scattering.7 There is a

corresponding decrease in the inductive conductivity and reflectivity. The transient

response exhibits the same trend. The magnitude of the transient response decreases

with increasing base temperature, though the qualitative behavior remains the same,

as shown in Figure 5.29.

7A gapped state, by contrast, exhibits an increase in the THz Ohmic conductivity with tem-
perature, due to an increase in the number of thermally populated carriers.
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Figure 5.28: Transient a-axis response of YBCO 6.5 at 70 K. From left to
right, the Ohmic conductivity σ1(ω), inductive conductivity σ2(ω), and the
reflectivity, R(ω). The equilibrium response at 70, 100, and 150 K are in grey and
the transient response is shown in red at the peak of the excitation. Error bars
reflect the propagated standard deviation in the THz reflectivity, averaged over
several scans.

Figure 5.29: Temperature evolution of the transient a-axis conductivity of
YBCO 6.5. Transient changes in the optical conductivity,
∆σ̃(ω) = σ̃(ω)− σ̃eq(ω), at several temperatures between 70 and 300 K.

5.7 Role of the mid-infrared pump

5.7.1 Fluence dependence

The inductive response increases with increasing pump field, as shown in Figure 5.30,

up to the highest fluences we could reach (3 MV/cm ≈ 4 mJ/cm2). The fluence

dependence of the inductive response at all temperatures can be fit with a saturation

model, ω∆σ2 = ñmax(1− exp(−Φ/Φ0)), with Φ0 = 2.4 MV/cm.
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Figure 5.30: The effect of pump fluence on the inductive response. The
inductive response, ω∆σ2(ω) of YBCO 6.45 at 100 K (red), 200 K (green) and 300
K (blue). While the inductive response decreases with temperature, the saturation
scaling remains temperature independent. The response at all temperatures can be
well-fit with the saturation relation ω∆σ2 ∝ (1− exp(−Φ/Φ0)) (grey line).

The pump-induced optical response of YBCO 6.45 at 300 K is shown in Figure 5.31

at three fluences, from 3 down to 0.3 MV/cm. One immediately noticeable feature of

the response is that while the inductive conductivity drops with decreasing fluence,

the plasma mode does not red shift by an equivalent degree. We quantify this rela-

tionship using an effective medium fit, indicated by the dashed lines in Figure 5.31.

The inductive response ω∆σ2(ω), screened plasma frequency ω̃p = ωp/
√
εFIR

8, and

volume fraction f are all plotted in the left-hand panel of Figure 5.32 for YBCO 6.45

at 300 K. While the plasma frequency changes by roughly 1/3 over the fluence range

measured, the inductive response changes by a factor of 3. The breakdown of the

8The reflectivity edge due to the plasmon does not occur precisely at the plasma frequency,
ωp, but is shifted due to decoherence, as well as other higher frequency intra- and interband
contributions to ε1,eq which can be captured in the THz regime by a single parameter εFIR. For
the plasma mode ω̃p reported here, we take εFIR = 30, a standard value for cuprates [113].
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Figure 5.31: Transient response of YBCO 6.45 at 300 K at three fluences.
The transient (blue dots) and equilibrium (grey line) Ohmic conductivity σ1(ω) is
plotted in the first row and inductive conductivity σ2(ω) in the second row. The
changes in the inductive conductivity, ∆σ2(ω) = σ2(ω)− σ2,eq(ω) are plotted in the
third row and the changes in reflectivity ∆R/R in the fourth row. Effective
medium fits are indicated with black dashed lines.

relationship ω∆σ2 ∝ ω2
p, which holds for superconductors in equilibrium, can be

understood as a consequence of the excitation being inhomogeneous: the effective

carrier density (and tunneling rate) remaining only weakly fluence dependent while

the total volume of the photo-excited inclusions decreases.

If there is a minimum cut off fluence necessary to induce the transient effect, it

must be very low. The transient mode was detected down to 0.1 MV/cm. Below

that fluence, detection of the mode may be limited by the THz noise. The inductive

response also did not saturate up to the highest fluence we could achieve, about 3
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MV/cm, leaving open the tantalizing possibility that a higher fluence may be able

to drive the system past the percolation threshold, f ≈ 0.33. From the saturation

model, the highest volume fraction achievable would be f ≈ 0.24 at 100 K and just

f ≈ 0.12 at 300 K, well below percolation. However, the fluence dependence of f

can also be well-fit with a simple linear relationship, which is also in good agreement

with the inductive conductivity within our resolution, as shown by the grey line in

Figure 5.32. Assuming a linear trend with the pump field, percolation (f = 0.33)

would be reached at a fluence of 9.9 MV/cm, a little over triple the field we can

currently generate.

The right panel of Figure 5.32 shows the inductive response at six fluences (colored

dots). The 200 K ω∆σ2(ω) values have been renormalized to the same level in order

to emphasize the temperature evolution of the inductive response. At lower fluences,

< 0.8 MV/cm, there appears to be some drop in critical temperature T ′ with pump

fluence, however, within one standard deviation of ω∆σ2(ω), the temperature T ′

remains fluence independent.

Figure 5.32: The fluence dependence of the plasmon. Left: The plasma
mode (red dots) and inductive response (blue squares) are both plotted in units of
cm−2. The volume fraction f (blue diamonds) tracks the inductive response. Both
f and ω∆σ2 can be well-fit using either a saturation relation (see Figure 5.30) or a
linear fit with pump field (grey line). Right: The inductive response at 100 K, 200
K, and 300 K at several fluences between 1.1 and 0.1 MV/cm. They are vertically
rescaled so that the 200 K values are equal in order to better visualize the
temperature dependence. The highest fluence, 3 MV/cm, is also shown (blue).
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5.7.2 Wavelength dependence

We have seen indirectly from the optical response of YBCO 7, and from the doping

dependence of the excited volume fraction f , that the transient mode does appear

to be dependent on the excitation of the apical oxygen phonon. By varying the

pump wavelength, we find that the inductive response is enhanced as resonance is

approached from higher frequency. Figure 5.33 plots the peak inductive response

in YBCO 6.45 as a function of pump wavelength. The equilibrium σ1(ω), which

peaks at the resonant mode frequency, is also shown. The dashed line represents

a Lorentzian fit to the phonon and the pink Gaussian represents the same mode

convolved with the pump spectral width. At each wavelength, the average power

was adjusted to maintain the same photon count. Frequencies lower than 19 THz

(16 µm) cannot be readily reached with sufficient fluence using our optical paramet-

ric amplifier (see Section 2.2), so the regime below the resonance frequency cannot

be accessed.

Figure 5.33: Wavelength dependence of the transient inductive response.
The inductive response ω∆σ2(ω) at six pump wavelengths (blue dots). The real
conductivity σ1(ω) (grey line) peaks at the B1u phonon frequency. The mode is
modeled by a Lorentzian (dashed line). The Gaussian curve (pink) has a width
indicating the spectral width of the pump.
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5.7.3 Pumping other phonon modes

As a further test that the optical response is due to resonant excitation of the apical

oxygen, we pumped at the same frequency along the a-axis. A B3u Cu-O stretching

mode of the CuO2 planes exists along the a-axis at a frequency similar to the c-axis

apical oxygen mode [155]. This mode is analogous to the Eu Cu-O stretching mode

of La1.8−xEu0.2SrxCuO4 that is targeted in Chapter 4. The penetration depth along

the a- and c-axes are plotted in the left panel of Figure 5.34 along with the spectrum

of the MIR pump. A kink in the a-axis spectrum (grey) indicates the frequency of

the phonon. The resonant motion of the O(3) oxygen atoms is illustrated in the

right panel.

Figure 5.34: In-plane phonon of YBCO at 15 µm. Left: The penetration
depth d of YBCO 6.5 along the c-axis (black) and a-axis (grey). The pump
spectrum is also shown (purple) along with a Gaussian fit (dashed line). The pump
width is σ = 1.5 µm. Right: The copper (blue) and oxygen (red) atoms in the
CuO2 planes. The motion of the Cu-O stretching mode is indicated by the arrows.

The c-axis THz response after a-axis pumping is qualitatively quite different than

what is observed from c-axis pumping, as illustrated in Figure 5.35 for YBCO 6.5

at 300 K. The most dramatic change in the response is a drop in the inductive

conductivity upon photo-excitation. The Ohmic conductivity remains unaffected

by the pump in the THz spectral window.
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Figure 5.35: In-plane phonon pumping of YBCO 6.5. The photo-induced
response along the c-axis 0.6 ps after excitation at 300 K. The response is shown
with the 15 µm excitation is aligned along the a-axis (dark red) and c-axis (red).

5.8 Discussion of these results

The origin of the transient plasmon has been ascribed in Refs. [1, 2] to a Josephson

plasmon produced by pair tunneling, even far above Tc. From a competing order

perspective, this interpretation would imply that external driving can support the

superconducting order in overcoming a competing pseudogap instability. From the

perspective of a pseudogap in which superconducting fluctuations survive, these

results support the notion that stiffening the superconducting phase is key to in-

creasing Tc. Here I will first examine alternate ideas for the plasmon origin, then

consider these results in the context of transient superconductivity.

Below Tc, the transient plasmon blue shifts continuously from the equilibrium

Josephson plasmon, leaving little doubt as to the origin of the carriers. Here we see

the least controversial proof that apical oxygen excitation promotes pair tunneling

across the inter-bilayer gap. Some broadening of the plasmon accompanies the blue

shift, which can be tied to two origins. One, the excitation also results in some

quasiparticle excitation, and perhaps inhomogeneity [82], of the stiffened phase.

And two, some of the apparent broadening is actually a splitting of the resonance

due to the inhomogeneous excitation of the apical oxygen, which is discussed in

some detail in Chapter 7.

Above Tc, the situation is less immediately clear. The frequency and the doping

dependence of the transient plasma frequency offer strong evidence, at least, that

the carriers generating the mode are the same carriers that condense below Tc and

contribute to Josephson tunneling. Even in YBCO 6.3, which does not achieve bulk
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superconductivity down to 5 K, the small diamagnetic response of the material at

lowest temperatures suggests that some pairing does occur in equilibrium.

One straightforward interpretation would be that the transient carriers, un-paired

in the pseudogap regime, are dynamically driven into a high mobility state, perhaps

from the gapped out regions of the pseudogap. A high mobility state, with relatively

few carriers, would generate a Drude response in this frequency range.

While such a high mobility state would be novel in itself, the fluence dependence

of the transient plasmon does not support such an interpretation. The density of

photo-excited carriers should increase with the number of absorbed photons, but we

find that the plasma frequency remains roughly fixed for all pump fluences. Instead

the fraction of the sample volume that develops the plasmon increases, at constant

density. Moreover, the relaxation pathway of the plasmon, discussed in Chapter 7,

suggests that decoherence effects govern the time evolution of the mode. For quasi-

particle excitation, one would expect a relaxation governed by the depletion of

excited carriers (see discussion in Section 4.7).

A more exotic high mobility state would be the sliding charge density wave

(CDW) [122–124], where the pump acts to de-pin the CDW. Incommensurate charge

density wave order was recently discovered in parts of the pseudogap regime [91].

However, the CDW regime does not track the doping or temperature scale of the

transient state reported here.

Let us now consider what mechanisms could drive transient pair tunneling above

Tc. Photo-induced redistribution of quasiparticles, leading to an effective doping of

the condensate, has been shown to enhance superconductivity at microwave [164–

166] and optical [11, 12] frequencies. However, this mechanism is unlikely to be the

origin here. First, the frequency of the transient plasmon suggests a carrier density

comparable to the equilibrium condensate. Second, the transient state tracks the

phonon resonance, disappearing at higher frequency, whereas charge excitations

should still be generated above the phonon resonance.

The process may be inherently non-equilibrium, where the dynamic motion of

the apical oxygen is directly enhancing the tunneling of pairs. In response to our

findings, this scenario was recently modeled by R. Höppner and collaborators in the

group of Ludwig Mathey [167]. They found that driving a bilayer superconductor

with an oscillating field gradient produced a net cooling of the phase fluctuations

across the interbilayer junction, and an increase in fluctuations across the bilayer.

This is compatible with both the observations above and below Tc. Cooling of

the phase in the superconducting state would support Josephson tunneling, leading

112



to a blue shift of the interbilayer Josephson plasmon. Likewise, in a pseudogap

state with surviving fluctuating superconductivity, cooling the fluctuations could

permit a finite Josephson current that is suppressed in equilibrium. Along these

lines, recent optical conductivity measurements [85] suggest that tunneling across

the short bilayer junction does in fact persist into the pseudogap state, implying

that local phase coherence between neighboring planes survives the destruction of

bulk superconductivity. This scenario is explored more in Section 6.2.

Höppner, et al. [167] found that the oscillating field did not produce a homoge-

neous cooling of the interbilayer, but rather that phase fluctuations developed hot

and cool spots on the planes. This may account for the a-axis response reported

in Section 5.6. The in-plane conductivity may remain dominated by the “resistive”

component—the normal regions of the planes—while the c-axis response is domi-

nated by the Josephson channel. Only phase coherence between planes would be

enhanced by the c-axis excitation. This scenario is illustrated in Figure 5.36.

Figure 5.36: In-plane and c-axis coupling of an inhomogeneous
superconducting state. The CuO2 planes are illustrated as grey squares
containing colored regions of superconducting pairing with order parameter phase
φ. While phase coherence is enhanced along the c-axis, regions remain
phase-incoherent in-plane.

Other mechanisms may also be at play. Non-linear coupling of the B1u mode to

Raman modes has been shown to lead to a deformation of the YBCO lattice [3].

This deformation forms and relaxes on the same timescale as the transient plasmon.

If the transient lattice structure is responsible for enhanced superconductivity, then
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perhaps one could entertain the prospect of engineering such a structure in equilib-

rium. The role of lattice deformation for the transient optical response is discussed

further in Section 6.3. Finally, the underdoped regime has recently been shown to

support a charge density wave state that may compete with superconductivity [91].

Using inelastic x-ray scattering, we have shown that the mid-infrared excitation we

employ does reduce charge order [42]. This experiment is discussed in Section 6.4.
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Chapter 6

The origin of the transient
plasmon in underdoped

YBa2Cu3Ox

6.1 Introduction

The discovery of the transient plasmon in YBCO discussed in Chapter 5 and contin-

ued in Chapter 7 has spawned several follow-up projects, which I will briefly discuss

here. Each of these experiments targets a different possible mechanism for the gen-

eration of transient interbilayer coupling. All three have, as their motivation, the

interpretation that the plasmon arises from Josephson tunneling, even above Tc in

the pseudogap state.

First we consider whether the excitation is causing pair formation or rather pro-

moting pair tunneling, for example by stiffening the phase of the condensate. This

question inspired the development of a broadband THz set-up to investigate the high

frequency response of the material, including the transverse mode and the bilayer

Josephson plasmon. This project was led by Wanzheng Hu and Isabella Gierz.

The second project, led by Roman Mankowsky and Alaska Subedi [3], looked

at lattice deformation as a possible origin of enhanced tunneling. The nonlinear

coupling of the B1u excitation to Raman modes was found to cause shifts in atomic

positions within the lattice. Here I will briefly discuss their results and offer some

of my own thoughts and analysis.

The third project investigated the role of the recently discovered charge den-

sity wave (CDW) order in underdoped YBCO [91]. In this project [42], led by

Sarnjeet Dhesi and Michael Först, we sought to address whether suppressing a

competing charge order could promote superconductivity and account for the ob-

served enhanced tunneling, perhaps in a similar manner to what is observed in

LaEuxSr2−xCuO4 [33, 34]. Using time-resolved soft x-ray diffraction, we could mea-

sure the effect of apical oxygen excitation on the charge density wave order. We
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found that although the excitation suppresses the CDW ordering by roughly 50%,

charge order destruction is likely not the primary cause for the transient effect we

see.

6.2 Redistribution of coupling strengths

So far I have presented only the pump-induced behavior of the interbilayer plas-

mon and the low frequency conductivity. This regime, below 3 THz, is critical for

measuring the superconducting response, as this is where the condensate shapes

the inductive conductivity most dramatically. However, this is not the whole story.

Because YBCO has a bilayer structure, with two CuO2 planes per unit cell, the tun-

neling across each gap–the smaller bilayer and larger interbilayer–both determine

the effective c-axis effective carrier density and thus the macroscopic superconduct-

ing behavior.

We have already seen in Section 3.2 that the intrinsic bilayer and interbilayer

Josephson junctions of YBCO gives rise to a transverse plasma mode, which appears

as a broad peak at about 400 cm−1 (12 THz) in YBCO 6.5. This mode shares

spectral weight with the condensate at ω ≈ 0 [83]. The transient increase in spectral

weight of σ1(0), as observed by the low frequency increase in ω∆σ2(ω), is therefore

only part of the picture. The combined spectral weight of both modes is necessary

to determine how the pair density shifts in time.

A plasma source was developed for generating broadband THz in order to probe

the transient response of YBCO 6.5 up to 500 cm−1 (15 THz). Below Tc, pumping

the apical oxygen mode leads to a red shift in the bilayer plasmon, as illustrated

in Figure 6.1.B. The shifts of the interbilayer plasmon ωIB and bilayer plasmon ωB

were found to conserve the loss function spectral weight,
∫∞

0
=(−1/ε)dω ≡ ω2

p, such

that before and after excitation, ω2
IB + ω2

B = constant. The bilayer mode red shifts

and relaxes on the same timescale as the blue shift of the interbilayer plasmon.

The red shift of the plasmon is accompanied by a red shift of the transverse mode,

shown in Figure 6.1.C. Within the van der Marel and Tsvetkov picture (Equa-

tion 3.5) the frequency of the transverse mode is given by a weighted sum of the two

Josephson plasma frequencies, ω2
T = zIBω

2
B + zBω

2
IB. At constant spectral weight,

we can describe the shift in frequencies as ω̄2
IB = ω2

IB + δ and ω̄2
B = ω2

B − δ, and

therefore the shift in the transverse mode frequency is ω̄2
T = ω2

T + δ(zB − zIB). The
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weights zIB and zB are largely determined by the relative volumes of each junction

[77] and thus the redshift in ωT can be seen as a consequence of zIB > zB.

Figure 6.1: Broadband transient response of YBCO 6.5 at 5 K. (A) The
transient (red) and equilibrium (grey) loss function =(−1/ε) measured with ZnTe
THz generation. (B) The loss function measured with plasma generated THz,
showing the blue shift of the interbilayer mode and the red shift of the bilayer
mode. (C) The broadband Ohmic conductivity, showing a red shift of the
transverse mode. Panels (B) and (C) adapted from Hu, et al. [1]

The shift in spectral weight from the bilayer mode to the interbilayer mode can

be understood as a redistribution of coupling strength, favoring tunneling across

the larger interbilayer gap at the expense of tunneling within the bilayer. The

conservation of spectral weight suggests that the pair density itself is not altered by

the excitation. Indeed, Hu found that the loss in spectral weight from the transverse

mode, (
120

π

)∫ 500 cm−1

20 cm−1

(σ1(ω)− σ1,eq(ω))dω = −1.0× 105 cm−2, (6.1)

is approximately that gained by the interbilayer plasmon, ∆SW = ω̄2
IB − ω2

IB =

8.4 × 104 cm−2. It is also approximately the gain in spectral weight of σ1(0), as

measured by ω∆σ2(ω) ≈ 1.7 × 105 cm−2 (see Section 5.3.2 for a discussion of the

transient low frequency response). The gain in the apparent condensate density can

therefore be attributed to a transfer of spectral weight from the transverse mode

to σ1(0). That is, the redistribution of coupling strengths drives more pairs to

contribute to the condensate rather than be “wasted” on the finite frequency mode.

A cartoon depicting the transfer of spectral weight is shown in Figure 6.2.

The dynamic motion of the apical oxygen may account for the enhancement of

interbilayer coupling. This scenario was modeled by the group of Ludwig Mathey
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[167]. They found that driving a bilayer superconductor with an oscillating field

gradient produced a cooling of the phase fluctuations across the long junction, and

an increase in fluctuations across the short.

