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The equilibrium functional properties of solids are 
determined by the interplay between many microscopic 
degrees of freedom. These include the crystallographic 
structure as well as the arrangement and dynamic 
fluctuations of charges, spins and orbitals. The strong 
interactions between these many degrees of freedom 
create complex energy surfaces and make the ground 
state highly dependent on subtle changes in the micro-
scopic parameters and on fine- tuning of the external 
conditions. Understanding the origin of these emergent 
phenomena is, even at equilibrium, a formidable task 
that requires several degrees of freedom in a material to 
be monitored simultaneously. In the past two decades, 
equilibrium X- ray1,2 and photoemission techniques3,4 
have provided an enormous amount of information and 
have contributed to the understanding of equilibrium 
emergent states.

This Review focuses on a new experimental direction 
in the physics of complex correlated electron systems —  
the use of electromagnetic fields to control emergent 
properties away from thermodynamic equilibrium. 
Indeed, ultrashort laser pulses have proved to be espe-
cially effective tools to manipulate magnetism5,6 or fer-
roelectricity7,8, to induce phase transitions at ultrafast 
speed9,10 and to trigger new emergent phenomena10–13. 
The underlying physics proceeds on femtosecond and 
picosecond timescales. Although these timescales have 
been accessible since the 1970s with optical laser pulses, 
changes in the optical constants at visible and near- 
infrared frequencies provide very limited information, 
and this is only indirectly related to the microscopic 
degrees of freedom of interest.

Complementary techniques that directly interrogate 
charge, spin and lattice degrees of freedom in a material 
are therefore often used to gain deeper insight into the 

underlying physics. Time- resolved X- ray and electron 
diffraction, for example, directly track the photoinduced 
evolution of a crystal lattice (BOX 1), with some limita-
tions in time resolution for electron diffraction experi-
ments14. By contrast, time- resolved and angle- resolved 
photoemission spectroscopy (tr- ARPES) can track 
changes in the electronic band structure at different 
positions in the Brillouin zone. Similarly, knowledge of 
the transient element- specific local electronic structure 
can be gained from spectroscopic X- ray techniques, such 
as time- resolved X- ray absorption. Furthermore, tunable 
and intense X- rays provide the possibility of combining 
these spectroscopic techniques with the nanoscale spa-
tial resolution of diffraction to enable the direct study of 
the time evolution of complex orders of charges, spins 
and orbitals (BOX 1). Ultimately, a comprehensive view of 
the underlying physics of a material can only be obtained 
when results from different time- resolved techniques  
are combined.

The development of ultrafast X- ray probes dates back 
at least two decades and was made possible by the devel-
opment of high- intensity15,16 amplified optical pulses17,18. 
In the 1990s, X- ray fluorescence from plasmas19,20 
spurred activity in ultrafast X- ray probe development. 
Despite the low flux and limited tunability of these first 
femtosecond X- ray sources, many rudimentary struc-
tural dynamics experiments were undertaken, includ-
ing studies of laser- induced disordering of organic 
films21, photoinduced melting of semiconductors22–24, 
detection of coherent acoustic25,26 and optical27 phon-
ons, and photoinduced solid–solid phase transitions28. 
Other techniques combined the same high- peak-power 
femtosecond lasers with relativistic electron beams, 
initially by exploiting 90° Thomson scattering29–31 and 
later by using lasers as energy modulators in electron 
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storage rings32–35. The photon energies of these storage- 
ring-based sources are tunable and opened the door 
to femtosecond X- ray spectroscopies, such as ultra-
fast near- edge X- ray absorption spectroscopy36 and  
X- ray magnetic circular dichroism37. Accelerator- based 
sources brought about multiple- order-of- magnitude 
improvements in the X- ray flux38,39 and culminated in 

the demonstration of X- rays from the operation of a 
free- electron laser (FEL)40.

In this Review, we discuss the evolution of ultrafast 
materials research that has followed the introduction 
of X- ray FELs, focusing on how ultrafast X- ray diffrac-
tion and spectroscopy have been used to investigate 
ultrafast processes in quantum materials. We highlight 
representative experiments, with a focus on studies that 
involve the ultrafast rearrangement of ferroic orders or 
of coupled charge, spin and orbital dynamics in com-
plex oxides and other strongly correlated materials. The 
notable case of photoinduced superconductivity is also 
discussed, especially with respect to the contributions 
made by X- ray FEL experiments.

Ferroic materials

Ultrafast ferroelectric switching. Ferroelectric mate-
rials are of great scientific and technological interest, 
as they exhibit bistable, structurally distorted states 
of oppositely phased electrical polarization. Owing to 
these properties, digital information can be stored in 
ferroelectrics, making them interesting candidates for 
non- volatile memory devices. Typically, switching of the 
ferroelectric polarization is achieved by the application 
of pulsed electric fields. However, this ferroelectric 
switching is driven by incoherent dynamics and the 
propagation of domain boundaries, which limit switch-
ing times to hundreds of picoseconds41–43. Several 
attempts to achieve ultrafast ferroelectric switching have 
been made by driving the ferroelectric soft mode coher-
ently with light pulses, either with impulsive Raman 
scattering34,44–46 or direct excitation8,47.

