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We study the thermally fluctuating state of a bilayer cuprate superconductor under the periodic action of a

staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered

phenomenon of light-enhanced coherence in YBa2Cu3O6+x , which was achieved by periodically driving infrared

active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin and

Fokker-Planck description of driven, coupled Josephson junctions, which represent two neighboring pairs of

layers and their two plasmons. In a toy model including only two junctions, we demonstrate that the external

driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via

the resonance of the high-energy plasmon. When extending the modeling to the full layers, we find that this

reduction becomes far more pronounced, with a striking suppression of the low-energy fluctuations, as visible

in the power spectrum. We also find that this effect acts on the in-plane fluctuations, which are reduced on long

length scales. All these findings provide a physical framework to describe light control in cuprates.
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I. INTRODUCTION

The understanding of high-Tc superconductivity in cuprates

is one of the central themes in condensed-matter physics.

While numerous questions about its mechanism and the phase

diagram of high-Tc materials remain, a partial consensus about

some of the equilibrium properties of high-Tc superconductors

has emerged (see, e.g., Ref. [1]). The copper oxide planes of

thesematerials are the primary location of the superconducting

phenomenon. These planes are weakly coupled in the third

direction by tunneling through an insulating layer. A phe-

nomenological description of coupled Josephson junctions is

often employed to describe the low-frequency electrodynamics

for fields perpendicular to the planes. This and similar effective

models, such as the XY model, are discussed in Refs. [2–11].

A number of recent experiments have explored the dynami-

cal properties of superconducting cuprates, either by analyzing

the excitation and relaxation of quasiparticles out and back

into the condensate [12–15], or by seeking to control the

collective properties of the condensate itself with light. This

second class of experiments, which involves nonlinear driving

of low-energy excitations such as Josephson plasmons and

phonons [16–19], elements of competing order melting, and

nonequilibrium phenomena, is what we study here.

In Refs. [18,19] an optical phonon mode of yttrium barium

copper oxide (YBCO) was driven resonantly, enhancing

interplane coherence and leading to the emergence of a

plasmon edge at temperatures exceeding 300 K, where no

signature of superconducting coherence on any time or length

scale is observed in equilibrium.

In this paper, we propose a mechanism to reduce phase

fluctuations in a layered superconductor, such as YBCO, by

driving.Wework in an extended, anisotropicXYmodel, which

wedrive out of equilibrium.Wefind that a substantial reduction

of the interlayer phase fluctuations can be achieved under

similar conditions as those explored experimentally. This does

not only constitute an intriguing scenario of dynamical control

in the solid state, it also provides a test for effective theories,

such as the XY model, far out of equilibrium.

This paper is organized as follows: In Sec. II we describe

how we represent an optically driven, layered superconductor

as an XY model with a driving term. In Sec. III we reduce

this model to just two neighboring Josephson junctions, which

provides a toy model that displays qualitatively the desired

effect of modified phase fluctuations. In Sec. IV, we consider

FIG. 1. (Color online) Simplified representation of the crystal

structure of YBCO. The copper oxide layers are shown as red and

blue, and some of the atoms in the insulating layers are shown. The

distortion of this structure, due to the motion of the apical oxygen

atoms of the infrared-active B1u mode, discussed in Ref. [18], is

driven periodically in time. This results in an external potential in the

CuO layers that is periodic in time and staggered in the c direction,

represented by the red and blue coloring, changing periodically in

time.
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the full three-dimensional system. In Sec. V we explore the

in-plane dynamics of this model, and in Sec. VI we conclude.

II. DRIVEN XY MODEL

In this section we develop our model of a driven super-

conductor. In the experiments reported in Refs. [18,19], the

optically driven phonon can be seen as a means to periodically

modulate the pairing field ψi , which is the order parameter

of the superconducting system (see, e.g., Ref. [20]). This

order parameter can be written as ψi =
∑

j,k w(j − i,k −
i)〈cj,↑ck,↓〉, where w(j,k) is the real space representation of

the pairing wave function, located at site i; cj,↑/↓ is the fermion
operator at site j . For a d-wave superconductor, w(j,k) has

the corresponding d-wave symmetry.

We consider a situation near the critical temperature Tc.

We assume that at this temperature the bosonic nature of

the condensate is not, or only partially, perturbed; that is,

we assume that order parameter fluctuations are dominant

in destroying superconducting coherence, rather than pair

breaking. We also assume that the fluctuations of the field

are dominated by thermal fluctuations, which leads us to

consider a classical field model, such as the XY model. We

approximate the field ψi in a phase-density representation

ψi =
√

n0 + δni exp(iθi) and keep terms up to second order

in δni in the Hamiltonian. The equilibrium Hamiltonian is

H0 = −
∑

〈ij〉

Jij cos(θi − θj )+
Ec

2

∑

i

δn2i . (1)

Here θi and δni are the phase and density fluctuations at site

i, respectively; Ec is the charging energy at each site, i.e.,

an inverse capacitance; and Jij are the tunneling constants

between nearest neighbors. There are three tunneling energies:

Along the c axis, the values are staggered. Js represents

the strong junctions and Jw the weak junctions. Within the

ab planes the tunneling energy is Jab. We note that the

Hamiltonian in Eq. (1) extends the standard XY model in

two ways. First, since we investigate dynamics, we added

the term Ec

2

∑

i δn
2
i , containing an additional energy scale Ec.

Second, the planes connected via Js are often treated as a single

layer. As we describe below, however, introducing the degrees

of freedom of these planes is crucial for the mechanism we

describe in this paper.We also note that the Lawrence-Doniach

model introduced in Ref. [10] gives rise to inductive coupling

between the layers. This type of coupling has been found

to be of particular importance to highly anisotropic cuprates,

such as bismuth strontium calcium copper oxide (BSCCO),

while for YBCO the Josephson couplings are the dominant

interaction (see Ref. [21]). The effect of inductive coupling

will be discussed elsewhere.