Figure 6.2: Redistribution of coupling strengths. Left: The Cu (blue) and O
(red) atoms of the YBCO lattice with the intra-bilayer (red) and interbilayer
(green) regions highlighted. Right: Calculations of the two plasmons using
Equation 3.5 at equilibrium (grey) and after excitation (red). The redistribution of
coupling strengths is depicted in this figure with exaggerated shifts in the intra-
and interbilayer plasmon positions to highlight the red shift in the transverse mode
peak position and loss of spectral weight. Purple arrows indicate the redistribution
of coupling strength to the interbilayer leading to an increase in the spectral
weight at σ1(0).

Above Tc, a similar mechanism seems to be at work. The response at 60 K

(Tc = 51 K) is shown in Figure 6.3. In equilibrium, the broad peak in the loss

function associated with the bilayer plasmon and the peak in σ1(ω) associated with

the transverse mode both appear to survive above Tc (see Figure 3.5). Again we

see a red shift in the positions of the transverse mode and the bilayer plasmon after

optical excitation. This is accompanied by the appearance of the peak in the loss

function near the equilibrium interbilayer Josephson resonance frequency. The shifts

of the higher frequency modes occur on the same timescale as the appearance and

relaxation of the lower frequency plasmon.

These results support recent analysis of YBCO and related compounds that found

that bilayer coupling extends deep into the pseudogap state [85]. Moreover, the ap-
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Figure 6.3: Broadband transient response of YBCO 6.5 at 60 K (A) The
transient (red) and equilibrium (grey) loss function =(−1/ε), showing the
appearance of a low frequency mode and the red shift of the bilayer mode. (B)
The broadband Ohmic conductivity, showing a red shift of the transverse mode.

pearance of the transient interbilayer mode up to T ∗ suggests that this region of

local bilayer coupling extends even higher in temperature than it could be detected

in Ref. [85]. Distinguishing the onset temperature for the transverse mode is com-

plicated by the presence of phonons near the transverse plasmon frequency. In

underdoped YBCO, one phonon mode in particular (at 320 cm−1 in YBCO 6.5)

couples strongly to the transverse mode, distorting its shape. The persistence of lo-

cally coherent superconducting pairing throughout the pseudogap would lend strong

credence to theoretical ideas that associate the pseudogap phase with fluctuating

superconductivity.

6.3 Distortion of the lattice

Infrared active lattice modes are dipole excitations that do not produce a net distor-

tion in the lattice. However, nonlinear coupling to Raman active modes can generate

transient, net shifts in atomic positions. The lowest order coupling to Raman modes

are the Q2
1Q2 couplings, which can be expressed in the Hamiltonian for a Raman

mode R as

HR =
ω2
R

2
Q2
R − a12QIRQ

2
R − a21Q

2
IRQR, (6.2)

where QR is the normal coordinate of the Raman mode and QIR is the coordinate

of the infrared driving mode. For centrosymmetric crystals like YBCO, the product

QIRQ
2
R vanishes since QIR and Q2

R have odd and even symmetries respectively.

However, the Pmmm(D1
2h) space group symmetry of YBCO allows Q2

IR coupling of
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B1u modes to Raman modes of Ag symmetry. Along the Raman QR coordinate, the

minimum energy position for the mode R shifts by a21Q
2
IR/ω

2
R.

Figure 6.4: Optically induced lattice distortion of YBCO 6.5. Left: The
copper (blue) and oxygen (red) atoms of the transient lattice structure of Ortho II
YBCO 6.5 shown in the ac-plane, with the YBCO 6 structure (left column of
atoms) and YBCO 7 (right) distinguished by the absence and presence,
respectively, of the chain oxygen atom (center row of atoms). Right: The change
in bilayer distance (top) and Cu(2)-O(2,3)-Cu(2) buckling along the a,b-axes
(bottom). Figures from Mankowsky, et al. [3]

In order to determine the net distortions of the lattice, Mankowsky et al. [3]

combined frozen phonon density functional theory (DFT) calculations of Ortho II

YBCO 6.5 with measurements of the change in certain atomic positions using X-ray

diffraction at the Linac Coherent Light Source (LCLS) free-electron laser. They

could reconstruct a transient crystal structure that was found to form and relax on

the same timescale as the transient optical response. The authors posit that this

transient structure may be responsible for generating the transient plasmon, and

that such a lattice, in equilibrium conditions, may support a superconducting state

that survives up to room temperature. Since their work has received some public

120



attention1, it is worthwhile to present their findings in brief and to discuss whether

the transient structure could account for the formation of Josephson coupling far

above Tc.

They looked at the change in intensity of a total of 8 Bragg peaks, four that

should be affected by Q2
IRQR coupling and another four by higher order Q2

IRQ
2
R

coupling. DFT calculations were made based on a frozen phonon distortion of the

B1u mode to predict the shifts in the Bragg peaks due to Q2
IRQR coupling. While

no Q2
IRQ

2
R coupling was found, the the four peaks associated with Q2

IRQR showed

transient shifts that matched the relative intensity and direction of the frozen phonon

calculations.

Using the measured magnitude of the intensity change in the Bragg peaks to

determine the effective magnitude of the apical oxygen distortion (+2.2 pm), the

authors could determine the full transient structure of the crystal.

Their primary findings are illustrated in Figure 6.4. The Ortho II crystal structure

consists of alternating empty and filled Cu-O chains, corresponding to the YBCO

6 and YBCO 7 substructures respectively. The left column of atoms in Figure 6.4

shows the Cu (blue) and O (red) atoms of the YBCO 6 structure and the right

column has the YBCO 7 structure. They are distinguished by the center row of

atoms (extending into the page) which represent the Cu-O chains. The YBCO 6

substructure experiences the greatest shifts in atomic position, since only the YBCO

6 apical oxygen atoms are being excited.

The O(4) apical oxygen atoms move towards the CuO2 planes. The Cu(2) planar

copper atoms buckle after photoexcitation, increasing their angle with with the

planar O(2) and O(3) oxygen atoms. We define the separation of the CuO2 planes

by the Cu(2) atomic positions. The increased buckling thus leads to an increase

in the bilayer spacing and an equal decrease in the interbilayer spacing. Note that

the Raman distortions conserve the net dimensions of the unit cell, meaning the

overall c-axis unit cell length L is unchanged after optical excitation. This is an

important contrast with other methods of distorting atomic positions in the unit

cell—for example through pressure, strain, or doping–which do not conserve the cell

volume.

1For example, in online articles on Science Daily, Science Alert, Business Standard, and EE
Times amongst many others.
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6.3.1 Comparison of the transient lattice structure with

equilibrium distortions

To assess whether or not the transient lattice structure may support bulk super-

conductivity at temperatures comparable to the pseudogap line, I will briefly com-

pare the transient structure with equilibrium studies of cuprate lattice structure.

There are several studies that compare the superconducting response to the rela-

tive atomic positions within the lattice, across families of cuprates [153, 154] and

under strain [24, 26, 27] and pressure [168]. These studies have primarily focused

on the role of the apical oxygen and the buckling of the CuO2 plane, which occurs

concomitantly.

The relationship between these atomic distortions and superconductivity is still

not entirely clear. A positive correlation between Tc and increasing apical oxygen

distance from the CuO2 planes is found when comparing between different families

of cuprates [153]. However, this finding runs counter to the trend measured by

studying the naturally occurring local variations in the apical oxygen position in

Bi2Sr2CaCu2Ox with scanning tunneling microscopy [27]. Across underdoped and

overdoped compounds, it was found that decreasing apical oxygen distance from the

CuO2 planes corresponded with a larger local gap energy.

A systematic study of YBa2Cu3Ox was performed by Jin, et al. [4] using dopants

to tune the atomic positions. In order to dope holes into the system, they substituted

Ca+ for Y and to dope electrons, they substituted La− for Ba. In this way, they could

tune atomic positions while keeping the overall doping level fixed. The left panel

of Figure 6.5 plots the distance between the planar Cu(2) and apical O(4) atoms of

(Y1−xCax)(Ba2−yLay)Cu3Oz. In the underdoped regime (y > x), Tc increases with

the apical oxygen distance. I plot for comparison the difference in atomic spacing

between the equilibrium (grey) and optically excited (red) lattice for the YBCO 6

(dashed) and YBCO 7 (solid line) substructures, from Ref. [3]. Even assuming that

the excited material follows the overdoped trend, in which Tc correlates positively

with an decrease in Cu(2)-O(4) distance, the magnitude of this deformation alone

does not appear to justify a transient T ′ as high as ∼300 K. Neither can the increase

in buckling, plotted in the right panels of Figure 6.5.

We now consider the reported change in the interbilayer spacing d, which is con-

sidered by Mankowsky et al. to be the central finding in support of a structural

distortion driving the increase in interbilayer coupling. The Josephson tunneling

current drops exponentially with the spacing between superconducting planes [169].
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Figure 6.5: Relationship between atomic positions and Tc. The
superconducting transition temperature Tc as a function of atomic positions in
(Y1−xCax)(Ba2−yLay)Cu3Oz. Data adapted from Jin, et al. [4]. The equilibrium
atomic positions (grey lines) and maximum transient displacement (red) for
YBCO 6.5 (Ortho II), measured by Mankowsky, et al. [3], is also shown for
comparison. The YBCO 6 substructure is indicated with dashed lines and the
YBCO 7 substructure with solid lines. Left: The superconducting transition
temperature Tc as a function of apical oxygen distance from the CuO2 planes
(Cu(2)-O(4) bond length). Right: Tc as a function of Cu(2)-O(2)-Cu(2) (top) and
Cu(2)-O(3)-Cu(2) (bottom) bond angles (purple squares).

Thus a 0.63% increase in the intrabilayer distance, as reported by Mankowsky et

al., would imply a 2% increase in interbilayer tunneling current.

The dependence of Tc on the interbilayer distance is not so well reported. In Fig-

ure 6.6 I present the results of my own meta-analysis of the (Y1−xCax)(Ba2−yLay)-

Cu3Oz system, plotting the relative size of the interbilayer gap d (defined as the

spacing between planar Cu(2) atoms) with the total unit cell size L. The left and

center panels of Figure 6.6 plots the relationship between the interbilayer spacing

d/L and Tc for nominal hole concentrations h = x−y. At constant nominal doping,

there is, at best, a weak positive correlation between d/L and Tc. However, as h

approaches optimal doping, the d/L distance appears to decrease slightly on average

as Tc increases dramatically.2 The equilibrium (grey) and transient (red) d/L for

2In contrast, the trends for Cu(2)-O(4) distance vs Tc hold even at constant doping, remain-
ing positively correlated for underdoped compounds and negatively correlated for optimal and
overdoped compounds.
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the YBCO 6 sublattice of the YBCO 6.5 Ortho II sample measured by Mankowsky,

et al. are shown for comparison.

The effect of equilibrium lattice distortions can offer at best an incomplete basis of

comparison to the transient lattice structure. The relationship between the atomic

positions and Tc, while often quite sensitive, is complicated to disentangle when the

motion of many atoms work in concert to tune effective doping, spatial charge and

spin behavior, and global phase coherence. However, from the trends investigated

here, I conclude that while the motion of the planar Cu atoms may help to pro-

mote tunneling, the atomic shifts alone do not appear to account for a transient

superconducting state with such a dramatic increase in critical temperature.

Figure 6.6: Relationship between interbilayer spacing and Tc. Data
(squares) from Jin, et al. [4]. Left, center: The superconducting transition
temperature Tc as a function of the interbilayer gap d, expressed as a percentage of
the c-axis unit cell length L. The slight decrease in d/L approaching optimal
doping is indicated with a thick grey line, shown as a guide to the eye. The
equilibrium (grey) and transient (red) values of d/L for YBCO 6.5 (Ortho II) are
shown as dashed lines (values from Ref. [3]). Right: The apical oxygen distance
from the CuO2 planes, by contrast, exhibits the same trends in h vs Tc at constant
doping as the trends for underdoped and overdoped compounds generally.
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6.4 Role of the charge density wave

In several lanthanide superconductors [88, 98, 100], the complete suppression of

superconductivity near p = 1/8 doping is accompanied by the formation of charge

stripes. The charges organize in the CuO2 planes, with uniaxial stripes alternating

alignment along the a and b crystalline axes in neighboring planes, with a stripe

periodicity that locks with every fourth unit cell at 1/8 doping. The onset of charge

stripe order is accompanied by strong spin fluctuations with small gapping on the

order of meV [117]. In other families of cuprates, a similar apparent suppression

of superconductivity near p = 1/8 occurs, yet no stripe ordering has been found.

Spin excitations also appear to be gapped out, with gapping an order of magnitude

larger than in lanthanides [170].

Recently, two groups have reported that this doping range actually plays host

to charge density wave (CDW) order in YBa2Cu3Ox and the related compound

Nd1+xBa2−xCu3O7 [91, 171]. The signature of this state was first measured by

resonant x-ray scattering of the planar Cu L3 edge, corresponding to the 2p3/2 → 3d

orbital transitions. Thus the measured energy loss spectrum was very sensitive

to the valence electrons in the CuO2 planes. They found a resonance in the loss

spectrum arising from low energy fluctuations in the valence-electron charge density.

The regime of CDW order is indicated in the phase diagram in Figure 6.7. A scan

of the planar momentum transfer q‖ is also shown, with a peak at q‖ = (0.31, 0)

due to the CDW order. The CDW peaks are found both at q‖ = (±0.31, 0) and

q‖ = (0,±0.31). However it is still unclear whether this signifies domains of each

orientation or a single biaxial charge modulation [91, 172].

The peak was found to form inside the pseudogap phase, enhancing with de-

creasing temperature to Tc, and then reducing below the superconducting dome,

apparently via competition with the condensate [91]. An applied magnetic field

counteracts the reduction below Tc, favoring the charge density wave order [171].

Mid-infrared excitation has been shown to cause a reduction in static stripe or-

der in La1.875Ba0.125CuO4 [32] and, as discussed in Chapter 4, the destruction of

charge order is implicated as the mechanism driving transient interlayer coupling in

La2−xBaxCuO4 [15] and La1.675Eu0.2Sr0.125CuO4 [33, 34]. To explore whether the de-

struction of charge density wave order is related to the transient coupling observed

in underdoped YBCO, we looked at the effect of the mid-infrared apical oxygen

excitation on the charge density wave order peak.
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Figure 6.7: Charge density wave order in YBa2Cu3Ox. Left: A generic
phase diagram indicating the region of charge density wave (CDW) order
measured in YBa2Cu3Ox and related compounds. Figure from Ref. [173]. Right:
The CDW energy loss peak of YBa2Cu3O6.6 as a function of q‖ just above Tc =
62 K. Figure adapted from Ref. [42].

The soft x-ray beamline at the Stanford Linac Coherent Light Source (LCLS) free

electron laser is equipped with the capability to pump with 300 fs long mid-infrared

pulses centered at 15 µm, with a pump fluence of 4 mJ/cm2, the same as the THz

measurements. The x-ray probe only penetrates ∼0.2 µm into the sample, over

three times less than the pump penetration depth, so pump-induced effects reflect

the bulk response of the material.

Sitting on the maximum of the CDW peak at q‖ = (0.31, 0), the changes in the

peak intensity were measured as a function of delay after excitation. The profile

of the transient changes is shown in Figure 6.8. A reduction of ∼50% is seen in

the charge density wave peak, developing over 1-2 ps and surviving for a longer

timescale, >10 ps.

The partial destruction of CDW order occurs on a different timescale than the

development of the plasma mode. The THz mode establishes promptly on a 0.5-1 ps

timescale and, at 61 K, it survives for a maximum of between 5-7 ps. The majority

of the dynamics occur within the first 2 ps. The mismatch of timescales suggest

that while CDW destruction may play a role in supporting the transient plasmon,

it is unlikely to be the origin of the transient state.

This conclusion is further supported by measurements of the CDW transition

regime TCDW . For the p = 0.12 doping measured here, the onset temperature of
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Figure 6.8: Transient response of the charge density wave order in
YBa2Cu3O6.6. Left: The CDW peak measured at LCLS. Right: The transient
changes of the CDW peak amplitude (q‖ = 0.31). Measured at a base temperature
just above Tc = 62 K. Figure adapted from Ref. [42].

the CDW, TCDW ≈ 150 K, agrees well with the onset of the transient plasmon T ′.

However, at lower dopings, where the CDW ordering begins to lose intensity (see

Figure 6.9), the transient plasmon is still strengthening3, even persisting down to

p = 0.05, where no CDW signal has been found.

3As measured by the inductive response ω∆σ2(ω) and the volume fraction occupied by the
transient state. See discussions in Sections 5.4.2 and 5.5.
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Figure 6.9: Doping dependence of the charge density wave intensity. The
charge density wave peak intensity is shown for several dopings of
Nd1+xBa2−xCu3O7 (purple squares and orange circles) and YBa2Cu3Ox. The
Ortho II symmetry of YBa2Cu3O6.5 is indicated with a gold triangle. Figure from
Ref. [91].
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Chapter 7

Decoherence driven relaxation of
the transient plasma mode in

underdoped YBa2Cu3Ox

7.1 Introduction

Chapter 5 showed how resonant mid-infrared excitation was able to drive a blue shift

of the interbilayer Josephson plasmon in underdoped YBa2Cu3Ox (YBCO x). The

blue shift of the plasmon indicates an enhancement in c-axis tunneling. This could

be caused by either an increase in the superconducting pair density or an increase in

the tunneling rate, for example by a stiffening of the superconducting phase. More

remarkably, above Tc, the same excitation produces a transient plasma mode at a

frequency comparable to the Josephson plasma frequency and which shows the same

frequency scaling with doping as the Josephson plasmon. Moreover, this plasmon

can be generated throughout the pseudogap regime, even for YBCO 6.3 (p = 0.05),

which is non-superconducting at equilibrium.

The MIR pump was shown to be resonant to a c-axis excitation of the apical

oxygen atom which lies in the interbilayer gap. The position of this atom within the

lattice is known to be related to Tc, supporting the idea that the excitation may be

driving non-equilibrium superconducting transport throughout the pseudogap. At

least, the frequency of the transient plasma mode strongly suggests that the same

carriers that participate in the condensate are responsible for the transient plasmon.

There are two apical oxygen excitation modes, associated with the YBCO 6 and

YBCO 7 sublattices, and only the YBCO 6 mode is being driven. The excited mode

seems to reflect this inhomogeneity and can be quantitatively fit by assuming an

effective medium, where some volume fraction of the crystal is excited and the rest

remains in equilibrium.

This chapter will analyze the formation and relaxation dynamics of the Josephson

plasmon below Tc and the transient plasmon that develops above Tc. Below Tc,
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the blue shift of the Josephson plasmon is seen to also be inhomogeneous, with

one component remaining near the equilibrium plasma frequency. Above Tc, the

principle finding is that the relaxation of the transient plasmon is driven by a loss

of coherence, characterized by a decrease in carrier mobility, rather than a drop

in carrier density as one might expect from quasiparticle excitation. Furthermore,

during the relaxation, the transient plasmon splits, with one component centered

near the equilibrium Josephson frequency and one component shifted to the blue.

A splitting in the equilibrium Josephson plasmon of cuprates occurs whenever

the intrinsic Josephson junctions—the CuO2 planes and the gaps between them—

become differentiated. In YBCO, there is a natural splitting due to the bilayer

structure of the lattice. A splitting in the interbilayer plasmon has been shown

to occur when the superconducting phase between planes is made inhomogeneous,

such as when vortices form under an applied field. The splitting of the transient

plasmon may therefore indicate that the relaxation is governed by a drop in transient

superconducting phase coherence.

7.2 Inhomogeneous enhancement of Josephson

tunneling, T < Tc

In Section 5.3.2, the transient response of YBCO below Tc was introduced. The

Josephson plasma resonance, characterized optically as a peak in the energy loss

function =(−1/ε), was shown to blue shift after mid-infrared excitation. The pump-

induced changes to the material appear to be inhomogeneous, however, with some

spectral weight remaining near the equilibrium plasma frequency. Figure 7.1 shows

the transient response at 0.8 ps after excitation, where the blue shifted mode can

be clearly distinguished from a component that remains at the equilibrium plasma

frequency. This splitting of the plasmon gives rise to a transverse mode which

produces a peak in σ1(ω). This peak appears at about ωT ≈ 1.5 THz (center panel

of Figure 7.1), between the frequencies of each plasmon.

The response is fit to Equation 3.5, indicated by the dashed line in Figure 7.1.