The properties of ferroelectrics can be controlled, 
for example, by the photoexcitation of charge carriers 
across the bandgap or by the excitation of impurity 
levels. Such approaches have been used to facilitate 
polarization switching, control the domain nucleation 
and induce self- organized domain patterns48–51. The 
structural dynamics of PbTiO3 thin films in the ferro-
electric phase were shown to involve a distortion of the 
unit cell along the c axis upon photoexcitation with short 
ultraviolet pulses52. The response of the lattice constant 
along this direction was extracted from changes in the 
time- resolved X- ray scattering angle of an out- of-plane 
diffraction peak. A fast contraction of the film within 
the first 5 ps is followed by a long- lived expansion of 
the lattice. This expansion is driven by dynamic charge 
screening of the depolarization field, which in thin- film 
ferroelectrics acts against the ferroelectric polarization53.

The structural response of Sn2P2S6 in its ferroelectric 
phase to the direct excitation of its soft mode was also 
measured with X- ray probes54. Following excitation with 
terahertz pulses with a 120 kV cm−1 peak electric field, 
coherent oscillations of the atoms along the soft- mode 
coordinate were measured through the corresponding 
modulation of the intensity of selected Bragg peaks. The 
amplitude of these motions corresponded to a change of 
only 8% in the ferroelectric polarization. It was extrapo-
lated that switching may become possible if the terahertz 
electric field were to be increased to 1 MV cm−1.

In this context, the development of mode- selective 
lattice control, so- called nonlinear phononics, has 

Box 1 | Time- resolved X- ray techniques

Pump–probe X- ray techniques are a valuable tool for reconstructing materials dynamics, 

as they can directly capture transient light- induced changes in microscopic degrees of 

freedom. In a typical X- ray time- resolved experiment (see the figure), the sample under 

study is excited with a strong laser pulse, termed the pump pulse, which triggers a 

dynamic response in the material. A time- delayed X- ray pulse probes the pump- induced 

changes through interaction with the material, and the scattered (or transmitted) beam is 

subsequently collected by a detector. Depending on the choice of photon energy in the 

hard and soft X- ray regimes, information about the atomic or electronic structure of the 

material can be obtained using techniques such as X- ray diffraction, X- ray absorption 

spectroscopy and resonant X- ray diffraction.

Discovered by Max von Laue in 1912, X- ray diffraction is arguably one of the 

most useful tools for materials characterization. X- ray waves are scattered by the 

periodically ordered atoms in a crystal and interfere either constructively or 

destructively along specific directions. Analysis of the measured interference 

patterns enables the average position of each atom in the crystal to be determined 

with sub- picometre spatial resolution. For example, by monitoring the position and 

relative intensities of a chosen set of Bragg peaks as a function of time, the lattice 

dynamics triggered by the excitation of a coherent phonon can be traced25–27. With 

the symmetry of the material determining the measured diffraction pattern, the 

stages through which an ultrafast light- induced phase transition occurs can be 

followed28. Moreover, in analogy to the case of thermal diffuse scattering, the  

time dependence of the scattered intensity in between Bragg peaks reveals 

information about the dispersion of phonons without the need for ab initio  

modelling of force constants148.

X- ray absorption spectra contain fingerprints of the electronic and magnetic structures 

of materials. The X- ray energy is tuned to be in resonance with an atomic transition, 

which substantially increases the absorption, enabling the electronic and magnetic 

states to be reconstructed in an element- specific manner. By analysing how the 

absorption spectrum of a substance changes upon photoexcitation, it is possible, for 

example, to gain insight into transient changes in the oxidation states and bond lengths 

of a compound127,158. In addition, changes in the magnetic moment of a specific atom can 

be determined by measuring the X- ray magnetic circular dichroism spectrum under 

resonance conditions159.

Absorption spectroscopy captures sample properties without the possibility of 

spatial reconstruction, making it difficult to observe complex long- range ordering of 

charges, spins and orbitals. Resonant X- ray diffraction, however, combines the 

contrast mechanisms of absorption spectroscopy with the spatial resolution of 

diffraction. By performing diffraction experiments with incoming photons tuned to be 

in resonance with appropriate atomic transitions, it is possible to directly study 

phenomena such as charge stripe order in cuprates131,132 or orbital and spin order in 

manganites78,80. In recent years, this technique has been developed to operate in the 

time domain and has become a standard experiment for materials research at X- ray 

free- electron laser facilities.
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opened up new opportunities in ferroelectrics55. 
Transient reversal of the ferroelectric polarization7 was 
observed using nonlinear optical probes, an important 
achievement that will likely motivate structural studies 
of the involved atomic motions using ultrafast X- ray 
scattering.