We model the external driving with the following term:

Hdr =
∑

i

Ai(t)δni . (2)

The driving potential is Ai(t) = (−1)z(i)A0 cos(ωmt), where

z(i) is the plane index to which the site i belongs. This

describes the effective staggered potential that the elec-

tron pairs experience due to the optical phonon distort-

ing the crystal (see Fig. 1). The equations of motion

TABLE I. Model parameters in kB × kelvin, h × THz, and meV.
All parameters are in energy units, represented by the symbol E in

the left column.

Js Jw Jab Ec A0 γ

E/kB (K) 20 0.2 100 6250 20–450 10

E/h (THz) 0.42 0.0042 2.1 130.7 0.42–9.4 0.2

E (meV) 1.7 0.017 8.6 539.1 1.7–38.8 0.9

are

θ̇i = Ec δni + Ai(t), (3)

δṅi = −
∑

j (i)

Jij sin(θi − θj ). (4)

The values of the parameters Js , Jw, andEc are constrained by

the two plasmon frequencies of this system. To estimate them,

we consider two ab layers coupled by either Js or Jw. We

linearize sin(θi − θj ) → θi − θj and diagonalize the system,

which gives a gapped and an ungapped dispersion. The gapped

dispersion is ω2k = 2Jw,sEc + JabEc(4− 2 cos kx − 2 cos ky),

where k = (kx,ky) is the lattice momentum, with the lattice

constant set to unity. We therefore identify ωw ≡
√
2JwEc

and ωs ≡
√
2JsEc with the low- and high-energy plasmon

frequency, in the absence of damping. We choose them

to be ∼h × 1 THz and ∼h × 10 THz, respectively (see
Refs. [18,19]). The Kosterlitz-Thouless energy scale of the

system is given by Jab, which we choose to be Jab = kB ×
100 K. This gives a critical temperature near 100 K, as for

YBCO. The ratios Jab : Js : Jw are approximately of the order

of 103 : 102 : 1. This leads to the choice Jab = kB × 100 K,
Js = kB × 20 K, Jw = kB × 0.2 K, and Ec = kB × 6250 K.
For themagnitude of the driving potential, we choose a range of

values A0 ≈ 2–40 meV. These magnitudes of A0 are realistic

values, as we discuss elsewhere [22]. All the parameters of our

effective model are summarized in Table I.

In addition to the Hamiltonian dynamics, we take the

coupling to other degrees of freedom into account, such as

phonons. We model this by coupling the pairing field to a

thermal bath in a Langevin formalism. We extend Eq. (4) to

δṅi = −
∑

j (i)

Jij sin(θi − θj )− γ δni + ξi(t), (5)

where we added a damping constant γ and a classical noise

term with 〈ξi(t1)ξj (t2)〉 = (2γ T /Ec)δijδ(t1 − t2), where T

is the temperature. In this paper we primarily discuss the

regime in which the temperature is below Tc. Therefore,

both plasmon modes are underdamped, and we choose γ =
0.2 THz. With this choice, the weak plasmon mode is visibly

broadened, while still being underdamped, as it should be

as the temperature approaches Tc, while the linewidth of the

strong mode is still fairly narrow.

III. TWO-OSCILLATOR TOY MODEL

To evidence the physical substance of our analysis, it is

helpful to first study the problem with a toy model that

exhibits only elementary features, nevertheless showing how

the driving term in Eq. (2) can lead to a reduction of the
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FIG. 2. (Color online) Time evolution of the variances of the

weak (red dashed line) and the strong (blue dashed line) junction

relative to their equilibrium value, 1Vw ≡ Vw − Vw,th and 1Vs ≡
Vs − Vs,th, respectively, as percent of their equilibrium values Vw,th

and Vs,th, respectively. Vw is also represented on the scale of an

effective temperature Teff on the right-hand side, based on Eq. (6). The

solid lines are the time evolution smoothed via Gaussian averaging

with a time scale of 1.8 ps.

phase fluctuations of the weak junction. First, we ignore the

spatial extent of the system in the ab planes. This reduces the

system to a one-dimensional system with staggered values of

tunneling, Js and Jw.

We then consider only two neighboring planes, which

meanswe consider three degrees of freedom, θi−1, θ1, and θi+1.
We assume that Ji,i+1 = Js and Ji−1,i = Jw, and we define

the phase differences θs ≡ θi+1 − θi and θw ≡ θi − θi−1. We
ignore the coupling to the layers i + 2 and i − 2.

A. Numerical solution

We integrate the Langevin equations describing these

three phases numerically (see Ref. [23]) and depict the time

evolution of the variances Vw(t) ≡ 〈sin2 θw(t)〉 − 〈sin θw(t)〉2
andVs (t) ≡ 〈sin2 θs(t)〉 − 〈sin θs(t)〉2 in Fig. 2.Vw andVs are a

measure of the interlayer phase fluctuations, and equally for the

current fluctuations, keeping in mind that the currents across

the Josephson junctions are ji ≡ 2Ji sin(θi) with i ∈ {w,s}.
We use the parameters of Table I and a driving frequency

of ωm = 2π × 10.4 THz, i.e., near the strong plasmon mode.
We use a temperature of T = 0.2 K. For this toy model, we

have to use a temperature that is of the order of Jw, or else

any phase coherence of the weak junction is suppressed. As

we demonstrate below for the full, bulk model, temperatures

of the order of Jab still give phase coherence of the weak

junctions. The driving amplitudeA0 is set to zero for t < 5 ps,

and A0 = 5.2 meV after that.