This fit is in excellent agreement considering it includes only the plasmons and no

contributions from higher frequency phonon modes.1

1As the fit takes zIB + zB < 1, the full response should have an additional contribution, added
in series.
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Figure 7.1: Splitting of the transient Josephson plasmon. The loss function
=(−1/ε) (left), Ohmic conductivity σ1(ω) (center), and inductive conductivity
σ2(ω) (right) of YBCO 6.5 at 5 K, 0.8 ps after excitation (red) and in equilibrium
(grey). A split plasmon calculated from Equation 3.5 is shown for comparison
(dashed line).

Figure 7.2: Time evolution of the Josephson plasmon for YBCO 6.5 at
5 K. The loss function =(−1/ε) peaks near the Josephson plasma frequency in
equilibrium (grey). After excitation (red), the mode appears to split, with one
mode blue shifting from 1 THz to about 2 THz. The relaxation occurs over the
scale of >150 ps.

The initial pump-induced blue shift of the plasmon occurs within the first 2 ps

of excitation. The blue shifted plasmon then broadens and redshifts back to the

equilibrium plasmon position. This relaxation is much slower, occurring over >150

ps, as illustrated in Figure 7.2. Two plasma frequencies were extracted from the peak

positions of the =(−1/ε) response and are plotted in Figure 7.3. The figure indicates
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that the lower frequency plasmon red-shifts; however, due to the low frequency limit

of the THz spectrum, it is difficult to ascertain if this represents a true red shift,

or if the plasmon simply loses spectral weight and then recovers. The blue shifted

plasmon is easier to track, remaining well within our spectral window for the entire

duration of the dynamics. The relaxation of the plasma frequency can be well-fit

by a single exponential decay, with a time constant τ = 10.5 ps.

Figure 7.3: Relaxation timescale of the Josephson plasma frequency. The
two plasma mode frequencies ω̃p = ωp/

√
εFIR are plotted as a function of delay

time for YBCO 6.5 at 5 K. The blue shifted plasmon (blue dots) is fit with a single
exponential decay with a lifetime of τ = 10.5 ps. The grey region indicates the
equilibrium plasma frequency.

7.3 Relaxation of the transient state, T > Tc

7.3.1 Decoherence-driven relaxation

The relaxation dynamics of the transient coupling above Tc do not follow a simple

thermalization behavior but instead appear to be driven by decoherence effects. This

is most clearly seen in the relaxation of the transient component of the inductive

conductivity, ∆σ2(ω) = σ2(ω) − σ2,eq(ω). For a plasma mode with no decoherence

contributions (Γ = 0 in Equation 3.2), the transient inductive conductivity should

diverge as 1/ω and therefore ω∆σ2(ω) is a constant. The quantity ω∆σ2(ω) is

132



proportional to the spectral weight of σ1(ω = 0), and therefore indicates the density

of carriers moving along the c-axis (see Section 5.3.1).

A flat ω∆σ2(ω) in the THz regime is characteristic of a superconductor, where

the tunneling of pairs dominates the c-axis transport. The depletion of the con-

densate with increasing temperature appears as a constant reduction in ω∆σ2(ω)

(see Figure 5.8 in Section 5.3.1). Fluctuations in the superconducting correlation

length and time scale have been shown to give rise to an effective Γ term near Tc

in superconducting La2−xSrxCuO4 [80] and Bi2Sr2CaCu2O8+x [81]. In the inductive

conductivity ω∆σ2(ω), this appears as a deviation from constant behavior in the

form of a suppression of the low frequency response.2

Figure 7.4: Decoherence driven relaxation of the inductive response. (A)
The transient changes to the inductive conductivity ω∆σ2(ω) remain flat at early
time delays, indicating a high mobility response. Later times are characterized
from a low frequency drop in the response, below a frequency ω∗ (arrows). (B)
The average ω∆σ2(ω) above ω∗ (blue) and at 1 THz (light blue). The response
decays following a double exponential (dashed lines) with a long time constant of
4 ps (blue) and 1 ps (light blue). (C) The coherence length, defined as
d = 2ωpLIB/ω

∗, as a function of delay after excitation. The coherence length
decays following a time scale of 4 ps (dashed line).

2In equilibrium, the inductive component due to the superconducting condensate is defined as
∆σ2(ω) = σ2(ω)− σ2(ω, T > Tc).
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The same phenomenon appears to dominate the relaxation of the transient re-

sponse. At early time delays, ω∆σ2(ω) remains constant. As the transient plasma

mode relaxes, a deviation from flat ω∆σ2(ω) behavior appears below a characteristic

frequency ω∗, with the conductivity dropping towards zero. This same relaxation

pathway was seen in the optically induced plasma mode of LESCO 12.5% presented

in Chapter 4. Following the analysis performed in that case, we define a coherence

length of the transient plasmon d = 2ωpLIB/ω
∗ where LIB represents the size of the

interbilayer gap3.

Figure 7.4 shows the relaxation of ω∆σ2(ω) for YBCO 6.45 at 100 K. The fre-

quency ω∗ is indicated with an arrow at several delays in Panel 7.4.A. The value of

ω∆σ2(ω) averaged above ω∗ (blue) and at 1 THz (light blue) is plotted as a function

of delay after excitation in Panel 7.4.B. The inductive response decays following a

double exponential, with a long lifetime of 4 ps for the “stiff” response above ω∗.

For the low frequency conductivity we find a faster decay, of just 1 ps, reflecting

the decoherence at long length and time scales. The drop in coherence length d can

also be fit with a double exponential, with the same long lifetime of 4 ps setting the

relaxation rate, as shown in Panel 7.4.C. The total size of a single YBCO unit cell

is ∼1.1 nm.

The average inductive conductivity ω∆σ2(ω) was measured as a function of delay

after excitation over the flat range of the response (above ω∗) at all temperatures.

The analysis is focused on the x = 6.45 doping because quasiparticle contributions

to the optical response are minimal. At higher dopings, these contributions begin

to influence the shape of the inductive response and a similar analysis would require

subtracting this incoherent component of the conductivity.4 For this analysis, we

simply consider the bare ω∆σ2(ω) response. Within the effective medium picture,

this quantity was found to be proportional to the volume fraction of the high mobility

state (see Section 5.5).

Figure 7.5 plots the inductive response at 10 temperatures, each fit with a single

exponential decay (grey) and a double exponential decay (red). At temperatures up

to ∼100 K (Tc = 35 K), the single exponential fit adequately captures the relaxation.

At higher temperatures, a second timescale appears, though it is difficult to fit as

3As discussed in the next section, the interbilayer plasmon splits at later frequency delays. We
take the higher frequency mode for ωp.

4This is complicated by the inhomogeneous nature of the response (see Section 5.5). Accounting
for the incoherent contributions requires making assumptions about the excitation in order to model
it. For example, determining which fluid experiences quasiparticle excitations—the high mobility
regions or the bulk.
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it only begins to dominate at the longest delays measured. The delay range that

can be considered is limited by ω∗ remaining within the spectral window of the THz

probe, below 2.7 THz.

The timescales extracted from these fits are plotted in Figure 7.6. The lifetime of

the single exponential fit τ appears to decrease somewhat linearly with temperature.

A linear fit to the lifetime (dashed line in Figure 7.6) projects to τ = 0 at ∼470 K,

a little higher than the T ′ temperature for YBCO 6.45. The double exponential

decay has the form ω∆σ2(ω) ∝ (1 − w2)exp(−τ/τ1) + w2exp(−τ/τ2). The single

lifetime τ seems to reflect an average of the double exponential timescales, τ ≈
τave = (1− w2)τ1 + w2τ2. This is illustrated in the bottom left panel of Figure 7.6,

which plots the τ (grey dots) and τave (light grey squares) along with τ1 and τ2 of

the double exponential fit.
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Figure 7.6: Timescales governing the relaxation of the transient state.
Top: Plot of the relaxation timescale of the transient inductive response vs
temperature. The lifetime τ was determined by a single exponential fit. Bottom,
left: The time constants from single (dark grey) and double (pink, red)
exponential fits. The weighted average of the double exponential timescales,
(1− w2)τ1 + w2τ2 is shown in light grey squares. Bottom, right: The relative
weight of the long lifetime of the double exponential,
ω∆σ2(ω) ∝ (1− w2)exp(−τ/τ1) + w2exp(−τ/τ2).
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7.3.2 Splitting of the transient plasmon

A second feature of the relaxation is a splitting of the transient plasmon that de-

velops about 1.2 ps after excitation. The transient changes in the loss function

∆=(−1/ε) and Ohmic conductivity ∆σ1(ω) are plotted in Figure 7.7 for YBCO

6.45 at 0.5 ps and 1.5 ps after excitation. At early times, the response is charac-

terized by the appearance of a single mode near the equilibrium Josephson plasma

frequency. The Ohmic conductivity is partially reduced. At 1.5 ps, a second mode at

lower frequency has formed and a peak in ∆σ1(ω) develops at a frequency between

the two plasma modes.

The response in Figure 7.7 is fit as an effective medium (dashed lines), following

the method presented in Section 5.5. The bulk of the sample remains in equilibrium

(Medium B for both delays, with volume 1−f), while a volume fraction f is modeled

as a high mobility state. At 0.5 ps, this volume fraction (Medium A) can be described

by a single longitudinal plasma mode, following Equation 3.2.5 At 1.5 ps, the volume

f is modeled with two resonances, following Equation 3.5. The two mediums used

in each fit are plotted in Figure 7.7.C. The single plasma mode is in pink, the

split plasmon in red. The equilibrium response is in grey. The single peak in the

Ohmic conductivity at 1.5 ps corresponds to the transverse mode ωT described in

Section 3.2.

The splitting of the plasmon is a universal feature across all underdoped com-

pounds. The loss function is plotted at two delays, 0.7 ps after excitation and 1.5 ps

after excitation for YBCO 6.3, 6.45, 6.5, and 6.6 in Figure 7.8. The position of the

single plasmon (at early delays) blue shifts with doping, as does the position of the

higher frequency plasmon (at later delays).

Two snapshots alone cannot tell us how this splitting develops [174]. Figure 7.9

shows the time evolution of the plasma mode in 200 fs steps for YBCO 6.5 at 100 K.

The loss function develops a single peak after excitation that blue shifts with delay

time. Then, a second lower frequency peak rises up near the equilibrium Josephson

plasma frequency.

5A small constant component has been added to σ1(ω) to account for quasiparticle contributions
to the transient state (see Section 5.5). This can be seen in Figure 7.7.C.2 by comparing the baseline
value of σ1(ω) at 0.5 ps with 1.5 ps, which has no quasiparticle contribution added.
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Figure 7.7: Splitting of the transient plasmon. The optical response of YBCO
6.45 at 200 K shown at two delays (blue). The response is fit by an effective
medium of the equilibrium response and one (0.5 ps) and two (1.5 ps) transient
plasma modes (dashed line). (A) The transient changes in the loss function (A.1)
and Ohmic conductivity (A.2) at 0.5 ps after excitation. (B) Same, at 1.5 ps after
excitation. (C) The two material responses used in the effective medium fits. In
both fits, Material 2 is the equilibrium response.
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Figure 7.8: Splitting of the transient plasmon at four dopings. The
transient changes in the loss function at 0.7 ps after excitation (top row) and
1.5 ps (bottom row).

Figure 7.9: Time evolution of the transient plasmon, T > Tc. The loss
function is plotted at 200 fs time delay steps, starting 0.5 ps after excitation. A
single peak develops at early time delays, which blue shifts. A lower frequency
peak develops after 1.2 ps, near the position of the equilibrium Josephson plasma
resonance.
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7.4 Discussion of these results

The apparent splitting of the plasmon below Tc appears to be the product of in-

homogeneous excitation. The phonon excitation targets a mode that is spatially

inhomogeneously distributed in the sample. The transient mode above Tc must also

be modeled as an effective medium mix of excited regions in an unperturbed bulk.

The below Tc response may therefore reflect a mix of regions where the plasmon

remains at its equilibrium position (or is slightly red-shifted) and excited regions in

which the plasmon blue-shifts.

The relaxation pathway of the transient plasmon above Tc further supports that

the transient plasmon is due to Josephson coupling across the interbilayer gap. In

Chapter 5, I discussed how the fluence dependences of the transient plasmon does

not support quasiparticle excitation as the origin of the mode. The relaxation path-

way provides further evidence against such a scenario. The transient plasma mode

relaxation is driven by a decrease in coherence, plotted in Figure 7.4 as the decay

of the coherence length d or, equivalently an increase in the effective scattering rate

Γ of Equation 3.2. As discussed in Chapter 4, a plasmon produced by quasipar-

ticle excitation instead relaxes through a depletion of the carrier density ∝ ω2
p, at

constant scattering [118, 119] or with a decrease in the scattering rate [120, 121].

Furthermore, a splitting of the plasmon is a strong indication of decoherence

driven relaxation. A spatially varying plasma resonance frequency, for example

due to inhomogeneity in the sample, would simply result in a broadening of the

plasmon [82], but the appearance of two distinct modes suggests the development

of two inequivalent interbilayer gaps. This may be related to the generation of

(zero field) vortices, in a manner similar to the thermal vortex regime that forms

an extended dome above Tc in the equilibrium phase diagram of cuprates [81, 147,

150, 175].

In YBCO, an applied magnetic field along the CuO2 planes has been shown to

cause a splitting of the interbilayer plasmon due to the generation of vortices [83,

176, 177]. The spatial distribution of the phase variation determines the degree and

shape of the splitting [178]. Figure 7.10. shows the interbilayer Josephson plasmon

of YBCO 6.75 split by a field of 8 T applied along the ab-plane. A transverse mode

is generated between the split frequencies of the longitudinal modes, as seen by the

peak in σ1(ω). The split plasmon is fit with a model developed by Koshelev [177]

(purple) that accounts explicitly for the phase inhomogeneity due to the applied

field. In certain limits, the form of this expression is very similar to the van der

141



Marel and Tsvetkov expression (Equation 3.5), as illustrated by the dashed black

line fit.

The position of the second plasmon near the equilibrium Josephson plasma fre-

quency suggests another possible explanation for the split plasmon. Perhaps as the

system relaxes, the energetic landscape favors the equilibrium Josephson plasma

mode, resulting in a short-lived bi-stability point with the blue-shifted transient

mode.6

Figure 7.10: Plasmon splitting due to condensate phase inhomogeneity.
Splitting of the Josephson plasmon of YBCO 6.75 at 8 K in the presence of an 8 T
applied field along the a-axis. The upper panel shows the loss function. The peak
due to the Josephson plasmon is split into two major peaks at 38 and 70 cm−1.
The lower panel shows the Ohmic conductivity, which peaks at the transverse
plasma mode at 55 cm−1. (Additional higher frequency features in both responses
are also present in the absence of a field.) The data (grey) is fit with a model from
Koshelev [178] (purple) that accounts for the inhomogeneous phase of the
superconducting order parameter. A fit using the van der Marel and Tsvetkov
model (Equation 3.5) is also shown (black dashed line). Data and Koshelev fit
from [177].

6The presence of a second mode in the YBCO 6.3 system would suggest the former scenario;
however further conclusions await analysis of this data with the equilibrium response of the same
doping.
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Chapter 8

Point contact spectroscopy
investigation of the iron-based

high-temperature superconductors

8.1 Introduction

This chapter represents a departure from the subject area of the rest of this manu-

script. In some sense, I am completing my thesis by returning to the beginning, to

present work I began at the start of my graduate school career. I joined the super-

conductor research community at an exciting time, in mid-2009 when the iron-based

high-temperature superconductors were first blazing onto the community’s collec-

tive radar. As a result, my perspective is shaped by the unusual background of

having first explored unconventional superconductivity by studying the iron pnic-

tides, before learning about cuprates.

There are many striking parallels between these classes of materials. Both have as

their foundation an antiferromagnetic parent state, and play host to spatial charge

(nematic) ordering and structural transitions that support the electronic order. It is

believed that antiferromagnetic spin fluctuations serve an important role in pairing

in both classes of superconductors [179–181]. The iron-pnictogen, Fe-Pn, (or iron-

chalcogenide, Fe-Ch) tetrahedron appears to be critical to these fluctuations, with

the electronic state proving highly sensitive to distortion or doping of this layer [182].

Unlike the cuprates, the presence of multiple Fermi sheets and multiple gaps with

s±-wave order parameter symmetry is believed to be important to superconductivity

in the iron-based compounds [179, 183, 184]. To this end, point contact spectroscopy

(PCS) and scanning tunneling microscopy (STM) studies have focused on detecting

evidence of multiple gaps and elucidating the order parameter (OP) [185–189]. PCS

has proven an excellent tool for both detecting OP symmetry and probing multiband

behavior in the superconducting state [190, 191]. Point contact measurements of
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MgB2, for example, played an important role exposing its multi-gap behavior and

order parameter coupling strength [191–195].

I will begin with a brief introduction to iron-based superconductors, describing

the multi-gap behavior that makes them unique. Then I will present an introduction

to point contact spectroscopy. This technique has historically been used to study

bosonic excitations (e.g. phonons, magnons) and superconducting gap behavior via

Andreev reflection, but as I will show, PCS is sensitive to a wide range of correlated

electron behavior. Discovering the range of order that point contact spectroscopy

can detect is still an active area of research. Finally, I will present some PCS results

on the Sr(Fe1−xCox)2As2 system, which is part of the “122” family of compounds.

8.2 Iron-based superconductors

The discovery of the first pnictide superconductor, LaOFeAs with a Tc of 26 K,

was announced in early 2008 [196], and soon sprouted a firestorm of activity. The

Bardeen-Cooper-Schrieffer (BCS) electron-phonon mechanism was found to be an

unlikely candidate for pairing, with electron-phonon coupling about 5 times too

small to account for measured Tc values [197]. Experimental techniques that had

been honed the previous 20 years to understand the cuprate superconductors were

quickly turned to this new class of high-temperature superconductors.

Certain parallels with cuprate superconductivity were found. As with cuprate

materials, superconductivity in the Fe-based compounds resides near an antifer-

romagnetic phase, with electron or hole doping giving rise to a superconducting

dome in the temperature vs. doping phase diagram. The Neel transition is sta-

bilized by a structural transition from tetragonal to orthorhombic or monoclinic

symmetry [180, 198, 199]. A nematic regime, associated with electronic, spin, and

orbital anisotropy but not linked to the underlying structural phase, has been found

to extend far above Tc in underdoped materials [200–202]. Whether or not the

pnictides host a pseudogap phase like that found in cuprates remains an open ques-

tion [203, 204].

To date, six families of pnictide crystal structures have been identified, each given

an abbreviated name representing the number of each type of atom they contain;

e.g. LaOFeAs belongs to the 1111 family, and SrFe2As2 belongs to the 122 family.

The highest Tc realized so far is 57 K, in the 1111 family [205]. The crystal structures

for the four most well-studied families are shown in Figure 8.1.
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Figure 8.1: Lattice structure of four pnictide families. The FeAs layers are
highlighted in beige. Iron atoms are in red, pnictide and chalcogenide atoms in are
in yellow. Figure modified from Ref. [206].

They have in common the FePn tetrahedron structure, containing an Fe atom

surrounded by four pnictide (generally As) atoms. The 11 chalcogenides have a

similar tetrahedral FeCh structure with Ch =Te, Se, S. (The 122 crystal structure

is shown in Figure 8.9 with the tetrahedron structure highlighted.) As in the case

of the cuprate octehedra (the CuO2 planes and neighboring apical oxygen(s)), the

superconducting transition temperature is found to be closely linked to the relative

positions of atoms within the tetrahedra [25, 207, 208].

The pairing mechanism is thought to deviate from simple s-wave symmetry [179],

with a form of s-wave pairing in which the order parameter phase takes on a different

sign depending on the Fermi sheet hosting the pairs. Up to five bands cross the

Fermi surface, corresponding to the five 3d orbitals of the Fe atoms. In momentum

space, the two electron-like orbitals form quasi-cylindrical sheets around the M -

point. The three hole-like Fermi surfaces form cylinders around the Γ point. The

leading proposal [179, 209–211] for the pairing mechanism involves antiferromagnetic

spin fluctuation-mediated hopping of pairs between hole-like and electron-like Fermi
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surfaces. The exchange interaction itself is repulsive, but the phase reversal of the

superconducting order parameter creates a net attractive interaction, acting as the

pairing “glue”. Nesting of the Fermi surfaces may enhance this exchange, but the

absence of nesting in some superconducting compounds suggests this cannot be the

whole story [212]. The pnictides may sit at the precipice of a transition to a Mott or

charge-transfer insulator, with local moments as well as itinerant electrons shaping

the magnetic behavior [212–214].