Ultrafast magnetism. Although it has long been known 
that light can be used to destabilize ferromagnetism 
through inverse magneto- optical effects56–58, it has more 
recently been shown that ultrashort optical pulses can 
perturb magnetism along a highly non- equilibrium path 
and hence far faster than expected6,59–61. Time- resolved 
X- ray absorption spectroscopy and X- ray magnetic cir-
cular dichroism have been used to provide new insight 
into this class of processes, rejuvenating the field. For 
example, these two techniques were combined to recon-
struct the dynamic response in a Ni thin film excited 
with short near- infrared pulses37. Within ~100 fs after 
optical excitation, the ferromagnetic order was com-
pletely quenched, indicating ultrafast transfer of spin 
angular momentum to auxiliary degrees of freedom, 
presumably the crystal lattice.

Resonant X- ray scattering measurements with simul-
taneous spatial resolution have been used to study the 
growth of the magnetic disorder in magnetic thin films, 
evidencing the role of photoexcited electron diffusion on 
a length scale of only tens of nanometres62. For example, 
single soft X- ray pulses from a FEL were used to record 
diffraction patterns from nanoscale magnetic- domain 
structures63. This approach yielded magnetic correla-
tions with nanometre precision and a time resolution 
of 30 fs. Moreover, magnetic small- angle X- ray scatter-
ing was used to analyse modifications of the magnetic- 
domain structure in a Co/Pd multilayer sample induced 
by near- infrared laser pulses64. These measurements 
revealed that the quenching of the spin angular momen-
tum is accompanied by a decrease in the magnetic spatial 
correlations within the first few hundred femtoseconds. 
From its very high speed, it was speculated that this 
change in magnetic spatial correlation could not result 
from domain wall motion but was rather caused by spin- 
dependent transport of photoexcited electrons between 
neighbouring ferromagnetic domains.

Magnetic X- ray scattering experiments have also had 
a key role in determining the importance of nanoscale 
inhomogeneities on ultrafast magnetization switching in 
GdFeCo, a collinear ferrimagnet with a strong magneto- 
optical response65. Near- infrared laser pulses were used 
to excite electrons on a timescale shorter than that of 
exchange interactions (~100 fs), reversing the total mag-
netization of this compound after each pulse6,66,67. Small- 
angle X- ray scattering was used to gain insight into the 
mechanisms that may be responsible for this ultrafast 
switching5. The chemical inhomogeneities in GdFeCo 
occur on a 10 nm length scale and divide the material 
into Gd- rich and Fe- rich regions (FIG. 1a). From the mag-
netic diffraction signal, Sq, at low scattering momenta 
(q < 0.2 nm−1), it is possible to retrieve the average sample 
magnetization of the Gd and Fe spin sublattices, which 
are oppositely aligned at equilibrium. The net magnetiza-
tions of both the Gd and Fe spin sublattices are quenched 

rapidly within 1 ps after excitation (FIG. 1b, top part). The 
Sq at high scattering momenta (q > 0.2 nm−1), however, 
is sensitive to the nanoscale structure of GdFeCo and 
showed significantly different dynamics (FIG. 1b, bottom 
part). Within the first picosecond, the signal from the 
Fe 3d spins substantially decreased, whereas the signal 
from the Gd 4f spins increased dramatically, which was 
interpreted as non- local transfer of angular momen-
tum from the Fe- rich to the Gd- rich regions (FIG. 1c). 
Although magnetic switching was not directly observed, 
angular momentum transfer is probably relevant to the  
understanding of ultrafast magnetization reversal.

In addition to ferromagnetic and ferrimagnetic 
metallic compounds, time- resolved X- ray scattering 
techniques are also powerful tools for clarifying the 
ultrafast dynamics in materials with antiferromagnetic 
ordering. Over the past 10 years, resonant X- ray scat-
tering2,68,69 has been extended to the time domain and 
has emerged as a powerful technique to follow ultrafast 
dynamics with element specificity and with sensitivity 
on nanometre length scales. The first reported femto-
second resonant X- ray scattering experiment was per-
formed on the magnetic semiconductor EuTe at the Eu 
M- edge and demonstrated that the optical excitation of 
the 4 f→5d transition reduces antiferromagnetic order 
on the Eu sites with a time constant of <700 fs (REF.70). It 
was speculated that exchange interactions were modified 
as a result of optically induced lattice deformations that 
occur on the timescale of acoustic motion.

More recently, time- resolved resonant X- ray scatter-
ing has been used to probe magnetization dynamics in 
antiferromagnetic Ho (REF.71). On each Ho atom, the total 
magnetic moment is carried mostly by the localized 4f 
electrons and only partially by the itinerant 5d electrons 
that form the valence band. Time- resolved resonant 
magnetic scattering at different atomic transitions was 
used to separately reconstruct the dynamics of the local-
ized 4f and 5d spins when near- infrared femtosecond 
pulses selectively excited the 5d electrons. The exper-
iment showed that the 4f−5d exchange coupling is so 
strong that the spins on these different electrons were 
quenched on the same timescale.