We compare Vw(t) and Vs(t) to their equilibrium values,

Vw/s,th = 〈sin2(θw,s)〉eq =
T

Jw,s

I1(Jw,s/T )

I0(Jw,s/T )
. (6)

These are obtained by taking the expectation value for the

equilibrium ensemble ρeq = exp ((Jw,s/T ) cos(θw,s)); I0(x)

and I1(x) are the modified Bessel functions of the first kind.
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FIG. 3. (Color online) Time-averaged variances of the weak

junction (top, red lines), V̄w , and the strong junction (bottom, blue

lines), V̄s , plotted against the driving frequency. Equilibrium states are

shown as dashed lines, and driven steady states as continuous lines.

We find a reduction of V̄w near the resonance of the strong junction,

where the strong junction acts as an amplifier of the external driving,

and a similar feature near ωw , due to direct driving of the weak

junction.

For the weak junction, we typically have T ≫ Jw. In this limit

we have

Vw,th ≈
1

2
−
1

16

J 2w

T 2
(7)

as the first terms of a high-temperature expansion. As we see in

Fig. 2, both variances undergo a transient phase, during which

Vw is visibly reduced. After that, a steady state emerges, in

which the time average of Vw is smaller than in equilibrium.

It is this reduction of fluctuations that we are interested in,

and which is further enhanced in the bulk system discussed

below. We show the reduction of Vw and Vs in percent of the

equilibrium value, which for the weak junction is 1–2%. To

state that reduction in more physical terms, we use Eq. (6) as a

measure, and we translate Vw into an effective temperature

Teff . This gives a “temperature” reduction of 5%. As we

demonstrate below, the state that is created via driving is not a

thermal state, but rather a nonequilibrium state. Teff is purely

an alternative measure of Vw.

In Fig. 3 we show the time-averaged variances of the strong

and weak junction, of the steady state, V̄w,s ≡ 〈Vw,s(t)〉t ,
as a function of the driving frequency ωm. We observe a

suppression of the fluctuations of the weak junction for a

driving frequency near the high-energy plasmon frequency.

We conclude that this suppression is not directly induced by

the driving term in Eq. (2) operating on the weak junction, but

by driving the high-frequency mode near resonance, which in

turn suppresses the fluctuations of the low-frequency mode.

The high-frequency plasmon mode acts as an amplifier of the

driving term acting on the weak junction.

In addition to the feature near ωs , there is a similar feature

for driving frequencies near ωw. Here, V̄s is unaffected, and

the reduction is due to direct driving of the weak junctions.

We note, however, that the driving frequencies in Refs. [18,19]

are far away from the lower plasmon frequency, and we focus

on the phenomenon around 10 THz. The dependence of this

result on the driving amplitudeA0 is discussed in Appendix A.
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FIG. 4. (Color online) (a) Power spectrum of the weak junction,

Sw(ω), in arbitrary units on a logarithmic scale. The blue line is the

thermal spectrum, and the red line is the spectrum of the driven steady

state. (b) Difference of the power spectrum of the driven state and

the equilibrium spectrum.We find that the low-frequency fluctuations

are reduced, whereas the fluctuations near the driving frequency are

enhanced. Therefore, driving leads to an up-conversion of spectral

weight.

In Fig. 4 we show the power spectrum of the cur-

rents in the weak junction for a driving frequency of

ωm = 2π × 10.4 THz, where the effect is maximum,

and for A0 = 5.2 meV. The power spectrum is de-

fined as Sw(ω) ≡ 〈jw(−ω)jw(ω)〉 − 〈jw(−ω)〉〈jw(ω)〉, where
jw(ω) = 1/

√
Ts

∫

dt ′ exp(−iωt ′)jw(t
′), with Ts being the

sampling time during the steady state. The power spectrum

is therefore the Fourier transform of the two-time correlation

function 〈jw(t1)jw(t2)〉, with times t1 and t2 in the sampling

time interval.

We find that the fluctuations are reduced at low frequencies,

which in equilibrium would correspond to a reduction of

temperature. At the driving frequency and multiples of it,

fluctuations are increased, resulting in a redistribution of phase

fluctuations in frequency space.

This redistribution can be understood as follows. The

integral over the power spectrum
∑

ω Sw(ω) is essentially the

time-averaged equal-time correlation of the current, i.e., V̄w.

This quantity, however, is nearly saturated for 1/2 at high

temperatures, as can be seen from Eq. (7). Therefore, the

total area under the power spectrum has essentially reached

its upper bound. Now, because the system is nonlinear, the

high-frequency modes near the driving frequency ωm will be

activated, and their weight in the power spectrumwill increase.

As a result the spectral weight in the low-frequency regime

has to decrease. For this mechanism to occur, we therefore

need two ingredients: first, a nonlinear system, for which

the modes of different frequency interact, and second, high

temperatures and a quantity whose fluctuations saturate at

these temperatures. We indeed do not see this effect for a

harmonic oscillator, or for low temperatures.