8.3 Point contact spectroscopy

Point contact spectroscopy (PCS) is an electronic probe that measures transport

between materials connected by a microconstriction. This technique has been shown

to be a good probe of bosonic excitations, and in superconductors PCS is sensitive

to the superconducting order parameter via Andreev reflection. More recently, we

have shown PCS to be sensitive to the density of states arising from correlated

electron states. The technique was a serendipitous discovery. I. K. Yanson was

studying the phonon spectrum of Pb by measuring the differential conductance of

planar tunnel junctions and found that even after superconductivity in the Pb had

been completely suppressed by an applied field, he could still measure nonlinearities

in the tunneling current that corresponded to the Pb phonon spectrum [215]. A

planar tunnel junction should only show spectral content in the superconducting

state, because without the phonon coupling to the condensate, spectral information

is not preserved crossing the tunnel barrier.

The source of the phonon spectral features turned out to be micro-shorts through

the tunnel barrier. Point contact spectroscopy utilizes small microconstrictions,

smaller than the elastic mean free path of the carriers, to measure spectroscopic

information about materials [216] and has been used to measure phonon spectra of

an array of metals [217].

As I will show in this section, the current across a microconstriction is also sen-

sitive to spectroscopic information whenever there are correlated electron effects in

the material of study. Understanding how the PCS conductivity relates to these cor-

relations is an area of active research. Until recently, point contact spectroscopy has

been primarily utilized to probe superconducting order parameter symmetry because

this was one of the few applications for which excellent theoretical models [5, 218]

exist to interpret conductance spectra. In recent years, a concert of theoretical de-
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velopments [214, 219–222] and experimental effort [223–227] have shown PCS to be

sensitive to a variety of orders in correlated systems.

8.3.1 Point contact junction configurations

The key element of a point contact junction is that the probing current passes

through a microconstriction which has a contact radius a on the order of the elastic

mean free path `el or smaller. The junction can be characterized by the Knudsen

ratio, K = `el/a. The Wexler formula [228] for the resistance at a point contact

junction is

R0 =
ρ

2a

[
8K

3π
+ γ(K)

]
, (8.1)

where ρ is the sample resistivity and the function γ(K) was determined by a Green’s

function analysis of the point contact geometry.

In the Sharvin, or ballistic, limit the elastic mean free path is larger than the

contact size, K >> 1, and γ(K) → 0.694. The Wexler formular reduces to R0 ≈
4ρ`el/3πa

2. In this regime, carriers do not scatter in the microconstriction volume

and can be accelerated by the bias energy eVB as they traverse the junction, where

VB is the bias voltage across the junction.

In the Maxwell, or thermal, regime the contact size is larger than the inelastic

scattering length `in, and inelastic scattering events occur in the junction area.

The injected carriers may therefore cross the microconstriction at a different final

energy difference than the applied eVB bias. In this case K → 0 and γ(K) → 1,

reducing Wexler’s formula to the equation for bulk resistance, R0 = ρ/2a. One test

for a clean contact in the Sharvin limit is that the temperature dependence of the

zero bias resistance (dI(0)/dV )−1 of the junction is distinct from that of the bulk

resistivity ρ(T ).

Between these two extremes is the so-called “diffusive” limit, where the contact

size lies somewhere between the elastic and inelastic mean free path lengths, `el <

a <
√
`el`in. In this regime, elastic scattering can occur in the junction volume,

however, some spectral information may be obtained.

Point contact junctions can be made in several ways. A point contact junction

can be patterned with nano-lithography. This method allows for systematic control

of the contact size and system geometry, but its application is limited to clean films

that make good candidates for lithography. The real advantage to point contact

spectroscopy is that it can be applied to a wide variety of systems and requires
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minimal sample preparation. The technique is less sensitive to surface quality than

scanning tunneling spectroscopy. One more robust method is a break junction,

which consist of using strain to physically break a material. Pressure applied to the

broken sample is used to put the pieces into physical contact. The junction itself

consists of many nanoscale contacts in parallel.

For a more controlled junction interface, the needle-anvil technique is both robust

and reproducible. It is the most popular PCS technique. A needle anvil junction is

made by bringing a sharp probe tip into contact with the material of interest. The

tip is often made of a highly conducting metal, such as gold. The Au tips made in

the Greene group’s lab [229], such as that shown in Figure 8.2, are curled at the tip

in order to give them a bit of spring in their response to applied pressure. In this

way, even with thermal contraction and expansion effects, a stable contact can be

maintained.

The tip material may be chosen to tune the junction response. For example, fer-

romagnetic tips are employed to produce spin-polarized currents. Superconductors

also make excellent tip materials for studying superconducting gap energies since

the Andreev features produced by superconductor-superconductor junction appear

sharper in conductance spectra than normal metal-superconductor junctions.

Figure 8.2: Photos of Nb and Au tips for needle-anvil PCS. Left: A
Niobium tip made by electro-chemical etching in HF acid. Right: A gold tip
made by electro-chemical etching in HCl acid. The long, soft tip is pre-bent into a
curl (not shown) to give it a spring-like behavior that helps the tip maintain
mechanical contact with a sample even under thermal contraction and expansion.
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Even with tips designed to withstand some thermal effects, maintaining stable

contact between a tip and sample becomes difficult at temperatures above the liquid

nitrogen regime. “Soft” point contact junctions are more robust. Fellow graduate

student Hamood Arham and I developed a technique to produce soft point contacts

on pnictides by thermally evaporating a thin insulating AlOx layer onto the sample

under study, and then using Ag paint to affix µm-scale wire to the surface. Using

a current source to “frit” across the junction produced multiple nanoscale bridges

through the AlOx layer [191, 230]. Illustrations of a needle-anvil junction and the

soft point contact junction geometry are shown in Figure 8.3. Soft PCS junctions

have proven far more mechanically stable than needle anvil junctions [225], though

at the sacrifice of sometimes having larger effective junction sizes.

Figure 8.3: Needle anvil and soft point-contact configurations. (A) Needle
anvil and soft point contact configurations. (B) Each contact represents many
parallel nanoscale junctions between probe and sample.

The junction size is influenced by the size of the contact, and in the case of needle

anvil configuration the applied pressure as well. However, the effective junction size

is not the total area in contact. The needle, on a nanoscopic level, actually forms

many parallel junctions with the sample. The same is true in the soft point contact

geometry, where many parallel shorts determine the total dI/dV characteristic. This

is illustrated in Figure 8.3.B.
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8.3.2 Andreev reflection

Andreev reflection [231] dominates the point contact conductivity of a metal-super-

conductor (M-SC) or SC-SC interface at bias energies below the superconducting

gap. In this section I will introduce the Andreev process, and in Section 8.3.3 I show

how it can be used to extract the density of states and order parameter symmetry

of a superconductor.

Material mismatch at an interface breaks translational symmetry and acts as

a potential barrier for electrons to scatter from. At the junction interface in the

Sharvin limit, electrons may either be reflected or transmit into the material with

an energy eVB with respect to the chemical potential. In a superconductor, a single

electron cannot be transmitted below the gap energy, eVB < ∆.

Although the single particle density of states of a superconductor is gapped at

low energy, electrons can still cross the point contact junction and enter into the

condensate via Andreev reflection. In the Andreev reflection process, an electron

picks up a second electron and forms a Cooper pair. To preserve particle number,

the second electron is retro-reflected as a hole, with a spin and wavevector opposite

to the incident electron (for s-wave pairing). The Andreev reflection process is

illustrated in Figure 8.4, along with a cartoon of normal quasiparticle reflection for

comparison.

Figure 8.4: Normal reflection and Andreev reflection at a superconductor
interface.
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8.3.3 Modeling a point contact junction with a

superconductor

In this section I will consider a one-dimensional point contact junction in which

only the transport normal to the junction interface, kz, is of interest. While this

captures the essential physics, in practice, the PCS tunneling current is sensitive to

some in-plane scattering ~k‖.

Harrison [232] worked out the general case of the tunneling current of independent

quasiparticles.

Jab =
4πe

~

∫ ∞
−∞
|Mab|2 ρaρb(fa − fb)dE, (8.2)

where ρa is the density of states of material a and fa is the probability of state a being

occupied (generally, the Fermi function). The matrix element Mab is proportional

to the Fermi velocity of each material,

Mab ∝
(m
~2

)2
(
∂E

∂kz

)
a

(
∂E

∂kz

)
b

. (8.3)

But the Fermi velocity is inversely proportional to the density of states for indepen-

dent quasiparticles,

ρa ∝
(
∂E

∂kz

)−1

a

. (8.4)

Thus the final tunneling current contains no density of states information.

A point contact junction with a superconducting material retains spectroscopic

information about the superconducting gap due to the many body interactions of the

electrons, which condense into a paired state. The point contact conductance of a

normal metal-superconductor interface is well described with the Blonder-Tinkham-

Klapwijk (BTK) model [5]. The BTK model is a one-dimensional approximation of

an N-S junction, where the interface is treated as a delta function potential barrier.

The original formulation was developed for s-wave symmetry. Starting with the

Bogoliubov equations,

i~
∂f

∂t
=

(
− ~2

2m
∇2 − µ(z)− V (z)

)
f(z, t) + ∆(z)g(z, t),

i~
∂g

∂t
= −

(
− ~2

2m
∇2 − µ(z)− V (z)

)
g(z, t) + ∆(z)f(z, t),

(8.5)
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the model assumes the chemical potential, µ, and the superconducting gap, ∆, to

be constant. The only potential is at the N-S barrier, V (z) = Hδ(z). The barrier

strength is defined as the unitless parameter Z = H/hvF . A low Z corresponds to a

highly transparent, Andreev-dominated junction and a high Z corresponds to a low

transparency tunneling junction. By tuning this single parameter, therefore, this

model can be applied to both tunneling and point contact spectroscopy geometries.

Assuming a plane wave description of the charge carriers, the incident wavefunc-

tion for an electron is,

ψinc =

(
1

0

)
eiq

+z. (8.6)

We’ve adopted the notation ψ =
(
f(z,t)
g(z,t)

)
. Two reflection processes and two transmis-

sion processes may occur at the N-S interface. The first is Andreev reflection, which

we denote as having probability A = a∗a. The second is regular reflection, with

probability B = b∗b. The electron can be transmitted without crossing the Fermi

surface with probability C = c∗cNS(E), where NS(E) denotes the superconducting

density of states. It can also transmit by crossing the Fermi surface with probability

D = d∗dNS(E). See Figure 8.5 to visualize the four processes.

The reflection and transmission wavefunctions are,

ψref = a

(
0

1

)
eiq
−z + b

(
1

0

)
e−iq

+z,

ψtrans = c

(
u0

v0

)
eik

+z + d

(
v0

u0

)
e−ik

−z, (8.7)

where u2
0 = 1 − v2

0 = 0.5(1 +
√
E2 −∆2/E). Solving Equations 8.5 yields the

probability amplitudes a, b, c, and d, which can be used to calculate the current

across the junction. If we define the distribution of quasiparticles moving in each

direction as f→(E, V ) and f←(E, V ), then the total current density across a junction

with bias voltage V is,

J(V ) = 2N(0)vF e

∫ ∞
∞

(f→(E, V )− f←(E, V )) dE, (8.8)

where N(0) is the one-spin density of states at the Fermi level and vF is the Fermi

velocity at the interface. The quasiparticle distributions can be defined in terms of
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Figure 8.5: One-dimensional model of a point contact junction. Top: The
point contact interface is modeled as a delta function potential. Bottom: A
simplified energy vs. momentum diagram of a normal metal (N) and
superconductor (S). The momenta of incident (I) carriers and normally reflected
(B) and Andreev reflected (A) carriers are illustrated on the normal metal side.
The two transmission processes, without band crossing (C) and with band crossing
(D) are illustrated on the superconductor side.

the reflection and transmission probabilities,

f→(E, V ) = f0(E − eV ),

f←(E, V ) = A(E)(1− f→(E, V )) +B(E)f→(E, V )+

(C(E) +D(E)) f0(E),

(8.9)

where f0(E) is the Fermi distribution. Equation 8.8 can be simplified to,

J(V ) = 2N(0)vF e

∫ ∞
−∞

(f0(E − eV )− f0(E)) (1 + A(E)−B(E)) dE. (8.10)

Figure 8.6 shows the BTK model applied in the low Z (Andreev) and high Z (tun-

neling) limit. Figure 8.6.A plots a normalized point contact conductance spectrum

G(V )/G0 measured with a superconducting Nb tip on an Au substrate. G0 is the

normal state conductivity of Nb. Below the superconducting gap, transport across

the point contact junction is enhanced due to Andreev reflection. The maximum en-

hancement is G(V )/G0 = 2, corresponding to a perfectly transparent barrier Z → 0.
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In this limit, for every injected electron, two electrons cross the microconstriction

and enter the condensate as a Cooper pair.

Figure 8.6.B plots the tunneling spectrum from a Pb-AlOx-Al planar tunnel junc-

tion at 4.3 K, where the Al is normal metallic and the Pb is superconducting. The

drop in conductance is due to the Pb superconducting gap, with spectral weight

pushed to the gap edge as seen by an enhanced G(V )/G0 > 1 around the gap en-

ergy. Andreev reflection is suppressed by the AlOx tunnel barrier. Above the gap

edge, additional features in the conductance are the result of phonons. Both spectra

have been fit with the BTK formula, Equation 8.10 (red lines).

Figure 8.6: A comparison of the Andreev and tunneling limits. Left:
Spectra produced by a Nb point contact tip in mechanical contact with an Au film
in the needle anvil configuration. Right: Spectra produced by a planar
Pb-AlOx-Al tunnel junction. Red lines in both figures are fits using the s-wave
BTK model described in the text.

Given the simplicity of the BTK model, it has been remarkably accurate at

describing s-wave N-S junctions. Since its publication in 1982, the BTK model

has been successfully extended to describe quasiparticle lifetime effects [233] and

other OP symmetries including d-wave [218, 234], p-wave [235], and anisotropic s-

wave [236]. The discovery of the iron-based compounds has generated new interest

on the role of multiple bands and several attempt to extend the BTK picture to s±-

and s++-wave symmetries have emerged [6, 7].
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8.3.4 Multiband models of superconductivity

In practice, it is sufficient for most systems to restrict the multiband description to

two bands. In MgB2, although four bands participate in the superconducting state,

they can be divided into quasi-2D σ bands and 3D π bands, reducing the problem

to effectively two bands [237]. Likewise in the pnictides, the hole-like bands all have

a similar gap energy, as do the electron-like bands.

Proposed multiband models incorporate interference effects between the bands in

different ways. The simplest multiband description is to treat the bands as indepen-

dent, each described by the BTK model (Equation 8.10), and the net conductance

as a weighted sum between bands 1 and 2,

dI

dV
= w1

dI1

dV
+ (1− w1)

dI2

dV
. (8.11)

In the model by Golubov, et al. [6], the modified BTK transmission wavefunction

looks like,

ψtrans = c

{
Φk+1

(z)

(
u1

v1e−iφ1

)
+ αΦk+2

(z)

(
u2

v2e−iφ2

)}
+d

{
Φ−k−1 (z)

(
v1

u1e−iφ1

)
+ αΦ−k−2 (z)

(
v2

u2e−iφ2

)}
. (8.12)

where Bloch waves, Φq(z) =
∑

GAG,qexp{i(q+G)z}, have replaced the plane waves

of the BTK model. The parameter α governs the strength of the interference between

the bands. The phase difference ∆φ = φ2 − φ1 differentiates between s±-wave

(∆φ = π) or s++-wave (∆φ = 0).

As a test of the model, I applied it to the case of MgB2. The results are plotted

in Figure 8.7. To agree with experiment, I needed to introduce an interface velocity

mismatch for each band. The interface velocity is defined as,

vk = − i

m

1

Φk

dΦk(z)

dz

∣∣∣∣
z=0

. (8.13)

The mismatch falls between v2/v1 = 4.0 in the Andreev limit and v2/v1 = 6.4 in

the tunneling limit. These values fall in line with calculations of the Fermi velocity

mismatch between the π and σ bands [238]. The calculated Fermi velocity ratio was

found to be vπ/vσ = 1.22 in the ab-plane and vπ/vσ = 8.65 along the c-axis. Since

PCS has a wide momentum resolution, the values we measure should fall somewhere
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between these limits, though closer to the c-axis ratio as the point contact junction

approaches the tunneling limit. Indeed this is what we find.

Figure 8.7: Two band models applied to MgB2. Three c-axis oriented thin
films of MgB2 measured with an Au tip via needle-anvil PCS. In the Andreev
limit, both the interfering band model proposed by Golubov, et al. [6] and the
independent BTK band model accurately reproduce the measured spectra. As we
move into the tunneling regime, the interfering band model begins to deviate from
the independent band model at low bias. The lower-most spectra was taken on a
film with a hard surface oxide layer, allowing a planar tunneling measurement
using PCS techniques. The interfering band model predicts a steeper gap edge
than what we find experimentally.

The interfering band model appears deficient in the tunneling limit, however. The

model yields a steeper gap edge than what we find experimentally, as can be seen

in Figure 8.7. The red line indicates the interfering band model fit. Compare this

with a fit to two independent BTK bands (blue line), calculated with Equation 8.11.

The fundamental problem with the Golubov, et al. picture is that the interference

between the bands cannot be tuned; turning down the interference (reducing α)

turns off the second band as well. In the weak coupling limit, such as with MgB2,

we expect minimal interference. However for the iron-based superconductors, where

coupling between bands is believed to be strong, the model may find a more appro-

priate home.

Another promising modified BTK model, developed by Sperstad, et al. [7], treats

the particle and hole components of each band as a separate channel, and the Hamil-

tonian becomes a 4x4 tensor. The coupling is controlled by a tunable hopping pa-
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rameter. When this parameter goes to zero, the model reduces to the independent

band model (Equation 8.11).

8.3.5 Beyond superconductivity: a probe of correlated

states

Although point contact spectroscopy was first utilized as a probe of phonon spectra,

it found its home as a probe of superconductivity. PCS has become almost synony-

mous with the Andreev process, often referred to in the literature as PCARS (point

contact Andreev reflection spectroscopy). However, in the past few years, the scope

of correlated systems that have shown sensitivity to point contact techniques has

proven that PCS is a general probe of correlated effects.

The heavy fermion material URu2Si2 is known to have a second order phase

transition at 17.5 K, however the nature of that transition remains unclear [239, 240].

This so-called hidden order transition was proposed to be linked to the opening of a

hybridization gap [222, 241], which neutron scattering [242] and scanning tunneling

spectroscopy [243] indicated appeared near 17.5 K.

W. K. Park et al. [223] used point contact spectroscopy to show that the hy-

bridization gap in URu2Si2 was not related to the hidden order transition in this

material, setting in almost 20 K higher in temperature [226]. They also found that

the spectral response was sensitive to the underlying Kondo lattice, producing a

Fano lineshape in the conductance response [244]. Some trends in the spectra did

appear to change when crossing 17.5 K, showing that PCS is at least indirectly

sensitive to the hidden order as well.

Point contact spectroscopy has also been shown to be sensitive to orbital fluc-

tuations. In a broad study of iron-based materials, H. Arham and collaborators

found that enhanced conductance features could be tied to orbital fluctuations and

the onset of electronic nematic order [225, 245]. We looked at the AFe2As2 system

with A = Ca,Sr,Ba, the 111 compound NaFeAs, and the chalcogenide Fe1+yTe. The

Ba-122 system was investigated with both hole doping with K on the Ba sites and

electron doping with Co on the Fe sites.