Lastly, magnetic scattering allows for imaging of 
magnetization dynamics using X- ray holography72. In 
2012, the possibility of collecting high- quality magnetic 
holograms using femtosecond soft X- ray pulses was 
first demonstrated73. More recently, the same technique 
was used to directly image ultrafast demagnetization 
dynamics at domain wall boundaries in a Co/Pd com-
pound74, confirming previous observations64. Moreover, 
combined X- ray photon correlation spectroscopy with 
coherent resonant magnetic X- ray scattering has been 
used to study spontaneous fluctuations of magnetic 
skyrmions on nanosecond timescales75. These results 
illustrate that X- ray photon correlation spectroscopy 
can now be used to study excitations in the μeV energy 
range, making it complementary to inelastic X- ray and 
neutron scattering, which are typically limited to the 
study of excitations in the meV energy range.

The area of femtosecond magnetism has made 
extensive use of ultrafast X- ray sources. In addition, 
these experiments have been effective in developing a 
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whole set of new techniques, which will have an increas-
ing impact on this and other areas of non- equilibrium 
dynamics as FEL sources grow in number and improve 
in the stability of the delivered pulses, for example, with 
respect to intensity, photon energy and bandwidth.

Complex oxides

Intertwined dynamics in oxides. Many transition metal 
oxides with fractionally filled d shells exhibit interesting 
collective phenomena that are attributable to strong elec-
tronic correlations. In particular, new phases emerge that 
are not captured by the familiar concepts of band theory 

and classical magnetism. These phases are also delicate, 
in that they can be easily switched by external stimula-
tion, for example, with either static magnetic or electric  
fields or hydrostatic pressure. Excitation with light can  
also tip the balance between stable phases, sometimes 
switching the electronic properties on ultrafast times-
cales. As discussed above, femtosecond resonant soft 
X-ray scattering (RSXS) is a natural tool to study the 
evolution of these electronic or magnetic degrees of 
freedom. In combination with time- resolved hard  
X-ray scattering, which is used to track atomic structural  
rearrangements, or terahertz spectroscopy, which meas-
ures the optical conductivity, time-resolved RSXS directly 
determines how the electronic ordering is affected and 
through which stages the phase transition occurs.

For example, in photo- irradiated magnetite 
(Fe3O4)

76,77, time- resolved Fe L3-edge RSXS was used to 
track the evolution of the electronic order after excitation. 
At equilibrium, the low- temperature charge- ordered 
phase of magnetite can be described as a network of lat-
tice distortions encompassing three Fe sites with different 
valence: two Fe3+ sites and one Fe2+ site. These three- 
Fe-site distortions are termed trimerons77. The dynamic 
changes observed in the time- resolved measurements 
were interpreted in terms of the breaking of Fe trimerons 
followed by the creation of mobile charges9.

Resonant diffraction can also be applied at metal  
K- edges to measure charge and orbital order on the metal 
sites in complex oxide compounds78,79. When combined 
with non- resonant scattering, this technique can be used 
to measure the dynamic interplay between charges and 
the lattice, as demonstrated in the case of the optically 
induced insulator–metal transition in the manganite 
Pr0.5Ca0.5MnO3 (REF.80). In this material, the equilibrium 
charge order is connected to long- range orbital order 
and to a Jahn–Teller distortion of the crystal lattice81. 
Time- resolved X- ray scattering techniques were used 
to track the time evolution of these orders. Both near- 
infrared optical excitation80 and resonant excitation of 
the Mn–O stretching vibrations82 were shown to melt the  
charge order, which was followed by relaxation of  
the Jahn–Teller distortion and the orbital order.

Time- resolved RSXS experiments were performed on 
single- layer manganite La0.5Sr1.5MnO4, in which charges, 
orbitals and spins form the so- called CE- type ordering 
pattern83. Near- infrared excitation of the charge carriers 
perturbed short- range spin ordering very effectively84, 
whereas the long- range Jahn–Teller distortions and 
resulting orbital order were only weakly affected85.

Mid- infrared resonant driving of a Mn–O lattice 
mode was also shown to perturb spin, charge and orbital 
order in La0.5Sr1.5MnO4 (REF.86). This result was inter-
preted in the context of nonlinear lattice dynamics87–89: 
the crystal lattice is displaced along the coordinates of 
an anharmonically coupled Jahn–Teller mode to exert a 
force on the spin and orbital order. Similar experiments 
were performed on the layered nickelate La1.75Sr0.25NiO4 
(REFS90,91), in which charges and spins order in stripes 
within the Ni–O planes. Time- resolved RSXS studies at 
the Ni L- edge revealed that near- infrared electronic92,93, 
as well as mid- infrared lattice94, excitations also melt the 
charge and spin order in La1.75Sr0.25NiO4.
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Fig. 1 | Ultrafast angular momentum transfer in a ferromagnetic film. Non- local, 

ultrafast transfer of angular momentum in GdFeCo was revealed by time- resolved 

magnetic small- angle X- ray scattering5. a | Local chemical nanoscale variations for Gd, Fe 

and Co in Gd24Fe66.5Co9.5 as measured with energy- dispersive X- ray spectroscopy. Darker 

coloured areas indicate elemental enrichment, whereas white areas indicate below 

average concentrations. b | Temporal evolution of the magnetic diffraction, Sq, for Gd 4f 