B. Analytical solution

In this section we derive and discuss an analytical ex-

pression for the reduction of fluctuations, for a limit of the

two-oscillator toy model. The equations of motion for the

phase differences θs and θw, whichwediscussed in the previous

section, are

θ̈w = −ω2w sin θw +
(

ω2s sin θs

)/

2− γ θ̇w + ξw

+ 2A0[ωm sin(ωmt)− γ cos(ωmt)], (8)

θ̈s = −ω2s sin θs +
(

ω2w sin θw

)/

2− γ θ̇s + ξs

− 2A0[ωm sin(ωmt)− γ cos(ωmt)]. (9)

For the noise terms we assume 〈ξi(t1)ξj (t2)〉 =
4Ecγ T δijδ(t1 − t2), with i,j ∈ {w,s}. We now consider

the motion of the strong junction as an external drive on the

weak junction, see Sec. B1. We combine this contribution

and the external drive into an effective external driving term

F (t) = F0 sin(ωmt). Furthermore, for calculational simplicity,

we consider the overdamped limit:

θ̇w = −
ω2w

γ
sin θw +

F (t)

γ
+
1

γ
ξ (t), (10)

which is a driven, overdamped Josephson junction, coupled

to a thermal bath [24]. The corresponding Fokker-Planck (FP)

equation (see, e.g., Ref. [25]) for θw is

∂tρ =
2T Ec

γ
∂θθρ +

ω2w

γ
∂θ ( sin(θ )ρ) −

F (t)

γ
∂θρ. (11)

For notational simplicity, we have dropped the subscript w;

ρ(θ,t) is the time-dependent probability distribution of θ ,

defined on (−π,π ]. As described in Sec. B2, we choose a

simple ansatz ρ = exp (f (θ,t)), with

f (θ,t) =
Jw

T
([1+ ac(t)] cos(θ )+ as(t) sin(θ )) (12)

with two functions ac(t) and as(t), which solve a set of of linear

differential equations. As demonstrated in Fig. 10(a), this solu-

tion captures both the transient and the steady-state behavior.

For the transient time scale we obtain ttr = γ /(2T Ec), which

is indeed consistent with the numerical results. For V̄w we find

V̄w ≈ Vw,th −
1

32

J 2w

T 2

F 2
0

γ 2ω2m
, (13)

which indeed shows the reduction of fluctuations, com-

pared to Vw,th, Eq. (7). In Sec. B3 we give a systematic
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high-temperature expansion to fourth order in F0 and find

V̄w ≈ Vw,th −
1

32

J 2w

T 2

F 2
0

γ 2ω2m
+
21

512

J 2w

T 2

F 4
0

γ 4ω4m
, (14)

again written for γωm ≫ T Ec. Thus, in comparison to the

equilibrium expression, the variance is first reduced, reaches

a minimum at F 2
0 = (8/21)γ 2ω2m, and then increases again. In

Fig. 10(b) we showEq. (14) in comparison to the numerical so-

lution of the single oscillator model, Eq. (10), and the equilib-

rium value. We find that Eq. (14) captures the numerical result

well, and that the suppression of fluctuations is even stronger

than the analytical estimate. In Sec. B3 we find that a typical

reduction of Teff for optimal driving is between 5% and 10%.

IV. BULK SYSTEM

We next consider a more realistic model involving a
stack of bilayers, described by Eqs. (3) and (5). We use
a lattice with either 128× 128 or 256× 256 sites in the

ab plane, and 4 in the c direction. We define Vw(s)(t) ≡
(1/Nw(s))

∑

〈ij〉w(s)〈sin
2 θij (t)〉 − 〈sin θij (t)〉2, where the sum is

over all weak (strong) junctions, Nw(s) is the number of weak
(strong) junctions, and θij is the phase difference between sites
i and j . The time evolution of Vw and Vs is shown in Fig. 5(a).
In Fig. 5(b) we show the time average of the steady state
V̄w,s ≡ 〈Vw,s(t)〉t as a function of the driving frequency. The
behavior that emerges from the extendedmodel is qualitatively
similar to the one described by the single bilayer model; see
Figs. 2 and 3. However, the magnitude of the reduction of
fluctuations is strongly enhanced.We note that the temperature
of this example is significantly higher, while the magnitude of
Vw is comparable to the toy model examples. This is due to the
energy scale Jab which is indeed the main effective tunneling
scale that the relative phase between two layers experiences.
To derive an effective single oscillator model for the

bulk model, we consider two neighboring pairs of sites,
with the phases θz,i , θz,i+1, θz+1,i , and θz+1,i+1, where z

is the layer index and i is the site index in the plane.
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FIG. 5. (Color online) (a) Time evolution of Vw(t) and Vs(t) of the bulk system for a driving frequency of ωm = 2π × 10.4 THz, a driving
amplitude ofA0 = 4.3 meV, and a temperature of T = 100 K. The system is a 256× 256× 4 lattice. (b) V̄w of the bulk system, shown as a red,

continuous line, plotted against the driving frequency, for a driving amplitude of A0 = 4.3 meV, for a 256× 256× 4 system. For comparison,
we show the nondriven value as a dashed line. As a second comparison, we show V̄w of the toy model as a black continuous line, with a

temperature chosen such that the thermal magnitude of the bulk system is reproduced. We use a driving amplitude of A0 = 4.3 meV, which

is near the optimal driving amplitude for the toy model. We note that there is a large reduction of V̄w near the resonance of the large plasmon

frequency, and that the bulk system has a much stronger reduction than the toy model. Furthermore, the reduction due to direct driving of the

weak junctions around ωw is washed out due to the strong additional damping in the bulk. (c) Power spectrum of the total current. The system

is a 128× 128× 4 lattice at T = 100 K, with a driving amplitude A0 = 4.3 meV, and for a driving frequency of ωm = 7.9 THz, which is

near the minimum of V̄w . We again see a reduction of the low-frequency fluctuations when the system is driven. (d) Difference of the power