The enhanced zero bias conductance (ZBC) sets in at a temperature Tonset above

the structural transition TS in those compounds that exhibit electronic nematicity,

as measured by other methods such as in-plane resistive anisotropy [225]. Using a

five-orbital tight-binding model, Lee et al. [214] showed an enhanced point contact

conductance would be a consequence of orbital fluctuations above TS. An enhanced
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ZBC was found in Co-doped (electron-doped) BaFe2As2, SrFe2As2, and NaFeAs;

P-doped (isovalent-doped) BaFe2As2; and Fe1+yTe. The doping trend for Co-doped

Ba-122 is shown in Figure 8.8. The temperature scale of Tonset tracks the orbital

ordering temperature measured for Ba(Fe1−xCox)2As2 with angle resolved photoe-

mission spectroscopy (ARPES) [246].

In CaFe2As2 and K-doped (hole-doped) BaFe2As2, on the other hand, the en-

hanced ZBC conductance is suppressed. The compound CaFe2As2 shows no evidence

of nematic order while K-doped BaFe2As2 shows some evidence of a fluctuating ne-

matic regime [247], smaller than that of electron-doped compounds.

Figure 8.8: Phase diagram of Ba(Fe1−xCox)2As2. The temperature scale Tonset
represents the onset of orbital fluctuations. Figure from Ref. [225].

Interestingly, the dI/dV conductance curves show the formation of a finite bias

peak and ZBC dip structure at lower temperatures. This may be related to a simple

competition between scattering processes [245]. However, the energy scale seems

to correspond to the spin density wave gap [188], suggesting the possibility that

the drop in conductance may be related to this gapping. PCS has been shown

to be sensitive to SDW order in chromium [248] and, recently, the CDW gap in

Nb3Sn [249].
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8.4 Point contact spectra of Sr(Fe1−xCox)2As2

8.4.1 Samples

Sr(Fe1−xCox)2As2 is a 122 compound doped with Co atoms. The 122 crystal struc-

ture is shown in Figure 8.9, with the FeAs tetrahedron highlighted. Single crystals

of Co-doped SrFe2As2 were prepared using flux-growth techniques with Sn flux and

elemental Sr, Fe, and As with purities greater than 99.99%, as described in [250].

Substituting Co atoms at the Fe sites acts as an electron dopant. At x = 0.125, we

are near optimal doping, far from the antiferromagnetic and nematic regimes. The

superconducting transition temperature for this compound is Tc = 14.5 K.

Figure 8.9: Crystal structure of AFe2As2 (A = Sr,Ba,Ca). The typical unit
cell is shown at left, with green circles representing the the A sites, Fe atoms in
blue, and As in orange. Co dopes the Fe sites. The FeAs2 tetrahedron is
illustrated at right.

8.4.2 Features of the point contact spectrum

The sensitivity of c-axis spectra to each gap varies contact-to-contact, with the bal-

ance sometimes favoring just one gap energy. These are probably the hole-like bands,

which exhibit more three-dimensional character than the electron-like bands [251].

Figure 8.10.A plots a characteristic spectrum measured along the c-axis at sev-
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eral temperatures up to 16 K, above the superconducting transition temperature

Tc = 14.5 K. This spectrum shows evidence of only one gap, with higher frequency

features between 10 and 30 mV due to phonons (see Section 8.4.4).

The spectra were fit with the single band BTK model (blue lines in Figure 8.10.A).

Three fit parameters were employed; the barrier energy Z and the gap energy ∆

are described in Section 8.3.3. The Γ term takes into account quasiparticle lifetime

effects [233] by mapping the energy E in Equation 8.11 to E → E − iΓ.

The superconducting gap (blue dots in Figure 8.10.C) is well-fit by an approximate

form of the BCS mean field gap function in the strong coupling regime (dashed line),

∆ = ∆0 tanh
(
β
√
Tc/T − 1

)
. (8.14)

For a BCS superconductor, β = 1.74 and 2∆0/kBT ≈ 3.53 [252]. The BCS case

is plotted in Figure 8.10.C by a thick grey line. For Sr-122, we find β = 1.27 and

2∆0/kBTc ≈ 6.5. The large value for 2∆0/kBTc puts this superconductor firmly in

the strong coupling regime.

The apparent shift in the phonon spectrum with the gap energy may be tied

to the changing value of Z, which becomes more transparent as T → Tc. In the

transparent limit, Z → 0, the phonon features are shifted from the phonon frequency

ωph to an energy Eph = ~ωph − ∆ [253]. The energy of one of these features, at

Eph(0) = 24 meV, is plotted with green squares in Figure 8.10.C.

A similar spectral feature, seen in optimally doped Ba(Fe1−xCox)2As2, has been

attributed by Tortello et al. [254] as due to spin-resonance excitations. A spin

excitation feature has been reported in inelastic neutron scattering measurements

at ~ωsp = (1.58± 0.3)∆ ≈ 9 meV which tracks ∆(T ) [204]. Evidence for this mode

has also been seen in specific heat measurements [255]. However, the feature at

20 meV in Ref. [254] is too high in frequency to be directly related to this mode1.

And the shift in energy is observed for all modes above the gap. I will show in

Section 8.4.4, the 20 meV mode can be attributed to the A1g phonon excitation of

the As atoms.

Near Tc where the gapping is small, and extending several Kelvin above Tc, the

phonon spectrum continues to show some small temperature dependent shift. This

is plotted for the Eph(0) = 24 meV feature in Figure 8.10.C. A zero bias peak also

1In Ref. [254], they claim the actual mode frequency is at ~ωsp(T ) = Esp(T ) −∆(0), however
this does not seem to be justified in the Z → 0 range. And, at any rate, the shift should track
∆(T ) at all temperatures and not just ∆(0).

160



Figure 8.10: Gap evolution of Sr-122. (A) The symmeterized spectrum of
12.5% Co-doped Sr-122 (black), normalized by the spectrum at T = X K. The
spectrum is fit to Equation 8.11 from Ref. [5] (blue). (B) The fit parameters Z
and Γ, as described in the text. (C) The superconducting gap (blue dots) as a
function of temperature, fit to the mean field Equation 8.14 (black dashed line).
The BCS behavior for a gap with Tc = 14.5 K is plotted for comparison (grey
line). The mean phonon frequency (green squares) is also fit to the same equation,
by enforcing Tc = 14.5 K (black dashed line) and by the best-fit transition
temperature, 16.5 K.

appears to persist above Tc, as seen in Figure 8.10.A. This is a continuous feature

above and below Tc and directly attributable to Andreev reflection. (The gap values

for the Andreev peak above Tc are not shown in Figure 8.10.C). A gap that shows a

“tail” extending above Tc can be accounted for by inhomogeneous doping, with the

point contact probing several regions, in parallel, with spatially varying Tc values.

Such a scenario is modeled in Figure 8.11.
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Figure 8.11: Average gap energy due to inhomogeneity of the gap
distribution. A weighted distribution of gaps centered at T/Tc = 1 (red line)
gives rise to a divergence from mean field behavior and a “tail” in the ∆ vs T
behavior (dashed line). The range of Tc values is illustrated with colored lines.

8.4.3 Detection of multiple gaps

For spectra that exhibit single gaps, the Andreev peaks are centered at 4 meV at

4.3 K and can be equally well-fit with a single band BTK model (Equation 8.10)

as with the s±-wave description by Golubov, et al. [6]. The slightly better fit of

the Golubov model at higher bias (∼10 mV) may well be a coincidence due to the

distortions caused by the higher energy phonon modes.

Spectra that exhibit multiple bands generally have features at 2 and 5 meV at

4.3 K. One of the clearest examples of two bands in the c-axis spectrum is shown

in Figure 8.132. The spectrum is fit with a two independent band s-wave BTK

model, in the form of Equation 8.11 (blue lines). The quality of this fit suggests

that efforts to distinguish s±-wave order from s++-wave will be challenging. Note

that the independent band model gives the same solution as the s±-wave model by

Sperstad, et al. [7] in the limit of no interference between the bands.

The temperature evolution of the two bands is fit with the strong-coupling mean

field form (Equation 8.14). We find gap energies of 2∆1(0)/kBTc = 3.5, at the BCS

value, and 2∆2(0)/kBTc = 11.3, well in the strong coupling regime. The shape

of the temperature evolution ∆(T ) also shows evidence of strong coupling. The

“flattening” of the temperature dependence compared with the BCS behavior (grey

line in Figure 8.13.C) is a signature of strong coupling [191]. The fit captures the

2The data does not extend past Tc because unfortunately the contact was lost during heating.
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Figure 8.12: Applying s-wave and s±-wave models. The point contact
spectrum of 12.5% Co-doped Sr-122 at 4.3 K (black line). The spectrum has been
symmeterized and normalized by the spectrum above Tc = 14.5 K. Two fits have
been employed to model the conductance. A single band s-wave model from
Ref. [5] (blue) and an s±-wave model from Ref. [6] (red).

flattening by the decrease in the parameter β from the BCS value of 1.74, down to

1.05 and 0.95 for ∆1(T ) and ∆2(T ), respectively.

Spectra measured in-plane generally show evidence of both gaps. An example

spectrum is shown in Figure 8.14. A histogram showing the gap energies of several

contacts, measured at 4.3 K, is shown in Figure 8.15. The gap values were estimated

by the position of the spectral peaks.

Fitting the gap energies is complicated by an additional spectral contribution

at ∼10 meV. The mode can be seen as a small peak in Figure 8.13.A (purple

arrow). However for most contacts, the ∼10 meV feature is detected with higher

spectral weight. In Figure 8.14 it appears as a broad shoulder on the Andreev peaks.

This feature, which is universally seen across in-plane contacts (see purple bars in

Figure 8.16), may well be related to the reported spin excitation mode [204, 255]3.

The energy of the mode follows the expected scaling, ~ωsp ≈ 1.58∆2 = 11 meV.

3The reproducibility of this 10 meV peak and the higher energy modes—junction-to-junction
and at different junction resistances—is a strong indication that the point contacts are in the
ballistic regime and detecting intrinsic spectroscopic features.
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Figure 8.13: Temperature evolution of two gaps. (A) Symmeterized spectra
(black lines) of 12.5% Co-doped Sr-122 at several temperatures up to near
Tc = 14.5 K. Data has been normalized to a functional form approximating the
normal state spectrum. Blue lines represent fits to Equation 8.11. (B) The raw
spectrum at several temperatures. The background bias can be ascribed to
electron-hole asymmetry. (C) The temperature evolution of the two gaps used in
the fits. The dashed lines are mean field fits in the strong coupling regime
(Equation 8.14). The grey line indicates the expected mean field behavior of a
BCS superconductor.

A similar feature with the same ~ωsp/∆ scaling has also been reported in the 111

family [256].
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Figure 8.14: Raw conductance spectra along the ab-plane. Left: Spectrum
over a broad energy range, showing the Andreev reflection peaks and
accompanying phonon modes at 4.3 K. Right: Raw spectrum at several
temperatures up to 20 K, above Tc = 14.5 K.

Figure 8.15: Histogram of gap energies of Sr(Fe0.875Co0.125)2As2.
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Figure 8.16: Reproducibility of ab-plane contacts. Spectra of three contacts
(black), with vertical bars highlighting low energy features. The smaller gap is in
pink and larger in blue. The two green lines indicate additional features at 9 meV
and 20 meV. The 20 meV feature can be identified as the A1g mode. The origin of
the 9 meV feature is less clear, though it may be tied to spin excitations (see
discussion in text).
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8.4.4 Phonon spectrum

The Eliashberg function, α2F (ω), describes the density of phonon modes F (ω),

weighted by the electron-phonon coupling of the modes α2. Point contact spectra

are sensitive to α2F (ω), where the second derivative of the conductivity d2I/dV 2 ∝
−α2

pcsF (ω). The term α2
pcs reflects that the electron-phonon coupling for a point

contact differs slightly from the Eliashberg term α2 [191]. The exact shape of the

spectrum depends on the transparency of the junction [191], but generally in the

small Z limit, the modes appear as peaks in −d2I/dV 2. In this section I will re-

port the excitation spectrum of Co-doped Sr-122. Certain mode excitations around

20 meV have been characterized as arising from magnetic excitations [254]. In fact,

the modes above 10 meV correspond exactly to the Raman phonon spectrum.

The tetragonal structure has a space group D17
4h-I4/mmm, with Raman active

modes along the c-axis of A1g and B1g symmetry and planar Eg symmetry modes [257].

These modes are depicted in Figure 8.17. Similar mode energies have been mea-

sured for BaFe2As2 and SrFe2As2. The Eg modes have resonances at 16 meV and

32 meV [258, 259]. The A1g mode has an energy of about 22 meV and the B1g mode

is centered around 25 meV [257, 259].

Figure 8.17: Raman-active phonon modes of 122 pnictides. Four lowest
frequency excitations of the Fe and As atoms. In the tetragonal phase, the Eg

modes are doubly degenerate along the a and b crystallographic axes.
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The quantity −d2I/dV 2, proportional to the phonon spectrum, is plotted in Fig-

ure 8.18 for spectra measured along the c-axis (top panel) and in-plane (bottom

panel). For each orientation, spectra from two contacts are shown (plotted in dif-

ferent colors). While the contact orientation determines which axis dominates the

response, the some spectral component is acquired along all directions. The c-

axis spectra show four distinct peaks, centered at approximately 13 meV, 21 meV,

25 meV, and 32 meV. These energies correspond directly to the four Raman modes.

In-plane, the phonons appear at similar frequencies, but the c-axis B1g mode is no-

tably absent. While this is not surprising in itself, it is interesting that the A1g

mode is detected while the B1g is not. The increased sensitivity to the A1g mode

compared to the B1g may be due to the stronger electron-phonon coupling of the

A1g mode [19], which is enhanced further upon Co-doping in Ba-122 [259].

As mentioned in Section 8.4.2, phonon modes detected by a point contact junction

with a superconductor can appear at energies shifted with respect to their central

frequency ωph, with a shift depending on the barrier Z across the junction [253].

In the tunneling regime, Z → ∞, the phonon features shift to Eph = ~ωph + ∆

while in the point contact limit Z → 0, Eph = ~ωph − ∆. At low temperatures,

we calculate intermediate Z values ∼0.35-0.4. In this regime, the phonon spectrum

should appear near its true frequency values [260]. Indeed we find that the phonon

frequencies are at most 1-2 meV below the Raman-measured values.

The phonon spectrum measured by inelastic neutron scattering [258] is shown

in the top panel of Figure 8.19 for the parent compound SrFe2As2 at 180 K. This

is in the orthorhombic phase, however, the spectrum does not change significantly

through the transition from tetragonal symmetry [257], and is indeed nearly tem-

perature independent between 2 K and 300 K [258]. The bottom panel shows two ab

initio calculations of the phonon spectrum, as described in Ref. [258]. The spectra

measured by point contact agree remarkably well with the neutron scattering results

and the calculated spectrum.

168



Figure 8.18: Phonon spectrum measured along the c-axis and in-plane.
Spectra of Sr(Fe0.875Co0.125)2As2, all measured at T ≤ 4.3 K (Tc = 14.5 K).
Spectrum has been smoothed for clarity.

Figure 8.19: SrFe2As2 phonon spectrum measured by neutron scattering.
Top: Inelastic neutron scattering measurement of the phonon spectrum of
SrFe2As2. Bottom: Ab initio calculations of the spectrum. The non-magnetic
measurement neglects the role of spin polarization, which shifts the modes above
20 meV. Figure from Ref. [258].
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8.4.5 Quality of point contact junctions

Finally, I will end with a note on junction quality. Several thorough reviews have

been written addressing how to characterize whether a junction is in the Sharvin

limit [191, 225] and the topic is discussed in some detail in Naidyuk and Yanson’s

Point Contact Spectroscopy [216].

This issue is especially relevant for the Fe-based high temperature superconduc-

tors, which exhibit a very short elastic mean free path, on order 10 nm [261]. For

these materials, a contact in the intermediate diffusive regime, approaching the

thermal limit, has a few immediately identifying characteristics. First, the Andreev

response does not clearly show peaks at the lower gap energy. These gaps have

energies on the BCS scale, 2∆/kbTc ≈ 3.5 and are generally smeared out. Contacts

may show some features characteristic of the higher gap energy, but the Andreev

enhancement tends to be low. Even ballistic contacts tend to show enhancements of

only 10-20% 4. In the thermal regime, they may be only on order 1%. The Andreev

peaks are accompanied by broad shoulders, with frequencies related to the phonon

spectrum but which appear almost as a second set of Andreev peaks. In fact, they

have been interpreted as such in literature [186].

A few examples of “clean”, ballistic limit contacts and some that are more diffusive-

to-thermal regime contacts are plotted in Figure 8.20. The superconducting gap

values are highlighted as vertical bars.

4The 11 chalcogenides are a noted exception to this. We have reported anomalous enhancements
of greater than 100% [262].
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Figure 8.20: Reproducibility of c-axis contacts. Left: Contacts in or near the
ballistic limit. Each contact shows clear features at both gap energies. Higher
frequency phonon modes are also clearly distinguishable. Right: Contacts in or
near the thermal regime. These contacts show little or no Andreev enhancement of
the low frequency gap. They exhibit a broad shoulder, extending out to 20 meV or
higher in frequency.
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Chapter 9

Concluding remarks

9.1 Using selective light excitation to modify

and enhance superconductivity

In this thesis I have explored two distinct scenarios in which selective light excitation

of a cuprate can be used to transition from a non-superconducting ground state to a

high mobility state that bears a striking resemblance to superconductivity. For both

cases, La1.8−xEu0.2SrxCuO4 and YBa2Cu3Ox, the light-induced state is characterized

by the appearance of a plasma mode at a frequency similar to the Josephson plasma

frequency. This is a frequency regime which features no other equilibrium collective

mode in any of the compounds considered.

While the fundamental observation is similar, each experiment is quite differ-

ent in detail (see the discussion sections of Chapters 4, 5, and 7). In the case of

La1.8−xEu0.2SrxCuO4, the excitation is chosen to target a competing order and thus

indirectly supports the superconducting state. In the case of YBa2Cu3Ox, on the

other hand, the apical oxygen phonon mode resonance was targeted to directly ma-

nipulate superconductivity. The relative position of the apical oxygen atoms in the

lattice has been shown to correlate with Tc in equilibrium.

The transient plasma mode, attributed to Josephson coupling, was measured

via its effect on the optical conductivity. Here I will discuss some other potential

ultrafast probes of the superconducting state, and share a few thoughts on targeted

excitation.
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9.1.1 Detecting transient superconductivity

As I have shown in this work, the optical conductivity of a superconductor exhibits

unique characteristics that can be used to identify the superconducting state. How-

ever the optical response alone cannot determine the existence of pairing. The Meiss-

ner effect is the only direct bulk probe of a paired state. A time-resolved measure

of the Meissner effect would provide unequivocal support that the two light-induced

states discussed in this thesis, in La1.8−xEu0.2SrxCuO4 and YBa2Cu3Ox, are in fact

transient superconductivity.

The realization of such a measurement would require a highly sensitive magnetic

field probe with a time resolution of 1 ps or better. The sensitivity requirements

are especially problematic due to the inhomogeneous nature of the transient state,

particularly in the case of YBa2Cu3Ox. One possible method of detection might be

realized if the expelled field produces a measurable THz field. This could perhaps

be enhanced by fabrication of the sample in the shape of an antenna structure.

The suppression of the light-induced plasma mode by a static magnetic field would

be another form of confirmation that the transient state measured above Tc is related

to superconductivity. I predict that a moderate (several Tesla) applied field would

cause either a red shift or even a splitting of the transient plasmon. Neither of these

effects would be expected for a plasma mode generated by excited quasiparticles. In

the case of La1.8−xEu0.2SrxCuO4, perhaps, the suppression of the transient plasmon

would be the most pronounced, as an applied field has been shown to support the

charge and spin ordered ground state against superconductivity in equilibrium.

Besides the Meissner effect, an equilibrium superconductor is characterized by the

onset of zero dc resistivity due to pair conductance. A transient superconducting

state should in principle be accompanied by a large, low frequency enhancement

in Ohmic conductivity. This enhancement may be detectable with GHz frequency

pulses generated and detected along a stripline or perhaps by a microwave frequency

probe. A conventional four-point resistivity measurement with a pulsed voltage

probe may be possible for a transient superconducting state with a lifetime on order

100 ps or longer. The time resolution in this case is limited by the electronics.

Even the fastest commercial pulse generators produce voltage profiles with ∼30 ps

durations. This timescale is too slow for the effect seen in La1.8−xEu0.2SrxCuO4 and

YBa2Cu3Ox above Tc.