(red) and Fe 3d (blue) spins. The measurement of Sq at low scattering momenta (q)  

(top part) probes the average sample magnetization, whereas the high- q Sq (bottom part) 

measures the evolution of the magnetization at the nanoscale, showing the transfer of 

angular momentum to the Gd- rich regions. The delay (Δt) observed for high scattering 

momenta indicates that the non- local angular momentum transfer occurs effectively 

only after ∼360 fs. c | Time evolution of the angular momentum transfer (Js) to the  

Gd- rich regions as extracted from the analysis of the high- q Sq scattering data. The 

ultrafast transfer of angular momentum takes 1 ps and is followed by a slow recovery 

through spin dissipation within the Gd regions. Adapted from REF.5, Macmillan  
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In multiferroic materials, (anti)ferromagnetic order 
and ferroelectricity coexist and interact through mag-
netoelectric coupling95–97. Intense terahertz electric field 
pulses were used to resonantly drive an electromagnon 
and coherently control the spin order in multiferroic 
TbMnO3 (REF.98). Time- resolved RSXS was subsequently 
used to demonstrate that the multiferroic order can be 
controlled on the sub- picosecond timescale; this obser-
vation could provide new opportunities for high- speed 
optical data storage devices.

Short- pulse optical excitations have also been used to 
tip the balance between different magnetically ordered 
states99. CuO exhibits lattice- commensurate (CM) 
collinear antiferromagnetic order in the ground state 
but non- collinear incommensurate (ICM) antiferromag-
netism in a multiferroic state at intermediate tempera-
tures of around 220 K (REF.100). Although the two phases 
typically coexist in different domains, near- infrared 
excitation induced a partial change of the average 
magnetic order in favour of the ICM state. Strikingly, 
rather than starting immediately after photoexcitation, 
the phase transition begins after a certain delay that 
depends on the intensity of the photoexcitation. It was 
speculated that the magnetic phase transition might be 
mediated by acoustic- branch magnetic excitations in 
analogy to the way that structural phase transitions are 
mediated by phonons. As the energy barrier between the 
ICM and CM phase decreases with increasing excita-
tion energy, the time delay approaches the lower limit of 
400 fs, equivalent to one- quarter of the oscillation period 
of a spin wave in this material.

Recently, time- resolved RSXS was used to study the 
spin- scattering dynamics in the skyrmion and conical 
phases of Cu2OSeO3 upon excitation with near- infrared 
and ultraviolet pulses101. This material has a complex 
phase diagram with many competing phases that exhibit 
different magnetic structures102, and the application of 
an external magnetic field to the conical phase creates 
a skyrmion phase. Skyrmions are topologically pro-
tected spin configurations that have recently attracted 
attention for their robustness to external perturbations 
and for their potential in data storage applications103. 
Interestingly, the time- resolved study on Cu2OSeO3 
showed that the skyrmion phase is more robust to opti-
cal excitation than the conical phase, possibly because 
different spin- scattering processes are involved in the 
two phases.

Oxide heterostructures. Complex oxide heterostruc-
tures have attracted significant interest over the past few 
years, as interfacial coupling enables the static electronic 
and magnetic material properties to be manipulated and 
new functionalities, such as superconductivity, mag-
netism or ferroelectricity, to be created at equilibrium104. 
The interfacial coupling was extended to ultrafast times-
cales when mid- infrared light fields, made resonant with 
specific phonon modes of the substrate, were used to 
trigger interfacial distortions and to dynamically modify 
the electronic properties of functional films. This was 
vividly demonstrated for a LaAlO3/NdNiO3 heterostruc-
ture105: large- amplitude excitation of the Al–O stretch-
ing mode in the LaAlO3 substrate induced an ultrafast 

insulator–metal transition in the NdNiO3 thin film105. 
Detailed insight into the spatiotemporal evolution of 
the different degrees of freedom of this ultrafast strain 
engineering phenomenon was obtained through a set 
of resonant and off- resonant X- ray diffraction experi-
ments in which the concomitant dynamics of antifer-
romagnetic order106, charge disproportionation and 
lattice dynamics107 in the NdNiO3 film were investigated. 
Time- resolved RSXS at the 852 eV Ni L3-edge was used 
to measure the dynamic change in the (¼ ¼ ¼) diffrac-
tion peak of the NdNiO3 thin film (FIG. 2a). The observed 
reduction in the peak intensity and concomitant broad-
ening indicate heterogeneous melting of the antiferro-
magnetic order. The time evolution of the intensity of 
the (2½ 2½ 2½) peak was measured both on- resonance 
and off- resonance with the 8.34 keV Ni K- edge (FIG. 2b). 
The on- resonance intensity includes a charge order con-
tribution (grey shaded region, FIG. 2b) that disappears 
on a timescale shorter than that of the off-resonance 
intensity, which is sensitive only to structural dynamics. 
Combining these different measurements enables the 
NdNiO3 lattice, magnetic and insulator–metal dynam-
ics to be extracted (FIG. 2c). The different types of order– 
disorder fronts were found to propagate from the inter-
face into the nickelate film at different speeds (FIG. 2c,d), 
with melting of the charge order advancing supersoni-
cally ahead of demagnetization and structural relaxation, 
presumably setting the speed for the insulator–metal 
transition.