spectrum of the driven state and the equilibrium spectrum.
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The layers z and z + 1 are connected by weak junctions.
We go to the basis of phase differences across the weak
junctions, θw,j ≡ θz+1,j − θz,j with j ∈ {i,i + 1}, and the
total phases,2w,j ≡ (θz+1,j + θz,j )/2 with j ∈ {i,i + 1}. The
largest term in the Hamiltonian is the one that couples
the phases in the planes. We therefore consider H ≈
−Jab[cos(θz+1,j+1 − θz+1,j )+ cos(θz,j+1 − θz,j )]. We write
this expression in terms of θw,j and 2w,j , and average out the
fields 2w,j , resulting in a temperature-dependent prefactor.
The remaining term is proportional to cos ((θw,i − θw,i+1)/2).
We approximate this term via a mean-field decomposition
cos ((θw,i − θw,i+1)/2) ≈ cos ((θw,i)/2)〈cos ((θw,i+1)/2)〉 +
sin ((θw,i)/2)〈sin ((θw,i+1)/2)〉. The cos term is the effective
nonlinear oscillator contribution, whereas the sin term is
an effective driving term. After rescaling θw,i/2 → θw,i ,
we therefore end up with the same effective model as in
Eq. (10), where now both Jw = Jw,eff(T ) and F0 are effective,
temperature-dependent parameters. However, the variance of
the phase fluctuations is now

Vw,2(t) ≡ 〈sin2 (2θw(t))〉 − 〈sin (2θw(t))〉2 (15)

because of the field rescaling by 1/2. In equilibrium it is

Vw,2 =
4JwT I1(Jw/T )− 12T 2I2(Jw/T )

J 2wI0(Jw/T )
. (16)

We use this expression for Teff in Fig. 5(a). For large

temperatures this approaches Vw ≈ 1
2

− 1
768

J 4w
T 4
. We can now

use the solution of the Fokker-Planck equation for a single
junction. As shown in Sec. B2, the time-averaged value of
Vw,2 in the driven steady state is

V̄w,2 ≈
1

2
−

J 4w

768T 4
−
19J 4w

768T 4
F 2
0

γ 2ω2m + 4T 2E2
c

, (17)

which again shows a reduction due to driving. We can also use
the high-temperature expansion of the FP equation, described
in Sec. B3, and calculate V̄w,2. This indeed captures the
magnitude of the reduction of phase fluctuations in the bulk,
as shown in Fig. 12.

In Figs. 5(c) and 5(d) we show the power spectrum S(ω)

of the currents across a layer of weak junctions jw,tot(t) ≡
∑

〈ij〉,w 2Jw sin θij , i.e., S(ω) = 〈jw,tot(−ω)jw,tot(ω)〉. Again

we see that the fluctuations of the low-frequency modes are

reduced due to driving, similar to the toy model.

V. IN-PLANE DYNAMICS

Finally, we study the in-plane behavior of the driven

bulk system. In Fig. 6 we show the fluctuations of the

current [jw(r,t)− j̄w(t)]
2, normalized by 1/(2Jw)

2, for a

single realization of the stochastic evolution of the system.

We find that the system undergoes periodic breathing during

a cycle. Furthermore, there are large regions, in which the

fluctuations are suppressed, with smaller regions interspersed,

in which the fluctuations are enhanced.

As described in the previous section, the magnitude of the

interlayer coherence V̄w is first suppressed, as a function of the

driving amplitudeA0, then reaches a minimum before increas-

ing again; see Fig. 12. To illustrate how the in-plane current

fluctuations are affected by this,we depict [jw(r,t)− j̄w(t)]
2 of

single realizations, for increasing driving amplitude in Fig. 7.

As is clearly visible, near the optimal driving amplitude the

fluctuations are strongly suppressed, interspersed with small

regions of increased fluctuations.

To study the in-plane behavior that was exemplified in

Figs. 6 and 7 quantitatively, we investigate how the current

correlations between different sites within each plane are

affected by driving. We define the current correlation function

G(r,t) ≡
∑

r0

〈(sin (θw(r0,t)) − sin (θw(r0 + r,t)))2〉
2N

. (18)

Here θw(r,t) refers to the phase difference across a weak

junction at the two-dimensional site location r = (x,y) and

at time t . The summation is over a single plane, with a

number of sites, N . In Appendix C, in particular in Fig. 13,

we show the time evolution of this correlation function.

Based on the time evolution of G(r,t) we define the time

average in the steady state Ḡ(r) ≡ 〈G(r,t)〉t . We depict this
quantity in Fig. 8, for two values of the driving amplitude,

in comparison to the equilibrium correlation function. We

find that the current fluctuations are visibly reduced due to

the driving, in particular on long scales. This would—in

equilibrium—correspond to a reduced temperature. However,

FIG. 6. (Color online) Current fluctuations in a plane of weak junctions, for a driving frequency of ωm = 8.3 THz, and for a driving

amplitude of A0 = 4.3 meV. On the left, we see a thermal state; on the right, we show a cycle during the steady state of the driven system.
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FIG. 7. (Color online) Current fluctuations in the steady state at

half a cycle, for three values of A0. The first panel is the same as in

Fig. 6 at half a cycle. A0 = 12.9 meV is near the optimal driving. At

A0 = 38.8 meV, the magnitude of V̄w has reached approximately its

equilibrium value again, as can be seen from Fig. 12.

we find that this asymptotic value is reached on a shorter scale,

which indicates that the correlation length of the driven state

is shorter. This is particularly visible for the driving amplitude

near the optimum. In equilibrium, the reduced correlation

length would correspond to a higher temperature. This again

demonstrates that the resulting driven state is a nonequilibrium

state, which cannot be captured by a single temperature on all

scales. This observation is consistent with the redistribution of

phase fluctuations visible in the power spectra. The long-range

modes behave as if the temperature has been reduced, whereas

on short scales the system appears to be heated up.