Time-resolved, angle-resolved photo-emission spectroscopy (tr-ARPES) offers an-

other probe that could potentially strongly support or refute the transient super-
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conducting state. The band structure and Fermi surface behavior of cuprate su-

perconductors has been well-characterized by ARPES. The challenge here is that

the strict surface preparation requirements imposed by ARPES largely limit this

probe to c-axis oriented Bi-based cuprates. Excitation of a similar apical oxygen

mode in the Bi-based materials [263], in the vein of the YBa2Cu3Ox experiment

introduced in Chapter 5, may produce a transient plasmon. However excitation

along the c-axis would require a grazing-incidence pump configuration. Confirma-

tion of the transient plasmon with THz probe measurements is not feasible with

most Bi-based cuprates because the Josephson plasma mode fall in the GHz range1.

Pb-doped Bi2Sr2CaCu2O8−x, however, has a Josephson plasma mode that reaches

∼1 THz [264] and may be an appropriate candidate for such a study.

9.1.2 Targeted excitation

Sources appropriate for optical pumping depend on the desired excitation pathway,

but generally, the important tuning parameters are the pulse frequency, polarization,

duration, and intensity. Depending on the application, pulses may also need to be

phase stabilized. The bandwidth must be narrow enough to selectively target a

single excitation channel and the pump fluence must be high enough to overcome

any threshold behavior. The bandwidth of the pulse may also be limited by pulse

duration requirements.

Enhancing pump fluence can often be achieved by conventional optical paramet-

ric amplification (OPA) and difference frequency generation (DFG) techniques. To

a point, the maximum pump intensity is a practical limitation imposed by the

power output of the laser and the number of amplification stages in the OPA.

Both YBa2Cu3Ox and La1.8−xEu0.2SrxCuO4 were pumped with 15 µm (20 THz)

light produced by an OPA with a single amplification stage. The light-induced

superconducting-like state generated in YBa2Cu3Ox is inhomogeneously distributed

in the sample, as discussed in Chapter 5. The state may reach percolation at pump

field strengths on order ∼10 MV/cm, roughly three times the maximum pump field

generated by the OPA + DFG. At percolation, the bulk response of the system

should behave like a superconductor. Such enhancement of the pump intensity

could be achievable, but it would require a higher power 800 nm input beam and a

multi-stage amplification system.

1In the case of most bilayer compounds, the interbilayer plasmon also falls below 100 GHz.
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A more difficult challenge is extending the pump frequency range. The efficiency

of OPA + DFG systems drops off dramatically above ∼20 µm (15 THz). There is

a dearth of high-fluence, narrowband sources in the 3-15 THz range. This window

encompasses the majority of phonon modes, limiting the scope of materials for

which phonon pumping is feasible. The 15 µm YBa2Cu3Ox apical oxygen atom that

is excited is only one of two similar modes, each associated with the YBa2Cu3O6

and YBa2Cu3O7 lattice structure. As I have shown in Chapter 5, exciting the

YBa2Cu3O6 apical oxygen mode produces a light-induced plasmon throughout the

pseudogap state, with the effect vanishing for YBa2Cu3O7. The YBa2Cu3O7 apical

oxygen mode frequency is beyond the reach of our pump set-up. Exciting both

modes would firmly establish whether this transient phase diagram, presented in

Chapter 5, is shaped by the fact that only the YBa2Cu3O6 apical oxygen mode is

pumped, or whether the onset temperature T ′ is intrinsic to the transient phase.

Finally, the low threshold fluence for inducing the transient phase opens up the

possibility of exciting the system with high-repetition or even continuous wave

pumping. Continuous wave sources have lower field strengths than the peak field

of a pulsed system with similar total power. However, assuming additional heating

effects are minimal, they offer the potential to bring the system into a driven, dy-

namic equilibrium phase that can be probed with more conventional methods, such

as susceptibility and resistivity. Most continuous wave sources have been developed

for wavelengths of 1 µm (300 THz) or less. Solid state devices, such as quantum

cascade lasers, have been developed for the MIR range up to ∼12 µm (25 THz) [265]

and longer wavelength sources are in development. The p-Ge lasers, first developed

in the 1980’s and 90’s [266–268], have tunable ranges that can extend over 80-500 µm

(0.6-4 THz).

9.2 Point contact spectroscopy and the

iron-based superconductors

Point contact spectroscopy (PCS) has traditionally been used as a probe of phonon

modes and Andreev reflection. The Andreev reflection process is sensitive to the

phase of the superconducting order parameter, thus point contact spectroscopy can

be used to determine the order parameter symmetry. The iron-based superconduc-

tors are multiband materials predicted to have a novel s±-wave order parameter
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symmetry. Several models have been developed to predict how interference between

different bands due to this order would be detectable in point contact spectra.

In Chapter 8, I show that the Co-doped SrFe2As2 system produces PCS spectra

consistent with two non-interfering bands and can be fit with the same type of model

that has been successfully applied to the multiband BCS superconductor MgB2.

These spectra were measured in the Andreev limit, where the effective tunneling

barrier at the junction between probe and sample is small. However, the largest

differences between s±-wave order and the s++-wave order of MgB2 are predicted

to occur for larger tunneling barriers. A systematic study varying the tunneling

barrier, perhaps using soft point contact spectroscopy to control the barrier size,

may confirm or finally refute the accuracy of these models.

In the last few years, PCS has truly broken its traditional mold and been shown to

be a sensitive probe of many types of correlated states, of which I give a few examples

in Chapter 8. Along this line, above-gap features in the point contact spectrum of

122 pnictides have been attributed to electronic coupling to a spin-excitation mode.

I have found that while at least one feature (at 10 meV in Sr(Fe0.875Co0.125)2As2)

may be related to spin excitations, most features of the point contact spectrum can

be directly linked to phonon modes of the 122 lattice. A thorough study, including

a variety of compounds and dopings, will clarify whether spin excitations can in fact

be detected with point contact spectroscopy.
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Appendix A

Modeling the transient optical
response

A.1 Error propagation in the bulk limit

Because many important effects are measured with small signal-to-noise ratios, it is

worthwhile to look at how the measurement uncertainty propagates to our calculated

optical properties. We will consider only the standard deviation due to noise in the

measured THz field, σr̃′ . It is convenient to define the quantity,

f(r̃′) =
1− r̃′

1 + r̃′
= f1 + if2 (A.1)

The variance of this quantity must be calculated in terms of r̃′ = r1 + ir2, σr1 , and

σr2 . The variance is

σ2
fj

=

∣∣∣∣∂fj∂r1

∣∣∣∣2 σ2
r1

+

∣∣∣∣∂fj∂r2

∣∣∣∣2 σ2
r2

(A.2)

Solving explicitly for the first derivative of f(r̃′),

f(r1, r2) =
(1− r2

1 − r2
2)− 2ir2

2

(1 + r1)2 + r2
2

(A.3)

we find,

∂f1

∂r1

= −2
r1 + f1 (1 + r1)

(1 + r1)2 + r2
2

,
∂f1

∂r2

= −2
r2 + f1r2

(1 + r1)2 + r2
2

∂f2

∂r1

= 4
(1 + r1) r2

2(
(1 + r1)2 + r2

2

)2 ,
∂f2

∂r2

= −4
(1 + r1)2 r2(

(1 + r1)2 + r2
2

)2

(A.4)
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The final step is to calculate the variance of the refractive index, ñ, in terms of

σf1 and σf2 .

σ2
n,k =

∣∣∣∣∂(n, k)

∂f1

∣∣∣∣2 σ2
f1

+

∣∣∣∣∂(n, k)

∂f2

∣∣∣∣2 σ2
f2
, (A.5)

where ñ = n+ ik. Equation 2.11 can be decomposed directly for the TE case,

n(f1, f2) =
1√
2

[(
sin2 θ0 + f1 cos2 θ0

)
+
√(

sin2 θ0 + f1 cos2 θ0

)2
+ (f2 cos2 θ0)2

]1/2

,

k(f1, f2) =
sgn(f2)√

2

[
−
(
sin2 θ0 + f1 cos2 θ0

)
+
√(

sin2 θ0 + f1 cos2 θ0

)2
+ (f2 cos2 θ0)2

]1/2

.

(A.6)

The decomposition makes use of the relation
√
a+ ib = ±(p+ iq), where

p =

√
a+
√
a2 + b2

2
,

q = sgn(b)

√
−a+

√
a2 + b2

2
.

(A.7)

The TM case is more complex to solve. Making iterative use of the above rela-

tion, we define a = 1 − 4 sin2 θ0 cos2 θ0 (f 2
1 − f 2

2 ) and b = 8 sin2 θ0 cos2 θ0f1f2. Then
√
a+ ib = p + iq and

√
1 + p+ iq = g + ih. We end up with an expression for the

TM case,

n(f1, f2) =
1√

2 |f 2|
[f1g + f2h]

k(f1, f2) =
1√

2 |f 2|
[f1h− f2g]

(A.8)

and the derivatives,

∂n

∂f1,2

=
1√

2 |f 2|

[
(g, h) + f1

∂g

∂f1,2

+ f2
∂h

∂f1,2

− (f1g + f2h)
1

|f 2|2
∂ |f 2|
∂f1,2

]
,

∂k

∂f1,2

=
1√

2 |f 2|

[
(h,−g) + f1

∂h

∂f1,2

− f2
∂g

∂f1,2

− (f1h− f2g)
1

|f 2|2
∂ |f 2|
∂f1,2

]
,

(A.9)

where
∂ |f 2|
∂f1,2

=
4

|f 2|
[(
f 2

1 − f 2
2

)
f1,2 + f2,1

]
. (A.10)
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A Matlab algorithm was developed to calculate the standard deviation for both TE

and TM cases; it can be found in Appendix C.

A.2 Fit goodness for non-analytical models

The non-analytical models treat ∆ñ as a fit parameter to obtain the measured r̃′ at

each frequency ω. This section will discuss the calculation of fit goodness for ∆ñ.

First I define the weighted error of a fit f to data y,

χ2(f) =
N∑
i

(yi − fi)2

σ2
yi

. (A.11)

This quantity is called the chi-squared of the fit. A ”good” fit is defined as when

χ2 ≈ N . At every frequency ω we have two fit parameters <(∆ñ) = ∆n and

=(∆ñ) = ∆k, used to fit two experimentally determined reflectivity components r1

and r2, where r̃′ = r1 + ir2. Assuming fitting functions f1(∆n,∆k) and f2(∆n,∆k),

we can define our chi-squared as

χ2(∆n,∆k) =
2∑
i=1

(ri − fi(∆n,∆k))2

σ2
ri

. (A.12)

We now introduce the following assumption. Along the coordinate of each fit

parameter a, the variation in χ2(a) near the optimal value of a is parabolic, such

that the best fit a∗ represents a minimum in χ2(a). The error in a∗ can thus be

estimated by defining σa∗ as the variation in a that increases χ2(a∗) by 1. If we vary

a∗ by some small amount δa, then

σ2
a∗ =

2δa

χ2(a∗ + δa)− 2χ2(a∗) + χ2(a∗ − δa)
. (A.13)

The derivation of the relation above can be found in Bevington and Robinson,

chapter 8 [269].
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A.3 An approximate multilayer model

If we assume very thin layers δz, then the characteristic matrix for a layer m sim-

plifies to

Mm =

 1 − i

pm
k0ñmδz cos θm

−ipmk0ñmδz cos θm 1

 . (A.14)

Retaining only terms linear in δz, the total characteristic matrix for the medium,

M , is then,

M =

[
1 G

F 1

]
, (A.15)

where in the TE case

F = −ik0

N∑
m=1

pmñmδz cos θm = −ik0

N∑
m=1

ñ2
mδz cos2 θm,

G = −ik0

N∑
m=1

ñm
pm

δz cos θm = −ik0

N∑
m=1

δz.

(A.16)

Our goal is to explicitly solve the sums in F and G to develop an analytical

expression for r̃′(∆ñ). The expression for G can be trivially rewritten as an integral

and solved,

G = −ik0

N∑
m=1

δz = −ik0

∫ L

0

dz = −ik0L. (A.17)

where L = Nδz is the probe penetration depth. Next we note that sin θm =

sin θ0/ñm and therefore we may rewrite F as

F = −ik0δz

N∑
m=1

ñ2
m

[
1−

(
sin θ0

ñm

)2
]

= −ik0δz

[
N∑
m=1

ñ2
m −

N∑
m=1

sin2 θ0

]
.

(A.18)
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Using the form of the refractive index given in Equation (2.30), the first term in

Equation (A.18) may be rewritten as

N∑
m=1

ñ2
m =

N−1∑
m=0

ñ2
0 + 2ñ0∆ñe−αmδz + ∆ñ2e−2αmδz. (A.19)

Taking the limit of small δz,

N−1∑
m=0

e−αδzmδz ≡
∫ L

0

e−αzdz =
1

α

(
1− e−αL

)
, (A.20)

we find,

F (∆ñ) = −ik0L

[
1

2αL

(
1− e−2αL

)
∆ñ2 +

2ñ0

αL

(
1− e−αL

)
∆ñ+

(
ñ2

0 − sin2 θ0

)]
.

(A.21)

After plugging the expressions for F and G into Equation (2.28), the final form

for r̃′(∆ñ) can be expressed as,

r̃′(∆ñ) =
(i/k0L+ pL) p1 − (F (∆ñ) + pL) i/k0L

(i/k0L+ pL) p1 + (F (∆ñ) + pL) i/k0L
. (TE wave) (A.22)

Unfortunately, because pL is a function of ∆ñ, we cannot explicitly invert this

equation. As with the most general thin film stack described in Section 2.6.3, the

fit can be performed using fsolve in Matlab. The code for the model is reproduced

in the Appendix C.

Following a similar approach as before, we can apply Equation (2.28) to the TM

wave case by substituting p = cos θ/ñ. The final expression for the reflectivity is,

r′(∆ñ) =
(1 + g(∆ñ)pL) p1 − (f(∆ñ) + pL)

(1 + g(∆ñ)pL) p1 + (f(∆ñ) + pL)
. (TM wave) (A.23)

where

f(∆ñ) = −ik0L

[
1− sin2 θ0

ñ2
0

[
1 +

1

αL
ln

(
ñ(L)

ñ0

)
+

1

αL

(
∆ñe−αL

ñ(L)
− ∆ñ

ñ0

)]]
,

g(∆ñ) = −ik0L

[
1

2αL

(
1− e−2αL

)
∆ñ2 +

2ñ0

αL

(
1− e−αL

)
∆ñ+

(
ñ2

0 − sin2 θ0

)]
.

(A.24)
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A.4 An analytic solution in the thin multifilm

limit (TE case)

Calculating the solution using the method described in the previous sections can be

time-consuming. The process is highly parallelizable, fortunately, as the calculation

at each frequency is independent. But it would be nice to have an analytical solution

that captures the same behavior. This section will discuss the derivation of an

analytical version of the multilayer model for an incident TE wave.

Our goal is to derive an explicit form for ∆ñ(r′). We begin by rewriting Equa-

tion (2.28) as,

F − (1 +GpL) p1

(
1− r′

1 + r′

)
+ pL = 0. (A.25)

Note that only F and pL are dependent on ∆ñ. If we assume that the refractive

index at the probe penetration depth, L, is approximately the bulk value, we set

pL = ñ0

√
1− (sin θ0/ñ0)2, which is independent of ∆ñ. Plugging Equation (A.21)

into Equation (A.25), we end up with a quadratic expression in ∆ñ.

Solving this quadratic equation gives us an analytic expression for the change in

the pump-induced refractive index, ∆ñ(r′),

∆ñ(r′) =
−B ±

√
B2 − 4AC

2A
, (A.26)

where

A =
ik0

2α

(
1− e−2αL

)
,

B =
2ik0ñ0

α

(
1− e−αL

)
,

C = ik0L
(
ñ2

0 − sin2 θ0

)
+ (1− ik0LpL) p1

(
1− r′

1 + r′

)
− pL.

(A.27)

It’s important to take a moment to consider when this analytical solution is

appropriate. In the above derivation, we have implicitly assumed that pL is ∆ñ-

independent. That is, after the multilayer we enter the bulk, un-pumped material.

This is a reasonable approximation for situations in which we are in the “tail” of the

pumped region, L > 1/α, but can over-estimate the reflectivity in cases where they
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are on the same order. As L decreases with respect to 1/α, we move into the bulk

limit. The code for the analytic thin film model can be found in the Appendix C.
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Appendix B

Experimental Details

B.1 Modeling the transient response of

La1.675Eu0.2Sr0.125CuO4

Because the THz probe penetrates far deeper than the 15 µm pump, the reflected

THz field includes contributions from both the photo-excited volume and the equi-

librium bulk material. To isolate the optical response of the photo-excited volume

alone, we model the system as a single excited layer on an unperturbed bulk, as

described in Chapter 2. This model generates the same optical response as a more

elaborate multilayer model that treats the refractive index as maximum at the sam-

ple surface, decaying exponentially with distance z as exp(−z/d) from the surface

toward its unperturbed bulk value. The optical properties calculated from the sin-

gle layer, multilayer, and a simple analytical thin film models are all plotted in

Figure B.1.

The overall magnitude of the transient changes is sensitive to the penetration

depth mismatch used by the models. However the variation in the recalculated

properties when the pump penetration depth is changed by ±10%, shown in Fig-

ure B.2, are well within the variation given by the three models above. Importantly,

the qualitative behavior of the transient changes in the optical response, ∆σ̃(ω), are

the same regardless of the penetration depth mismatch. Figure B.3 shows the same

LESCO 1/8 data (blue) alongside a recalculated optical response assuming a pump

penetration depth 10x larger (light blue). The data has been rescaled by a factor of

10, such that σ̃(ω) = σ̃eq + 10∆σ̃(ω), to illustrate that the transient changes retain

the same qualitative behavior, namely, the diverging ∆σ2(ω) which is characteristic

of a high mobility state and a London-like superconducting response.
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Figure B.1: Comparison of the transient optical response calculated with
three models. The optically excited material can be well-modeled assuming a
single excited layer on an unperturbed bulk (blue). A more extensive model was
developed that treats the extinction of the pump into the material as an
exponential decay of the transient refractive index (red). A third model, an
analytic approximation assuming a large pump-probe penetration depth mismatch,
is also shown for comparison (purple).

Figure B.2: Effect of varying the penetration depth. The penetration depth
is determined experimentally by the in-plane optical response at 15 µm. However
varying the penetration depth by some fraction does not significantly change the
transient response. Here, the penetration depth d is varied by ±10%, such that
d′ = d± 0.1d.
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Figure B.3: Scaling of the transient response with penetration depth. The
magnitude of the pump-induced changes in the transient response scale with the
penetration depth mismatch. However, the qualitative behavior of the changes
which mark the generation of a high mobility state, including a diverging ∆σ2, are
present regardless of the magnitude of the mismatch.
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B.2 800 nm excitation of La1.675Eu0.2Sr0.125CuO4

While the main thrust of this work on LESCO, and this thesis in general, is the

use of targeted, resonant excitation to manipulate superconductivity, it is worth

considering whether there are other avenues for generating transient c-axis coupling.

Even in the case of phonon pumping, the apparent source of the transient coupling

is the electronic destruction of stripe order. Other mechanisms that target the

charge ordered state could in principle give rise to the same coupling, provided the

excitation does not simultaneously act destructively towards the transient mode, for

example through the generation of quasiparticle excitations.

Along this line, non-resonant excitation at 800 nm has recently been shown to

generate transient coupling in LBCO for dopings x < 1/8 (12.5%) [15]. As with

MIR excitation of LESCO, the effect is strongest in the spin order (SO) regime but

appears to survive up to the charge order transition.

Here, I will present some preliminary results applying the same 800 nm excitation

to LESCO 12.5%. The 800 nm pump beam was oriented at normal incidence along

the c-axis in the same experimental conditions as those reported in Ref. [15], and

with the same THz vacuum box, discussed in Chapter 2, used in the MIR excitation

experiment and in Ref. [15]. Care was taken to prevent 800 nm light from entering

the electro-optic sampling detection set-up through the erection of plastic barriers,

permeable only to THz radiation.