Charge density wave materials. Charge density waves 
(CDWs) are periodic modulations of the valence elec-
tron density in materials. CDWs emerge in materials 
with strong electron–phonon coupling, for which the 
total electron energy is reduced by a periodic modu-
lation of the crystal lattice, resulting in either a static 
(pinned to the lattice) or dynamic (sliding) pattern at 
sufficiently low temperatures. As a result of the peri-
odic modulation, a small energy gap forms at the Fermi 
energy at the wave vector, q, of the periodic modula-
tion. CDWs exhibit peculiar electrical properties, such as 
nonlinear currents in response to alternating and direct 
current electric fields, which have attracted significant 
interest for electronic device technologies over the past 
several decades108,109.

When driven out of equilibrium, the structural and 
electronic degrees of freedom, which are intertwined 
at equilibrium, may decouple and respond differently 
on ultrafast timescales110–114. Among the most studied 
cases of photoinduced dynamics in CDW materials 
is K0.3MoO3 (blue bronze), which exhibits a 1D CDW 
along otherwise metallic chains of corner- sharing MoO6 
octahedra. Time- resolved experiments showed that 
above a certain light intensity threshold, the excitation 
of blue bronze with ultrashort infrared and visible pulses 
melts the CDW order on femtosecond timescales115–118. 
Complementary studies using ultrafast X- ray scattering 
revealed that coherent oscillations of the CDW ampli-
tude mode are triggered by a rapid reshaping of the lat-
tice potential that causes a structural relaxation within 
100 fs (REF.119). Indications of a more complex interplay 
between structural and electronic degrees of freedom 
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were also found when the response of the CDW order 
was compared with optical excitation of either the elec-
tronic subsystem or the crystal lattice with mid- infrared 
pulses120. For both types of excitation, the onset of melt-
ing was found above the same threshold magnitude of 
the coherently driven amplitude mode oscillations, 
highlighting the existence of a universal stability limit 
for CDWs, reminiscent of the Lindemann criterion for 
the melting of a crystal lattice. In view of the interplay 
with other types of orders, most prominently Cooper 
pairing in high- temperature superconductors, and given 
their role in the formation of emergent functionalities, 
the study of CDWs remains a key area of research in 
ultrafast condensed- matter science.

Superconductors

Light- induced superconductivity in cuprates. Hole- 
doped cuprates of the type YBa2Cu3O6+x are a family of 
high- temperature superconductors that crystallize in a 
perovskite structure characterized by CuO2 bilayers that 
stack along the c axis and alternate with thicker layers 
containing Ba, Cu and O atoms (FIG. 3a). Coherent tun-
nelling of Cooper pairs between adjacent CuO2 bilayers 
along the crystal c axis results in 3D coherent trans-
port below the critical temperature. Superconductivity 
is strongly enhanced by a reduction of the distance, d, 
between apical O and planar Cu atoms, which can be 
achieved at equilibrium by the application of pressure in 
the range of a few kilobars121–124. This relation between 
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the superconducting properties and lattice distortions 
opens up interesting opportunities for the control of 
superconductivity with light. Mid- infrared pulses were 
used to resonantly excite large- amplitude oscillations in 
d, which induced picosecond- lived signatures of coher-
ent transport above the critical temperature and even up 
to room temperature12,125. The underlying dynamics of 
the crystal lattice were clarified in time- resolved X- ray 
diffraction experiments126. Light- induced changes in the 
intensity of selected Bragg reflections that are sensitive 
to the motion of Cu and O ions along the c axis were 
measured to identify transient atomic rearrangements 
locked to the appearance and decay of the transient 
superconducting state (FIG. 3b). In the framework of 
nonlinear lattice dynamics87, anharmonic coupling of 
the resonantly driven Cu–O stretching mode to Raman- 
active lattice modes was expected to displace the crystal 
lattice quasi- statically along the coordinates of the latter.

A key component of the photoinduced motions 
in YBa2Cu3O6.5 at 100 K is the transient reduction in 
the important apical O to planar Cu distance (FIG. 3c). 
In analogy with static pressure- induced effects, this 

motion may facilitate light- induced coherent Cooper- 
pair transport along the crystal c axis above the equi-
librium critical temperature (TC = 50 K), as identified by 
density functional theory (DFT) calculations of the elec-
tronic structure in the transient state126. Among other 
effects, the DFT calculations predicted the transfer of 
electrons from the CuO2 planes to the Cu–O chains, 
similar to what is observed upon static hole doping. This 
interpretation was supported by femtosecond resonant 
soft X- ray absorption experiments127.