The above suggests a possible physical frame for pe-

riodically driven bilayer cuprates, which, in the limit of

preexisting pairs and of superconductivity being destroyed at

the weakly coupled interbilayer junction by thermal phase

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

G
(x

)

x

thermal
optimal driving

weak driving

FIG. 8. (Color online) We show the equilibrium in-plane correla-

tion functionG(r) and the time-averaged correlation function Ḡ(r) of

the driven state, for two driving amplitudes.Weak driving corresponds

to A0 = 4.3 meV and optimal driving to A0 = 12.9 meV.

fluctuations, may explain how important elements of the

superconducting phase may persist or be reestablished above

Tc. Note that the response of the in-plane condensate is

important in more than one respect. First, it is possible that the

stabilization of the long-range phase coherence may provide

further stabilization for superconductivity at low frequency at

the expense of enhanced in-plane fluctuations on short ranges

and hence at higher frequency scales. Furthermore, although

this is not studied here, the interaction of this driven phase

with other coexisting or competing in-plane charge and spin

orders [26–28] may provide additional elements and prospects

for dynamical stabilization in this class of compounds.

VI. CONCLUSIONS

In summary, we have demonstrated that a reduction of

thermal phase fluctuations in a layered superconductor can

be achieved via external driving. We have developed an

extended, anisotropic XY model to describe the dynamics of

the pairing field, and a toy model that captures this effect.

To give an example for the magnitude of the reduction

in the bulk system, we again estimate the temperature Teff
of the equilibrium system that gives the same variance Vw as

the driven system. We consider the data shown in Fig. 12.

We use Eq. (16) to determine Jw,eff from the equilibrium value

of Vw ≈ 0.455, which gives Jw,eff ≈ 341 K. The reduction

of Vw to ≈0.385 for optimal driving would correspond to
an equilibrium temperature of Teff ≈ 60 K, compared to the

equilibrium temperature T = 100 K. This demonstrates the

remarkable reduction of fluctuations that is possible with

this mechanism. With regard to the experiments reported in

Refs. [18,19], we note that the driving frequency was≈1.5 that
of the plasmon of the strong junctions. However, as is visible in

Fig. 5(b), the response of the weak junction occurs in a broad

frequency range above it, because of the amplifying effect

of the strong junction. Thus, the mechanism proposed here

can be a possible explanation and contributing factor for the

observations of Refs. [18,19]. As for future experiments, we

have demonstrated that the suppression of phase fluctuations of

theweak layers ismost effective if the driving frequency is near

the plasmon of the strong junction layer. We thus propose to

use a material with an optical phonon mode near that plasmon

frequency.
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APPENDIX A: DEPENDENCE ON THE

DRIVING STRENGTH

To illustrate the dependence of V̄w and V̄s on the magni-

tude of the driving term A0, we show frequency scans for
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FIG. 9. (Color online) (a) Time-averaged variances V̄w and V̄s of

the steady state of the toy model for increasing driving strength A0.

(b) The time-averaged variance V̄w for the bulk system, as a function

of the driving frequency, for several values of A0.

different values of A0 in Fig. 9(a) for the toy model. For

computational simplicity, we choose the overdamped limit,

with γ = 2.1 THz. We also choose Jw = 0.25 K, Js = 25 K,

U = 5000 K, and T = 0.25 K. We observe that the reduction

of V̄w occurs over a large frequency range around the resonance

frequency of the strong junction. As A0 is increased, the

response of the strong junction increases in magnitude. For

small A0, the amplitude of 〈sin (θs(t))〉 is small, and the
response is that of a driven harmonic oscillator. As A0 is

increased the nonlinearity of the oscillator skews the response

of the oscillator, as visible in V̄s in Fig. 9. This response

can be understood by expanding sin(θs) in the equation of

motion, Eq. (9), to third order and using the solution of the

driven Duffing oscillator. The response of the weak junction

shows a reduction of the fluctuations, which increases for

increasing driving. As the driving is increased further, this

effect is reverted and V̄w is increased.

In Fig. 9(b) we show the analogous frequency scans for

the bulk system. We use the same parameters as above, with

a temperature of T = 200 K. We again see a minimum of V̄w

if the system is driven near the resonance of the high-energy

plasmon. However, as the driving amplitude A0 is increased,

this tendency is reverted, and V̄w increases again, similar to

the behavior of the toy model.

APPENDIX B: DRIVEN, OVERDAMPED

NONLINEAR OSCILLATOR

We elaborate on the analytical and numerical solutions of

the driven, overdamped Josephson junction. In Sec. B 1 we

derive the effective single oscillator approximation, Eq. (10),

from the two oscillator model in Eqs. (8) and (9). In Sec. B 2

we discuss the ansatz in Eq. (12) for the Fokker-Planck

equation, Eq. (11). In Sec. B 3we discuss the high-temperature

expansion that gives the V̄w estimate in Eq. (14). The high-

temperature expansion is also used for the comparison shown

in Fig. 12.

1. Single-oscillator approximation

In this section we elaborate on the single-oscillator ap-

proximation, described by Eq. (10). We approximate the

strong junction as a driven harmonic oscillator and ignore

the coupling to the weak junction. In steady state, θs(t) is

θs(t) = A cos(ωmt)+ B sin(ωmt) (B1)

with

A = 2A0
γω2s

(

ω2m − ω2s
)2 + γ 2ω2m

, (B2)

B = 2A0
ωm

(

ω2m − ω2s + γ 2
)

(

ω2m − ω2s
)2 + γ 2ω2m

. (B3)

The skewness of the response of the strong junction, which is

also visible in Fig. 9, is due to the nonlinearity of the oscillator.