The transient response1 is plotted in Figure B.4 for two time delays after exci-

tation. The response peaks about 1.5 ps after excitation, with the formation of a

plasma mode that is comparable to the plasmon generated by MIR excitation (see

Figure B.5).

I will now compare these results with the LBCO case reported in Ref. [15]. The

range of dopings in which the plasmon could be induced in LBCO is shown in

Figure B.6. Interestingly, the transient mode appears robust in LESCO 12.5%,

comparable to LBCO 11.5% in the CO regime. The lefthand panel of Figure B.7,

reproduced from Ref. [15], plots the transient reflectivity of the mode in LBCO

11.5% at four temperatures, extending from the superconducting state, through the

stripe ordered regime, and to the normal state above TCO. The righthand panel

shows the transient reflectivity of LESCO 12.5% at 5 K, in the charge and spin

ordered regime.

1The response is calculated using the same single layer model employed for the MIR excitation
response, with a pump penetration depth of 400 nm.
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Figure B.4: Transient optical response of LESCO 12.5% at 5 K after 800
nm excitation. The optical response at 1.5 ps after excitation (top row) and
3.5 ps (bottom row). From left to right: The Ohmic conductivity σ1(ω), the
inductive conductivity σ2(ω), the transient changes to the inductive conductivity
∆σ2(ω) = σ2(ω)− σ2,eq(ω), and the real part of the dielectric response ε1(ω).
Dashed lines are fits to a single longitudinal mode, as described in the main text.

Figure B.5: Comparison of the inductive response of LESCO after MIR
and 800 nm excitation. The average low frequency inductive response ω∆σ2(ω)
after 15 µm mid-infrared excitation polarized in-plane (blue) and 800 nm
excitation polarized along the c-axis (red). All measurements made at 5 K, taken
at the peak of the transient response.

Meanwhile, there is no evidence of the transient coupling for LBCO 12.5%, even

up to pump fluences of 3 mJ/cm2, three times the saturation fluence found for

LBCO 11.5%. Similarly, we found no plasmon could be generated by the a-axis

MIR excitation of LBCO 12.5% up to 4 mJ/cm2. This despite, as mentioned in
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Figure B.6: Phase diagram of the LBCO transient plasmon generated by
800 nm excitation. Phase diagram of LBCO with filled dots indicating
temperatures and dopings at which the 800 nm excitation produced a transient
mode. Empty dots indicate where the excitation was made and no transient mode
was found. Figure modified from Ref. [15].

earlier, the same MIR excitation (at 1 mJ/cm2) reducing the charge ordering peak

by 60% [32]. We cannot rule out the generation of a plasmon below our frequency

window (< 0.2 THz); however even so, we can safely conclude that if c-axis coupling

is being generated in this compound at all, it is very weak.

We conjecture this may be due to the stripe order parameter being much stronger

in LBCO 12.5% compared to both LESCO 12.5% and LBCO at lower dopings. The

c-axis charge order correlation length is about 200 Å for LBCO 12.5% and falls

by half to 100 Å for LBCO 11.5% [102]. The correlation lengths of LESCO are

about a factor of three smaller than for LBCO [108].2 If the 800 nm excitation is

driving the destruction of charge stripe order, as in the MIR excitation case, then the

effectiveness of the light in overcoming the charge ordering energy scale determines

whether a plasmon will form. The excitation may simply be insufficient to destroy

charge ordering in LBCO 12.5%.

It may at first appear counter-intuitive that near infrared (NIR) excitation can

support a condensate against charge ordering competition, as NIR light has been

2This is primarily attributed to the increased crystalline disorder produced by the Eu atom
dopants.
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Figure B.7: Comparing the 800 nm excitation of LBCO and LESCO.
Left: The transient (red) and equilibrium (grey) reflectivity of LBCO 11.5% after
800 nm c-axis excitation. Panels show the response for ground states that are
(clockwise from top left) superconducting, spin and charge ordered, charge
ordered, above TCO. Figure adapted from Ref. [15]. Right: The transient (red)
and equilibrium (grey) reflectivity of LESCO 12.5% after the same excitation. The
ground state, at 5 K, is spin and charge ordered. Dashed line indicates a fit to the
equilibrium spectrum plus a single excited mode (Equation 4.2) with Γ = 0.

shown to be destructive to cuprate superconductivity in certain circumstances. But

there is good reason to support such a scenario. First, most 800 nm excitation

measurements have focused on in-plane excitation, for the purpose of coupling to the

superconducting condensate more directly and facilitating pair breaking [270–274].

In a perfectly 2D superconductor, no dipole coupling to the condensate is possible

for excitation perpendicular to the plane, and in cuprates, the c-axis coupling is

very weak [275].

Second, NIR excitation has been shown to be effective at melting charge order

in a variety of systems [276–278] and couples more efficiently to charge order than

to superconductivity for polarization along the c-axis. This destruction is gener-

ally fast, on the 100 fs timescale, compared to the destruction of superconductiv-

ity (for in-plane excitation) which is found to occur over a picosecond timescale

in cuprates [279]. The longer timescale can be described by the Rothwarf-Taylor

quasi-particle recombination mechanism [280, 281], in which electron-phonon cou-

pling acts as a bottleneck in the transfer of energy to the condesate. This coupling to
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phonons also makes pair-breaking with NIR excitation highly inefficient, requiring

much higher fluences than would be expected from the condensation energy den-

sity [272, 274]. Charge order destruction, on the other hand, is highly efficient since

the process is more direct, with the order highly sensitive to any electronic process

that disturbs the Fermi surface nesting. This is fully consistent with the observa-

tions of Ref. [15], in which the plasmon appears stiff up to ∼2 ps after excitation,

then shows incoherent contributions during the relaxation.

B.3 Measuring the equilibrium optical response

of YBa2Cu3Ox

Determining the complex equilibrium conductivity is necessary to calculate the ab-

solute optical conductivity of the transient (pump-induced) state that is presented

in this chapter and Chapter 7. Fortunately, the low frequency THz response of

YBCO is flat and featureless above Tc, as shown in Figure 5.14. As a result, we

could calculate the absolute transient response using high quality measurements of

the equilibrium reflectivity taken from literature for both the c-axis [84, 282] and

a-axis [69]. The complex response was determined by Kramers-Kronig transforma-

tion.

Below Tc, the c-axis response is characterized by the appearance of a longitudinal

plasma mode which gives rise to a sharp change in reflectivity at the plasma fre-

quency, as illustrated in Figure 5.10. The position of this feature is highly sensitive

to temperature and the precise carrier concentration of the sample, which can vary

even for the same nominal doping. In order to accurately determine the transient

response, it is therefore crucial to measure the absolute equilibrium response in situ.

The equilibrium THz reflectivity of the sample, Ẽ(ω), must be referenced in order

to determine the absolute amplitude and phase of the equilibrium response. One

way to reference the THz spectra is by using another time-domain THz measurement

of a standard reflector placed at the same position as the sample. The placement of

the reference reflector is crucial in order to ensure that the time of arrival of the THz

(and accordingly the absolute phase of the spectrum) is the same for the sample

and the reference. The most reliable way to do this is to sputter the sample with

Au in situ, as is standard in Fourier Transform Infrared Spectroscopy (FTIR). Our

THz reflectivity set-up is not equipped to perform this type of absolute calibration.
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Instead, I developed a method of “relative” referencing of the reflected THz re-

sponse below Tc, Ẽ(ω, T < Tc), with the response just above Tc, Ẽ(ω, T > Tc).

The static reflectance below Tc, r̃(ω, T < Tc) can then be extracted from the

two THz measurements plus the flat equilibrium response from literature above

Tc, r̃(ω, T > Tc), by taking the ratio,

r̃(ω, T < Tc) =
Ẽ(ω, T < Tc)

Ẽ(ω, T > Tc)
r̃(ω, T > Tc). (B.1)

The complex optical response, ñ(ω), is related to the reflectance r̃(ω) via an inversion

of the Fresnel equations,

ñ(r̃) =

√
sin2 θ0 + cos2 θ0

(
1− r̃
1 + r̃

)
, (TE wave)

ñ(r̃) =
1√
2

(
1 + r̃

1− r̃

)√√√√1 +

√
1− 4 sin2 θ0 cos2 θ0

(
1− r̃
1 + r̃

)2

, (TM wave)

(B.2)

where θ0 is the angle of incidence on the sample.

This approach needs to be undertaken with caution, as it requires the sample

holder assembly to remain mechanically stable on heating/cooling, and is potentially

vulnerable to phase noise due to thermal expansion/contraction of the cold finger.

Because thermal contraction is a systematic effect, it can be accounted for by relative

referencing a known sample. Thermal contraction of our cold finger and sample

holder between 5 K and Tc ∼ 60 K is minimal and can be corrected for, allowing

this procedure to be applied.

Figure B.8 shows the transient optical response of YBCO 6.5 at 5 K, 0.8 ps after

excitation (red). The same transient THz field has been referenced to two equilib-

rium responses (grey). The dotted line shows data taken from Ref. [84] and the solid

line was measured in situ using a THz spectrum taken at 5 K, Ẽ(ω, 5 K), referenced

by a spectrum just above Tc, Ẽ(ω, 60 K). The 60 K equilibrium response ñ(ω) was

also taken from Ref. [84]. Notice that the transient conductivity referenced by lit-

erature data has a sharp peak right at the equilibrium plasma resonance (indicated

by an arrow in Figure B.8). This is due to to the slight mismatch in response of our

sample vs. Ref. [84]. However, this artifact is completely removed with the relative
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referencing method, revealing a small, single peak remaining in the loss function

near the equilibrium Josephson plasma frequency.3

Figure B.8: Artifacts due to improper referencing. Calculation of the
photo-induced reflectivity of YBCO 6.5 at 5 K. Referencing using the equilibrium
optical response taken from Ref. [84] (dashed line) vs. referencing in situ as
described in the text (solid line). Near the plasma edge, artifacts appear due to a
mismatch in the literature JPR frequency and the true JPR position (indicated by
arrows).

B.4 Percolation and the Bruggeman effective

medium model

The Bruggeman effective medium model was used to describe the transient response

of YBCO above Tc, as described in Section 5.5. For all dopings and temperatures,

the maximum superconducting volume fraction f did not not exceed 20%, well below

the percolation threshold fc ≈ 33%. However, the percolation threshold tracks the

polarization factor fc = q [283]. A low q describes rod-like inclusions with the

inclusions becoming more pancake-like up to q = 0.5.

Figure B.9 shows the effect of varying q. The black line indicates the same fit

as the black line in Figure 5.23. The top row shows fits just varying q and f . For

q = 0.5, 0.33, and 0.1 the best fit volume fractions are f = 0.12, 0.15, and 0.21

respectively. The bottom row shows fits in which the plasma frequency ωp is also

3The apparent splitting of the Josephson plasmon, with one component remaining near equi-
librium and another blue shifting, is discussed in Chapter 7.
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optimized. While all values of q reproduce the essential features of the transient

state, the choice of q = 1/3 appears to offer the closest fit.

Importantly, for q = 0.1 (pink) we cross the critical volume fraction. Above this

threshold, the bulk response should appear superconducting. This can be seen in

the inductive conductivity σ2(ω) of the effective medium in Figure B.9 (pink line in

both top and bottom rows), which diverges even to zero frequency. Based on the

relative fit quality, however, we can safely claim that the transient state remains

below percolation.

Figure B.9: Varying inclusion shape in the effective medium fit. The black
lines represent the same fit as in Figure 5.23, with q = 1/3 and f = 0.15. The
best-fit value for the plasma frequency is ωp = 3.6 THz. Top row: Dashed lines
indicate fits to q = 0.5 (dark red) and q = 0.1 (pink). Equilibrium data in grey.
The plasma frequency in all fits is fixed at 3.6 THz. Bottom row: Same q
parameters, but with the plasma frequency optimized.
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Appendix C

Matlab code for calculating the
transient optical response

C.1 The bulk refractive index

function [trn,sigtrn] = bulkmodel(cn,delEE,sigdelEE,theta0,TE)

%-------------------------------------------------------------------------------

% Input parameters:

% cn = static complex refractive index, cn = n + 1i*k

% delEE = complex deltaE/E

% sigdelEE = sigma(real(deltaE/E)) + i*sigma(imag(deltaE/E))

% theta0 = angle of incidence

% TE = 1 for TE mode, 0 for TM mode

%

% Output parameters:

% trn = transient complex refractive index, trn = n + 1i*k

%-------------------------------------------------------------------------------

sint = sin(theta0*pi/180); cost = cos(theta0*pi/180);

% The inverted Fresnel equations

if TE == 1,

% TE incident light (s-polarized)

statr = ( cost - cn.*sqrt(1-(sint./cn).^2) )./ ...

( cost + cn.*sqrt(1-(sint./cn).^2) );

trr = (delEE+1).*statr;

f = cost.*(1-trr)./(1+trr);

trn1 = sqrt(sint.^2 + f.^2);

trn2 = -sqrt(sint.^2 + f.^2);

trn = choosesign(trn1,trn2);
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% Standard deviation propagation

sigtrn = sigforTE(sigdelEE,statr,trr,theta0);

else

% TM incident light (p-polarized)

statr = -( sqrt(1-(sint./cn).^2) - cn.*cost )./ ...

( sqrt(1-(sint./cn).^2) + cn.*cost );

trr = (delEE+1).*statr;

f = cost.*(1-trr)./(1+trr);

invf = 1./f;

A = sqrt(1-4.*sint.^2./invf.^2);

trn1 = invf./sqrt(2).*sqrt(1 + A);

trn2 = -invf./sqrt(2).*sqrt(1 + A);

trn = choosesign(trn1,trn2);

% Standard deviation propagation

sigtrn = sigforTM(sigdelEE,statr,trr,theta0);

end

end

function trn = choosesign(trn1,trn2)

%-------------------------------------------------------------------------------

% The sign of the real part of the refractive index

% must be positive.

%-------------------------------------------------------------------------------

% Choose first solution

trn = trn1;

% Keep track of how many times trn flips sign.

flip = 0; flipcount = 0;

for n = 1:length(trn1),

if real(trn1(n)) < 0,

trn(n) = trn2(n);

if flip == 0,

flipcount = flipcount+1;

flip = 1;

end

else

if flip == 1,

flipcount = flipcount+1;
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flip = 0;

end

end

end

disp([’Bulk model flipped signs ’ num2str(flipcount) ’ times.’])

end

function sigtrn = sigforTE(sigdelEE,statr,trr,theta0)

%-------------------------------------------------------------------------------

% Propagate standard deviation of DeltaE/E.

%

% sigdelEE = sigma(real(DeltaE/E)) + 1i*sigma(imag(DeltaE/E))

% statr = static complex reflectivity

% trr = transient complex reflectivity

% theta0 = angle of incidence

%-------------------------------------------------------------------------------

sint = sin(theta0*pi/180); cost = cos(theta0*pi/180);

f = cost.*(1-trr)./(1+trr);

% Standard deviation of trr

sigRtrr2 = abs(real(statr)).^2.*real(sigdelEE).^2 + ...

abs(imag(statr)).^2.*imag(sigdelEE).^2;

sigItrr2 = abs(real(statr)).^2.*imag(sigdelEE).^2 + ...

abs(imag(statr)).^2.*real(sigdelEE).^2;

% Standard deviation of real(f)

trr1 = real(trr); trr2 = imag(trr);

A = (1+trr1).^2 + trr2.^2;

DRf_DRtrr = -(2.*cost./A).*(trr1 + (1+trr1).*(1-trr1.^2-trr2.^2)./A);

DRf_DItrr = -(2.*trr2.*cost./A).*(1 + (1-trr1.^2-trr2.^2)./A);

sigRf2 = abs(DRf_DRtrr).^2.*sigRtrr2 + ...

abs(DRf_DItrr).^2.*sigItrr2;

% Standard deviation of imag(f)

DIf_DRtrr = 4.*cost.*trr2.*(1+trr1)./A.^2;

DIf_DItrr = 4.*cost.*trr2.^2./A.^2 - 2.*cost./A;

sigIf2 = abs(DIf_DRtrr).^2.*sigRtrr2 + ...

abs(DIf_DItrr).^2.*sigItrr2;

% Standard deviation of trn

f1 = real(f); f2 = imag(f);
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aa = sint.^2 + f1.^2 - f2.^2;

bb = 2.*f1.*f2; sgnb = bb./abs(bb);

cc = sqrt(aa.^2+bb.^2);

Daa_DRf = 2.*f1; Daa_DIf = -2.*f2;

Dbb_DRf = 2.*f2; Dbb_DIf = 2.*f1;

% Standard deviation of real(trn)

Dn_Daa = (1+aa./cc)./2./sqrt(2.*(cc+aa));

Dn_Dbb = bb./cc./2./sqrt(2.*(cc+aa));

Dn_DRf = Dn_Daa.*Daa_DRf + Dn_Dbb.*Dbb_DRf;

Dn_DIf = Dn_Daa.*Daa_DIf + Dn_Dbb.*Dbb_DIf;

sigRtrn = sqrt( abs(Dn_DRf).^2.*sigRf2 + ...

abs(Dn_DIf).^2.*sigIf2 );

% Standard deviation of imag(trn)

Dk_Daa = sgnb.*(-1+aa./cc)./2./sqrt(2.*(cc-aa));

Dk_Dbb = sgnb.*bb./cc./2./sqrt(2.*(cc-aa));

Dk_DRf = Dk_Daa.*Daa_DRf + Dk_Dbb.*Dbb_DRf;

Dk_DIf = Dk_Daa.*Daa_DIf + Dk_Dbb.*Dbb_DIf;

sigItrn = sqrt( abs(Dk_DRf).^2.*sigRf2 + ...

abs(Dk_DIf).^2.*sigIf2 );

sigtrn = sigRtrn + 1i.*sigItrn;

end

function sigtrn = sigforTM(sigdelEE,statr,trr,theta0)

%-------------------------------------------------------------------------------

% Propagate standard deviation of DeltaE/E.

%

% sigdelEE = sigma(real(DeltaE/E)) + 1i*sigma(imag(DeltaE/E))

% statr = static complex reflectivity

% trr = transient complex reflectivity

% theta0 = angle of incidence

%-------------------------------------------------------------------------------

[f1,f2,varf1,varf2] = getvarf(trr,statr,sigdelEE);

f = f1 + 1i.*f2;

a = 1 - 4.*sin(theta0).^2.*cos(theta0).^2.*(f1.^2-f2.^2);

b = 8.*sin(theta0).^2.*cos(theta0).^2.*f1.*f2;

dadf1 = -8.*sin(theta0).^2.*cos(theta0).^2.*f1;

dadf2 = 8.*sin(theta0).^2.*cos(theta0).^2.*f2;

dbdf1 = 8.*sin(theta0).^2.*cos(theta0).^2.*f2;

dbdf2 = 8.*sin(theta0).^2.*cos(theta0).^2.*f1;
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[p,q,dpda,dpdb,dqda,dqdb] = getpq(a,b);

[g,h,dgdpp,dgdq,dhdpp,dhdq] = getpq(1+p,q);

dgdf1 = dgdpp.*(dpda.*dadf1 + dpdb.*dbdf1) + ...

dgdq.*(dqda.*dadf1 + dqdb.*dbdf1);

dgdf2 = dgdpp.*(dpda.*dadf2 + dpdb.*dbdf2) + ...

dgdq.*(dqda.*dadf2 + dqdb.*dbdf2);

dhdf1 = dhdpp.*(dpda.*dadf1 + dpdb.*dbdf1) + ...

dhdq.*(dqda.*dadf1 + dqdb.*dbdf1);

dhdf2 = dhdpp.*(dpda.*dadf2 + dpdb.*dbdf2) + ...

dhdq.*(dqda.*dadf2 + dqdb.*dbdf2);

abfsq = abs(f.^2);

dfsqdf1 = 4.*( (f1.^2-f2.^2).*f1 + f2 )./abfsq;

dfsqdf2 = 4.*( (f1.^2-f2.^2).*f2 + f1 )./abfsq;

dndf1 = ( g + f1.*dgdf1 + f2.*dhdf1 - ...

(f1.*g + f2.*h).*dfsqdf1./abfsq.^2 )./(sqrt(2).*abfsq);

dndf2 = ( h + f1.*dgdf2 + f2.*dhdf2 - ...