In high- temperature cuprate superconductors with 
doping levels close to 12.5%, superconductivity com-
petes with the ordering of charges to reduce the critical 
temperature. The best- known examples are 2D CDWs 
in bilayer YBa2Cu3O6+x for x ≈ 0.6 (REFS128,129) and charge 
stripes in single- layer La2−xBaxCuO4 compounds for 
x = 0.125 (REFS130,131) (FIG. 4a). To understand light- induced 
superconductivity, it is important to establish how these 
competing orders evolve when the transient supercon-
ducting states are formed from the charge- ordered state.

Time- resolved RSXS at the O K- edge was used to 
observe the rapid and complete melting of the stripe 
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order in the frustrated superconductor La1.875Ba0.125CuO4 
following illumination by intense mid- infrared pulses 
resonant with the in- plane Cu–O stretching mode132. 
Superconductivity is also quenched by charge ordering 
in the closely related compound La1.675Eu0.2Sr0.125CuO4. 
In this material, the same mid- infrared excitation 
induces transient superconductivity, which was probed 
by time- resolved terahertz spectroscopy11. The combi-
nation of results from these two experiments (FIG. 4b,c) 
strongly suggests that melting of the competing stripe 
order is a prerequisite for the formation of the transient 
superconducting state. A similar result was found in 
La1.885Ba0.115CuO4, in which, at certain temperatures, 
superconductivity and stripe order coexist at equi-
librium131. The photoinduced destruction of charge 
order in La1.885Ba0.115CuO4, measured by time- resolved 
RSXS, appears to be concomitant with the dynamic 
enhancement of the superconducting order observed in 
time- domain terahertz spectroscopy133.

This dynamic interplay of competing orders was also 
observed in YBa2Cu3O6.6 above the equilibrium critical 
temperature. The resonant optical excitation of the apical 

O vibrational mode, which, as discussed above, induces 
out- of-plane interlayer coherence, partially melts the in- 
plane CDW order, as identified in a time- resolved RSXS 
experiment at the 932 eV Cu L3-edge134.

For the first time, X- ray scattering measurements, 
as reported in these studies, were successfully able to 
capture the crystallographic and electronic properties 
of transient room- temperature superconductors. These 
findings may lead to the identification of new path-
ways towards the design of novel materials exhibiting 
equilibrium room- temperature superconductivity.

Electron–phonon coupling in high- temperature super-

conductors. As demonstrated in many of the above 
cases, combining direct measurements of the lattice 
structure with measurements of the electronic degree 
of freedom provides new insights into the emergence of 
exotic states of matter. Information from complemen-
tary experiments, such as time- resolved X- ray diffrac-
tion and tr- ARPES, can clarify the strength and origin 
of electron–phonon coupling in complex materials. 
For example, upon photoexcitation, global oscillations 
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of the Fermi level were observed using tr- ARPES  
in BaFe2As2, a parent compound of FeAs- based high- 
temperature superconductors. The frequency of these 
oscillations coincided with that of the A1g phonon 
mode, suggesting the presence of a strong electron–
phonon coupling135. These results were complemented 
by ultrafast X- ray diffraction experiments136,137 that 
quantified how the coherent excitation of the A1g mode 
modulates the Fe–As–Fe bond angle. In combination, 
these measurements lead to an estimate of the electron–
phonon deformation potential and coupling constant 
for the A1g mode, which was in good agreement with 
the DFT- calculated value.

More recently, it has been proposed that electronic 
correlations strengthen electron–phonon coupling in 
iron selenide (FeSe) and iron pnictide superconductors 
and may have a role in the emergence of superconduc-
tivity in these materials138. In a pioneering experiment, 
the electron–phonon coupling in FeSe superconductors 
was quantified139. Photoexcitation of FeSe with 1.5 eV 
femtosecond pulses triggered a coherent oscillation of 
the A1g mode. Time- resolved hard X- ray diffraction 
tracked the displacement of the Se atom, δZSe (FIG. 5a), 
while high- resolution tr- ARPES tracked the shift of 
the dXZ/YZ and dZ

2 orbital bands (FIG. 5b,c, respectively). 
These measurements yielded orbital- resolved values for  
the electron–phonon deformation potential that could 
be compared directly with predictions from theory. The 
experimental values could be reproduced only when 
DFT was combined with dynamical mean- field theory 
to include electron–electron correlation effects, indicat-
ing their importance in determining electron–phonon 
coupling in FeSe and related materials.

New frontiers

Time- resolved resonant inelastic X- ray scattering. 