It can be understood by expanding the sin θs to cubic order and

using the Duffing oscillator solution. For the weak junction,

we consider the overdamped limit, where we ignore the θ̈w

term:

θ̇w = −
ω2w

γ
sin θw +

F (t)

γ
+
1

γ
ξ (t) , (B4)

which is Eq. (10). We interpret θs(t) as an external driving

term, given by Eq. (B1), and linearize sin (θs(t)). The resulting

driving term for the weak junctions is F (t):

F (t) = Fc cos(ωmt)+ Fs sin(ωmt), (B5)

where Fc = ω2s A/2− 2γA0 and Fs = ω2s B/2+ 2ωmA0. We

write this as F (t) = F0 sin(ωmt + φ0), with F0 =
√

F 2
c + F 2

s

and φ0 = arctan(Fc/Fs). We shift the time axis t → t −
φ0/ωm, and the resulting driving term is F (t) = F0 sin(ωmt).

2. Ansatz for the Fokker-Planck equation

In this section we discuss the approximate, analytical

solution of the Fokker-Planck equation, based on the ansatz

in Eq. (12). In equilibrium and without driving, the Fokker-

Planck equation, Eq. (11), is solved by

ρ0 = exp

(

Jw

T
cos(θ )

)

. (B6)
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To solve the driven case, we write ρ(t) as ρ = exp (f (θ,t))

and obtain

∂tf =
2Ec

γ
(T (∂θθf + (∂θf )

2) + J (cos θ + sin θ∂θf ))

−F (t)∂θf/γ, (B7)

where f has to be periodic in θ and can therefore be

expanded in a Fourier series f =
∑

n exp(inθ )fn. For the

high-temperature and weak-driving regime, we limit this

expansion to the first harmonic, n = 1. We consider

f (θ,t) =
Jw

T
([1+ ac(t)] cos(θ )+ as(t) sin(θ )). (B8)

With this, we ignore the higher-order harmonic terms in

Eq. (B7), in particular the terms∼(∂θf )
2 and∼ sin θ∂θf . The

resulting equations of motion for as and ac are

ȧs = −
2T Ec

γ
as +

F0

γ
sin(ωmt), (B9)

ȧc = −
2T Ec

γ
ac −

F0

γ
sin(ωmt)as, (B10)

where we linearized Eq. (B9), with the assumption as,ac ≪ 1.

With as,c(0) = 0, these are solved by

as(t) = C1 exp(−t/ttr )− C1 cos(ωmt)+ C2 sin(ωmt),

(B11)

ac(t) = exp(−t/ttr )[C3 + C4 cos(ωmt)]− C4/2

−C5 cos(2ωmt)+ C6 sin(2ωmt), (B12)

with

C1 =
F0γωm

γ 2ω2m + 4T 2E2
c

, (B13)

C2 =
2F0T Ec

γ 2ω2m + 4T 2E2
c

, (B14)

C3 = −
F 2
0

4

1

γ 2ω2m + T 2E2
c

, (B15)

C4 = F 2
0

1

γ 2ω2m + 4T 2E2
c

, (B16)

C5 =
F 2
0

4

γ 2ω2m − 2T 2E2
c

γ 4ω4m + 5γ 2ω2mT 2E2
c + 4T 4E4

c

, (B17)

C6 =
3F 2

0

4

γωmT Ec

γ 4ω4m + 5γ 2ω2mT 2E2
c + 4T 4E4

c

, (B18)

where ttr is the transient time scale, ttr = γ /(2T Ec). This time

scale increaseswith increasing damping, as is typically the case

in the overdamped limit. We note that for small temperatures,

in particular for T Ec ≪ γωm, the driving amplitude F0 has to

be compared to the energy scale γωm, while for T Ec ≫ γωm,

it has to be compared to T Ec. This can already be read off

from, say, Eq. (B9). Since the derivative ȧs is ∼ωmas in the

driven state, there are two homogeneous terms to counter the

driving term. As a result, as will scale as ∼F0/(γωm) or as

∼F0/(T Ec), depending onwhich is the dominant energy scale.
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FIG. 10. (Color online) (a) Time evolution ofVw for the effective,

single-oscillator model, Eq. (10). The temperature is T = 1 K, the

damping γ = 2.1 THz, the driving frequency ωm = 10.4 THz, U is

5000 K, and F0/(γωm) = 0.3. The red line shows the numerical

solution, and the blue line the analytical solution in Eq. (B19).

(b) Time-averaged V̄w for the single-oscillator model, as a function

of the driving amplitude. The red lines are numerical results, and the

blue line is the analytical result in Eq. (14).

Vw(t) is given by

Vw(t) ≈
1

2
−

J 2w

16T 2

[

1+ 2ac(t)+ 3a2s (t)
]

(B19)

within the high-temperature expansion, and up to second order

in F0. We note that as scales as first order in F0, and ac as

second order. This high-temperature expansion is in analogy

to Eq. (7). In Fig. 10(a) we compare Eq. (B19) to the numerical

solution.Wefind that both the transient behavior and the steady

state are captured by the analytical expression.