(f1.*g + f2.*h).*dfsqdf2./abfsq.^2 )./(sqrt(2).*abfsq);

dkdf1 = ( h + f1.*dhdf1 - f2.*dgdf1 - ...

(f1.*h - f2.*g).*dfsqdf1./abfsq.^2 )./(sqrt(2).*abfsq);

dkdf2 = ( -g + f1.*dhdf2 - f2.*dgdf2 - ...

(f1.*h - f2.*g).*dfsqdf2./abfsq.^2 )./(sqrt(2).*abfsq);

varn = abs(dndf1).^2.*varf1 + abs(dndf2).^2.*varf2;

vark = abs(dkdf1).^2.*varf1 + abs(dkdf2).^2.*varf2;

sigtrn = sqrt(varn) + 1i.*sqrt(vark);

end

function [p,q,dpda,dpdb,dqda,dqdb] = getpq(a,b)

% sqrt(a + ib) = p + iq

absq = sqrt(a.^2 + b.^2);

p = sqrt( (a + absq)./2 );

sgnb = (b./abs(b)); qq = sqrt( (-a + absq)./2 );

q = sgnb.*qq;

dpda = (1 + a./absq)./(4.*p);

dpdb = (b./absq)./(4.*p);

dqda = sgnb.*(-1 + a./absq)./(4.*qq);

dqdb = sgnb.*(b./absq)./(4.*qq);
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end

function [f1,f2,varf1,varf2] = getvarf(trr,statr,sigdelEE)

% trr = (delEE+1).*statr;

% trr = (RdE + 1 + 1i.*IdE).*(Rsr + 1i.*Isr)

% Rtrr = (RdE + 1).*Rsr - IdE.*Isr

% Itrr = (RdE + 1).*Isr + IdE.*Rsr

sigr1 = real(statr).*real(sigdelEE) + imag(statr).*imag(sigdelEE);

sigr2 = real(statr).*imag(sigdelEE) + imag(statr).*real(sigdelEE);

r1 = real(trr); r2 = imag(trr);

f = (1-trr)./(1+trr); f1 = real(f); f2 = imag(f);

den = (1+r1).^2 + r2.^2;

df1dr1 = -2.*( r1 + f1.*(1+r1) )./den;

df1dr2 = -2.*( r2 + f1.*r2 )./den;

df2dr1 = 4.*(1+r1).*r2.^2./den.^2;

df2dr2 = -4.*(1+r1).^2.*r2./den.^2;

varf1 = df1dr1.^2.*sigr1.^2 + df1dr2.^2.*sigr2.^2;

varf2 = df2dr1.^2.*sigr1.^2 + df2dr2.^2.*sigr2.^2;

end

C.2 The analytic thin film model

function [cdeln,sig_cdeln] = thinfilmmodel(cn,delEE,sigdelEE,w,d,einf)

%-------------------------------------------------------------------------------

% Calculate deltaS (change in conductivity)

% Model assumes normal incidence

%

% Input parameters:

% delEE = complex deltaE/E

% sigdelEE = sigma(real(deltaE/E)) + i*sigma(imag(deltaE/E))

% w = frequency

% d = pump penetration depth

% einf = epsilon infinity

%

% Output parameters:

% cn = static complex refractive index, cn = n + 1i*k

% cdeln = transient complex changes in the refractive index,

200



% trn = cn + cdeln

%-------------------------------------------------------------------------------

%-------------------------------------------------------------------------------

% Constants

Z0 = 377; % Ohms

d = d.*1e-4; % um --> cm

%-------------------------------------------------------------------------------

%-------------------------------------------------------------------------------

% Calculate deltaS

pre = 1./(Z0*d); % 1/Ohm-cm

[deltaS,var_deltaS] = stdev_deltaS(pre,delEE,sigdelEE,cn);

%-------------------------------------------------------------------------------

%-------------------------------------------------------------------------------

% Calculate excited sample refractive index

S0 = w.*(cn.^2-einf)./(1.8.*1i); % Equilibrium conductivity (1/Ohm-cm)

trn = sqrt(1.8.*1i.*(S0+deltaS)./w + einf); % Transient refractive index

% Propagate standard deviation

sig_cdeln = stdev_N(w,trn,var_deltaS);

cdeln = trn-cn;

%-------------------------------------------------------------------------------

end

function [deltaS,var_deltaS] = stdev_deltaS(pre,delEE,sigdelEE,cn)

%-------------------------------------------------------------------------------

% Numerator

% num = pre.*delEE.*(cn.^2.*(1-1./(2.*cn.^2)) - 0.5);

% num = pre.*(cn.^2 - 1);

% Denomenator

% den = delEE.*(1/sqrt(2) - cn.*sqrt(1-1./(2.*cn.^2))) + sqrt(2);

% den = (1/sqrt(2) - sqrt(cn.^2-0.5)) + sqrt(2)./delEE;

% deltaS = num./den;

%-------------------------------------------------------------------------------

% deltaS = A/(B + C/delEE)

A = pre.*(cn.^2 - 1); B = (1/sqrt(2) - sqrt(cn.^2-0.5)); C = sqrt(2);

deltaS = A./(B + C./delEE); Sr = real(deltaS); Si = imag(deltaS);

% Variance of deltaS...
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% Define convenient terms

f2 = delEE.^2; frf2 = real(delEE)./f2; fif2 = imag(delEE)./f2;

D = (B + C.*frf2).^2 + (C.*fif2).^2;

% Define derivatives of D

dD_dfr = 2.*(B + C.*frf2).*(C./f2 - 2.*C.*frf2.^2);

dD_dfi = 2.*(C.*fif2).*(C./f2 - 2.*C.*fif2.^2);

% Define derivatives of deltaS

dSr_dfr = A.*C./(D.*f2) - 2.*A.*C.*frf2.^2./D - Sr.*dD_dfr./D;

dSi_dfi = A.*C./(D.*f2) - 2.*A.*C.*fif2.^2./D - Si.*dD_dfi./D;

dSr_dfi = -2.*A.*C.*frf2.*fif2./D - Sr.*dD_dfi./D;

dSi_dfr = -2.*A.*C.*frf2.*fif2./D - Si.*dD_dfr./D;

% Define standard deviation

var_fr = real(sigdelEE).^2; var_fi = imag(sigdelEE).^2;

var_Sr = abs(dSr_dfr).^2.*var_fr + abs(dSr_dfi).^2.*var_fi;

var_Si = abs(dSi_dfr).^2.*var_fr + abs(dSi_dfi).^2.*var_fi;

var_deltaS = var_Sr + 1i.*var_Si;

end

function sig_N = stdev_N(w,N,var_S)

%-------------------------------------------------------------------------------

% Propagate the standard deviation from conductivity to refractive index

%-------------------------------------------------------------------------------

% First get dielectric function

eps = N.^2; eps1 = real(eps); eps2 = imag(eps);

var_eps1 = abs(-1.8./w).^2.*imag(var_S);

var_eps2 = abs(1.8./w).^2.*real(var_S);

% Get N and derivatives

[~,~,dn_de1,dn_de2,dk_de1,dk_de2] = complex_sqrt(eps1,eps2);

% Get variance

var_n = abs(dn_de1).^2.*var_eps1 + abs(dn_de2).^2.*var_eps2;

var_k = abs(dk_de1).^2.*var_eps1 + abs(dk_de2).^2.*var_eps2;

%N = n + 1i.*k;

sig_N = sqrt(var_n) + 1i.*sqrt(var_k);
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end

function [p,q,dp_da,dp_db,dq_da,dq_db] = complex_sqrt(a,b)

% +/-(p + i*q) = sqrt(a + i*b)

% Get p and q

abs_ab = sqrt(a.^2+b.^2); sgnb = sign(b);

p = sqrt((a + abs_ab)./2); q = sgnb.*sqrt((-b + abs_ab)./2);

%[p,q] = picksolution(p,q);

norm_a = a./abs_ab; norm_b = b./abs_ab;

dp_da = (1 + norm_a)./(4.*p);

dq_db = sgnb.*(-1 + norm_b)./(4.*q);

dp_db = (norm_b)./(4.*p);

dq_da = sgnb.*(norm_a)./(4.*q);

end

C.3 The single layer model

function trr = singlelayer(cn,cdeln,vars)

%-------------------------------------------------------------------------------

% Input parameters:

% cn = static complex refractive index, cn = n + 1i*k

% cdeln = transient complex changes in the refractive index,

% trn = cn + cdeln

% vars = variables used in the fit:

% vars(1) = inverse of the pump penetration depth, alpha = 1/d

% vars(3) = angle of incidence theta

% vars(4) = k0 = 2.*pi./lambda0;

% lambda0 = c_light./w; % micron (w in THz)

% vars(6) = 1 for TE polarization, 0 for TM polarization

%

% Output parameters:

% trr = transient complex reflectivity

%-------------------------------------------------------------------------------

alpha = vars(1); d = 1./alpha;

theta = vars(3); asq = (sin(theta*pi/180))^2;
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k0 = vars(4); TE = vars(6); mu = 1; mu2 = 1;

trcn = cn + cdeln;

nn1 = sqrt(k0.^2.*(1-asq)); nnf = sqrt(k0.^2.*(cn.^2-asq));

nn = sqrt(k0.^2.*(trcn.^2-asq));

if TE == 1,

% TE (s) polarization

p1 = nn1./(k0); pf = nnf./(k0.*mu2);

p = nn./(k0.*mu);

else

% TM (p) polarization

p1 = nn1./(k0); pf = nnf.*mu2./(cn.^2*k0);

p = nn.*mu./(trcn.^2*k0);

end

m11 = cos(nn.*d); m12 = -(1i./p).*sin(nn.*d); m21 = -(1i.*p).*sin(nn.*d);

rnum = (m11+m12.*pf).*p1 - (m21+m11.*pf);

rden = (m11+m12.*pf).*p1 + (m21+m11.*pf);

trr = rnum./rden;

end

C.4 The full multilayer model

function trr = multilayer(cn,cdeln,vars)

%-------------------------------------------------------------------------------

% Input parameters:

% cn = static complex refractive index, cn = n + 1i*k

% cdeln = transient complex changes in the refractive index,

% trn = cn + cdeln

% vars = variables used in the fit:

% vars(1) = inverse of the pump penetration depth, alpha = 1/d

% vars(2) = distance increment dz

% vars(3) = angle of incidence theta

% vars(4) = k0 = 2.*pi./lambda0;

% lambda0 = c_light./w; % micron (w in THz)
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% vars(5) = The probe penetration depth L

% vars(6) = 1 for TE polarization, 0 for TM polarization

% vars(7) = cdelnTol, the tolerance value for the change in cdeln:

% if cdeln(z+dz)-cdeln(z) < cdelnTol, then stop calculation of M

%

% Output parameters:

% trr = transient complex reflectivity

%-------------------------------------------------------------------------------

% Get all constants, vars = [alpha,dz,theta0,k0,probed,TE];

alpha = vars(1); dz = vars(2); theta = vars(3);

k0 = vars(4); probed = vars(5); TE = vars(6);

cdelnTol = vars(7);

% Set depth range

z = 0:dz:(probed);

% Get initial parameters

cost = cos(theta*pi/180); sint0 = sin(theta*pi/180);

if TE == 1,

getp = @(n,c)(n.*c);

p1 = cost;

else

getp = @(n,c)(c./n);

p1 = cost;

end

% Get initial characteristic matrix

M = ones(2,2);

M(1,2) = 0; M(2,1) = 0;

% Get refractive index at the surface

trcn2 = cn + cdeln;

n = 1; tolbool = 0; lenz = length(z);

while n < lenz && tolbool == 0,

% Get the value of trcn for z_n

trcn = trcn2;

Mn = ones(2,2);

p = getp(trcn,cost);

% Get the new matrix for layer dz

Mn(1,1) = cos(trcn.*k0.*dz.*cost);
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Mn(1,2) = -1i./p.*sin(trcn.*k0.*dz.*cost);

Mn(2,1) = -1i.*p.*sin(trcn.*k0.*dz.*cost);

Mn(2,2) = cos(trcn.*k0.*dz.*cost);

% Get the total matrix

M = M*Mn;

% Get new theta

cdeln_n = cdeln*exp(-alpha*(z(n) + dz));

trcn2 = cn + cdeln_n;

trcn2 = abs(real(trcn2)) + 1i.*abs(imag(trcn2));

cost = getsnell(1,trcn2,sint0); %sint = sint0./trcn2;

% Check for cdeln_n ~ 0

if abs(cdeln_n) < cdelnTol,

tolbool = 1;

disp([’Note: Tolerance for abs(DeltaN) reached after ’ ...

num2str(n) ’ of ’ num2str(lenz) ’ iterations.’])

end

n = n+1;

end

if tolbool == 1,

dz2 = probed-n*dz;

trcn = trcn2; Mn = ones(2,2);

p = getp(trcn,cost);

% Get the new matrix

Mn(1,1) = cos(trcn.*k0.*dz2.*cost);

Mn(1,2) = -1i./p.*sin(trcn.*k0.*dz2.*cost);

Mn(2,1) = -1i.*p.*sin(trcn.*k0.*dz2.*cost);

Mn(2,2) = cos(trcn.*k0.*dz2.*cost);

% Get the total matrix

M = M*Mn;

cdeln_n = cdeln*exp(-alpha*(probed+dz));

trcn2 = cn + cdeln_n;

%trcn2 = abs(real(trcn2)) + 1i.*abs(imag(trcn2));

cost = getsnell(1,trcn2,sint0); %sint = sint0./trcn2;

end

% Calculate the material reflectivity coefficient, trr

trcn = trcn2;

pbulk = getp(trcn,cost);
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trRn = (M(1,1)+M(1,2).*pbulk).*p1 - (M(2,1)+M(2,2).*pbulk);

trRd = (M(1,1)+M(1,2).*pbulk).*p1 + (M(2,1)+M(2,2).*pbulk);

trr = trRn./trRd;

end

function cost2 = getsnell(n1,n2,sint1)

sint2 = (n1./n2).*sint1;

cost2 = sqrt(1-sint2.^2);

end

C.5 The approximate multilayer model

function trr = approx_multilayer(cn,cdeln,vars)

%-------------------------------------------------------------------------------

% Input parameters:

% cn = static complex refractive index, cn = n + 1i*k

% cdeln = transient complex changes in the refractive index,

% trn = cn + cdeln

% vars = variables used in the fit:

% vars(1) = inverse of the pump penetration depth, alpha = 1/d

% vars(3) = angle of incidence theta

% vars(4) = k0 = 2.*pi./lambda0;

% lambda0 = c_light./w; % micron (w in THz)

% vars(5) = The probe penetration depth L

% vars(6) = 1 for TE polarization, 0 for TM polarization

%

% Output parameters:

% trr = transient complex reflectivity

%-------------------------------------------------------------------------------

% Get all constants, vars = [alpha,dz,theta0,k0,probed,TE];

alpha = vars(1); theta = vars(3); sint = sin(theta*pi/180);

k0 = vars(4); L = vars(5); TE = vars(6);

aL = alpha.*L;

cnf = cn+cdeln.*exp(-aL); % refractive index at depth L into sample

if TE == 1,

% TE (s) polarization
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p1 = cn0.*cos(theta*pi/180);

G = -1i.*k0.*L;

FG = ( (1-exp(-2*aL))*cdeln^2/(2*aL) + ...

(2*cn/aL)*(1-exp(-aL))*cdeln + ...

(cn^2-sint^2) );

pbulk = sqrt(cnf.^2-sint.^2);

rnum = (1/G + pbulk)*p1 - (FG + pbulk/G);

rden = (1/G + pbulk)*p1 + (FG + pbulk/G);

trr = rnum/rden;

else

% TM (p) polarization

p1 = cos(theta*pi/180)./cn0;

G = cdeln.^2.*(1-exp(-2*aL))./(2.*aL) + ...

2.*cdeln.*cn.*(1-exp(-aL))./aL + cn.^2;

FL = 1 + log(cnf./cn0)./aL + (cdeln./(aL.*cnf)).*exp(-aL);

F0 = cdeln./(aL.*cn0);

F = (1 - sint.^2.*(FL - F0)./cn.^2);

pbulk = sqrt(1-(sint./cnf).^2)./cnf;

ik0L = -1i.*k0.*L;

rnum = (1/ik0L + pbulk*G)*p1 - (F + pbulk/ik0L);

rden = (1/ik0L + pbulk*G)*p1 + (F + pbulk/ik0L);

trr = rnum/rden;

end

end

C.6 The analytic approximate multilayer model

(TE case)

function [cdeln,sigcdeln] = analytic(cn,r,sigr,L,k0,vars)

%-------------------------------------------------------------------------------

% Input parameters:

% cn = static complex refractive index, cn = n + 1i*k

% r = transient complex reflectivity

% sigr = standard deviation of the transient complex reflectivity

% L = probe penetration depth

% k0 = k0 = 2.*pi./lambda0;

% lambda0 = c_light./w; % micron (w in THz)
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% vars(1) = inverse of the pump penetration depth, alpha = 1/d

% vars(2) = angle of incidence theta0

%

% Output parameters:

% cdeln = transient changes in the complex refractive index, trn = n + 1i*k

% sigcdeln = sigma(real(cdeln)) + i*sigma(imag(cdeln))

%-------------------------------------------------------------------------------

% Get experimental parameters

alpha = vars(1); theta0 = vars(2);

% Calculate initial and final conditions

sint = sin(theta0*pi/180); cost = cos(theta0*pi/180);

costf = sqrt(1-(sint./cn).^2);

pf = cn.*costf;

% Get the change in refractive index

A = 1i.*k0.*(1-exp(-2.*alpha.*L))./(2.*alpha);

B = 2.*1i.*k0.*cn.*(1-exp(-alpha.*L))./alpha;

C = 1i.*k0.*L.*(cn.^2-sint.^2) + ...

(1-1i.*k0.*L.*pf).*cost.*(1-r)./(1+r) - pf;

cdeln1 = (-B - sqrt(B.^2 - 4.*A.*C))./(2.*A);

cdeln2 = (-B + sqrt(B.^2 - 4.*A.*C))./(2.*A);

cdeln = picksolution(cdeln1,cdeln2,cn);

% Get the error

dndC = 1./sqrt(B.^2-4.*A.*C);

dfrdr = -2./(1+r).^2;

dCdr = (1-1i.*k0.*L.*pf).*cost.*dfrdr;

sigcdeln = abs(dndC.*dCdr).*sigr;

end

function cdeln = picksolution(cdeln1,cdeln2,cn)

% Pick one solution and count the number of changes

% Real part of transient refractive index must be

% greater than zero.

cdeln = cdeln1; chg = 0;

trn1 = cn+cdeln1; trn2 = cn+cdeln2;

for n = 1:length(cdeln1),

if real(trn1(n)) < 0,

if real(trn2(n)) >= 0,

cdeln(n) = cdeln2(n);
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chg = chg + 1;

end

end

end

if chg > 0,

disp([’Number of points changed in Analytic Model: ’ num2str(chg)])

end

end
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[113] C. C. Homes, M. Hücker, Q. Li, Z. J. Xu, J. S. Wen, G. D. Gu, and J. M. Tran-
quada, “Determination of the optical properties of La2xBaxCuO4 for several
dopings, including the anomalous x = 1/8 phase,” Phys. Rev. B 85, 134510
(2012).

[114] S. Petit, A. H. Moudden, B. Hennion, A. Vietkin, and A. Revcolevischi, “Spin
dynamics study of La2xSrxCuO4 by inelastic neutron scattering,” Physica B
234-236, 800 (1997).

[115] C. H. Lee and K. Yamada, “Spin pseudogap in La2xSrxCuO4 studied by neu-
tron scattering,” Phys. Rev. B 67, 134521 (2003).

[116] M. Kofu, S.-H. Lee, M. Fujita, H.-J. Kang, H. Eisaki, and K. Yamada, “Hid-
den quantum spin-gap state in the static stripe phase of high-temperature
La2xSrxCuO4 superconductors,” Phys. Rev. Lett. 102, 047001 (2009).

[117] J. Wen, Z. Xu, G. Xu, J. M. Tranquada, G. Gu, S. Chang, and H. J.
Kang, “Magnetic field induced enhancement of spin-order peak intensity in
La1.875Ba0.125CuO4,” Phys. Rev. B 78, 212506 (2008).
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