Probing low- energy excitations in solids and their dis-
persion reveals information about the fundamental 
interactions. Resonant inelastic X- ray scattering (RIXS) 
is a photon- in photon- out technique that can be used to 
study elementary excitations in solids at finite momenta 
with orbital and element selectivity140. Several elemen-
tary excitations can be probed using RIXS, including 
charge- transfer excitations and d–d transistions141,142, 
magnons in two or three dimensions143,144 and phon-
ons145,146. Time- resolved RIXS enables reconstruction of 
the time evolution of such excitations, for example, when 
a material is driven out of equilibrium by a short laser 
pulse. In a pioneering experiment, time- resolved RIXS 
was used to study how magnetic correlation evolves 
upon photodoping the Sr2IrO4 Mott insulator147. The 
3D magnetic order, measured by time- resolved resonant 
elastic soft X- ray scattering, was completely quenched 
within the first 2 ps and recovered with a fluence- 
dependent time constant that varied between 100 ps and 
1 ns. Time- resolved RIXS was then used to examine the 
evolution of magnetic excitations and revealed that 2D 
in- plane magnetic correlations recover on a much faster 
timescale than the 3D magnetic order. It was speculated 
that such a fast recovery time, which is similar to that 
of charge recombination, might be due to the funda-
mental link that exists in strongly correlated materials 

between the in- plane electron hopping parameter and 
the in- plane magnetic exchange. The slow recovery  
of the long- range magnetic order was instead related 
to the weak inter- plane exchange coupling and energy 
dissipation into other degrees of freedom.
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iron- based superconductor. The orbital- resolved 
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angular- resolved photoemission spectroscopy (tr- ARPES).  

a | Displacement of the Se atom, δZSe, extracted from the 

evolution of the intensity of the (004) Bragg peak.  

b,c | Momentum- averaged energy shifts < E > of the dXZ/YZ 

and dZ
2 bands extracted from tr- ARPES measurements. All 

measurements are shown for different photoexcitation 

levels, ranging from 0.12 to 1.83 mJ cm−2. Adapted with 

permission from REF.139, AAAS.
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Fourier-transform inelastic X-ray scattering. Short X-ray  
pulses also allow for inelastic measurements of non- 
equilibrium lattice dynamics. In 2013, a new and highly 
interesting experimental technique to probe phonon 
dispersion curves in solids by measuring time-resolved 
X- ray scattering148 was demonstrated. In this exper-
iment, a single crystal of Ge was excited with near- 
infrared laser pulses to produce correlated phonon pairs 
with equal and opposite momenta that modulate the 
X- ray diffuse scattering intensity around Bragg peaks 
at twice the phonon frequency. In contrast to typical  
X- ray measurements that analyse the incoherent ther-
mal diffuse scattering and require an ab initio model of 
the interatomic forces, this method enables the phonon 
dispersion curves to be extracted directly from Fourier 
transformations of the modulated diffuse scattering 
intensity. The dispersion relations of two transverse 
acoustic modes in Ge, measured along the directions 
illustrated in FIG. 6a, are shown in FIG. 6b,c. The agree-
ment with the calculated dispersions (white lines) is 
good, especially considering that there are no adjustable 
parameters. Fourier- transform inelastic X- ray scatter-
ing was also used to investigate the origin of incipient 
ferroelectricity in PbTe. The ferroelectric instability 
was found to be due to the existence of strong electron– 
phonon interactions rather than phonon–phonon 
anharmonicities149.

Probing excitations in the time domain also has sig-
nificant advantages over equilibrium measurements 
such as inelastic neutron and X- ray scattering. For 
example, Fourier- transform inelastic X- ray scatter-
ing in the time domain allows for easier access to the 
lower- frequency part of the dispersion relations of an 
excitation. Furthermore, traditional inelastic measure-
ments reveal only harmonic properties of phonons in 
a momentum- resolved manner, whereas time- resolved 
X- ray scattering can reveal the presence of anharmonic 
coupling between different phonon modes. In a recent 
experiment, the individual decay channel of the A1g pho-
non mode in Bi was directly identified150. In this experi-
ment, anharmonic force constants between the A1g mode 
and the anharmonically coupled longitudinal acoustic 
modes were quantitatively measured for the first time.

Conclusions and future perspectives

All the experiments discussed above demonstrate how 
the advent of short X- ray pulses has enabled a far deeper 
understanding of non- equilibrium phenomena in com-
plex solids. In most cases, FEL operation is based on 
self- amplified spontaneous emission, which produces 
pulses with a large bandwidth and strong shot- to-shot 
fluctuations in most of the key parameters, such as 
intensity, duration and spectrum40. Although these 
fluctuations can often be accounted for using single- shot 
diagnostics151–153, the large bandwidth of the X- ray pulses 
severely limits the energy resolution achieved during 
experiments. This problem is typically mitigated by the 
use of monochromators, with the caveat that they cause 
a severe reduction (up to two orders of magnitude) in 
the available X- ray intensity.

To overcome the limitations in energy resolution 
and stability of the source, a key aspect in the design 

of advanced FEL sources is the adoption of seeding 
schemes with the ultimate aim of reaching Fourier- 
transform-limited X- ray pulses154–156. Compared 
with self- amplified spontaneous emission operation, 
seeded FEL operation produces pulses with a narrower 
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pulses and the optical excitation fields, as in the case 
of terahertz and mid- infrared pulses157, it is already 
becoming possible to stabilize X- ray pulses with respect 
to the absolute phase of the pump pulses. We envision 
that this advancement will open up entirely new areas 
of research in the investigation of coherence effects. 
For example, it will be possible to follow changes in 
material structure and electronic properties as they 
are induced by the excitation electric field, promising 
further insight into the origin of nonlinear couplings 
between different excitations in condensed matter.
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