In the steady state, we have

〈

a2s
〉

= −〈ac〉 =
F 2
0

2

1

γ 2ω2m + 4T 2E2
c

. (B20)

Therefore, the time-averaged value of Vw in the steady state is

V̄w ≈
1

2
−

J 2w

16T 2
−

J 2w

32T 2
F 2
0

γ 2ω2m + 4T 2E2
c

. (B21)

For γωm ≫ T Ec this reduces to Eq. (13).
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As described in the discussion of the bulk system, we can

use a single oscillator for the bulk system as well. However,

we have to consider the variance of sin(2θ ), Vw,2(t), defined

in Eq. (15), rather than Vw. This is given by

Vw,2(t) ≈
1

2
−

J 2w

768T 2

[

1+ 4ac(t)+ 42a2s (t)
]

. (B22)

The time-averaged value for the steady state is

V̄w,2 ≈
1

2
−

J 4w

768T 4
−
19J 4w

768T 4
F 2
0

γ 2ω2m + 4T 2E2
c

. (B23)

3. High-temperature expansion

As a more systematic approach, we expand ρ as ρ (φ,t) =
1
2π

∑

k,n exp (ikφ + inωmt) ρk,n. The FP equation for ρk,n is

inωmρk,n = −
2T Ec

γ
k2ρk,n +

JwEc

γ
k(ρk−1,n − ρk+1,n)

−
F0

2γ
k(ρk,n−1 − ρk,n+1). (B24)

We reduce ρk,n to a finite number of coefficients by taking

into account only k = −2, . . . ,2 and n = −2, . . . ,2, for the
analytical result for V̄w shown below and in Eq. (14), and

k = −8, . . . ,8 and n = −8, . . . ,8 for the numerical solution
depicted in Fig. 12.

We write out the case of k = −2, . . . ,2 and n = −2, . . . ,2.
Extending the range of these coefficients can be easily done by

analogy.We represent the coefficientsρk,n, with k = −2, . . . ,2
and n = −2, . . . ,2, as a single-column vector with the entries
ρ̃ ≡ (ρ2,2,ρ2,1,ρ2,0,ρ2,−1,ρ2,−2,ρ1,2, . . . ,ρ−2,−2). The Fokker-
Planck Eq. (B24) is then

iωmM0ρ̃ = −
2T Ec

γ
M1ρ̃ +

JwEc

γ
M2ρ̃ −

F0

2γ
M3ρ̃ (B25)

with

M0 = K0 ⊗ 15, (B26)

M1 = 15 ⊗ K1, (B27)

M2 = 15 ⊗ K2, (B28)

M3 = K3 ⊗ K0, (B29)

and

K0 =











2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2











, (B30)

K1 =











4 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 4











, (B31)

K2 =











0 2 0 0 0

−1 0 1 0 0

0 0 0 0 0

0 0 1 0 −1
0 0 0 2 0











, (B32)

K3 =











0 1 0 0 0

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 0 0 −1 0











. (B33)

We solve this set of linear equations and evaluate Vw (t). We

expand to second order in 1/T and to fourth order in F0. This

gives Vw (t), from which we calculate the time-averaged value

V̄w to be

V̄w ≈
1

2
−
1

16

J 2w

T 2
−
1

32

J 2w

T 2

F 2
0

γ 2ω2m
f2(x)

+
3

512

J 2w

T 2

F 4
0

γ 4ω4m
f4(x) (B34)

with

f2(x) =
1+ 144x2

1+ 68x2 + 256x4
, (B35)

f4(x) =
7+ 948x2 + 15 648x4 + 24 832x6

(1+ 64x2)(1+ 4x2)2(1+ 17x2 + 16x4)
, (B36)

and x ≡ T Ec/(γωm). For γωm ≫ T Ec, i.e., x ≪ 1, the

expression for V̄w simplifies to

V̄w ≈
1

2
−
1

16

J 2w

T 2
−
1

32

J 2w

T 2

F 2
0

γ 2ω2m
(B37)

+
21

512

J 2w

T 2

F 4
0

γ 4ω4m
, (B38)

which is the same as Eq. (14). We also note that the

second-order term in F0 is the same as in Eq. (13). This

expression is minimized forF 2
0 = (8/21)γ 2ωm

2. The resulting

minimal value for V̄w is V̄w = 1/2− (23/336)J 2w/T 2. If we

formally equate this to 1/2− J 2w/(16T 2eff), purely as a measure

0 0.5 1.0 1.5

x

0.9

0.95

1.0

T
e
ff
/T

FIG. 11. (Color online) Effective temperature as a function of x.

The dashed lines indicate the asymptotic values for x → 0 and x →
∞.
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FIG. 12. (Color online) We show V̄w as a function of the driving

amplitude A0, for the bulk system of 256× 256× 4 sites, at T =
100 K, at a driving frequency of ωm = 8.3 THz. Additionally, we

show the prediction of the effective model, calculated via the high-

temperature expansion of the FP equation described in Sec. B 3. The

result for the bulk simulation is shown as a continuous red line, with

the nondriven case as a dashed red line. The result for the effective

single-junction model is shown in blue. Jw,eff has been chosen so

that the equilibrium value of Vw is reproduced. F0 has been chosen

to be proportional to V0, with a proportionality coefficient such that

the minima match up. We indeed see that the large reduction of the

phase fluctuations is approximately captured by the effective single-

oscillator model.

of the reduction of the fluctuations, we obtain an effective

temperature of Teff/T =
√
21/23 ≈ 0.96.

In the opposite limit of γωm ≪ T Ec we have

V̄w ≈
1

2
−
1

16

J 2w

T 2
−

9

512

J 2w

T 2

F 2
0

T 2E2
c

(B39)

+
291

32 768

J 2w

T 2

F 4
0

T 4E4
c

. (B40)

This is minimized for F 2
0 /(T

2E2
c ) = (192/97). The minimal

value of V̄w is V̄w = 1/2− (221/3104)J 2w/T 2, and the effec-

tive temperature is Teff/T =
√
194/221 ≈ 0.94.

The full expression for V̄w in Eq. (B34) is minimized for

F 2
0 =

8

3

f2(x)

f4(x)
γ 2ω2m. (B41)

FIG. 13. (Color online) Time evolution of the current correlation

function, defined in Eq. (18).

For this value of F0, V̄w is

V̄w ≈
1

2
−
1

16

Jw
2

T 2
−
1

24

Jw
2

T 2

f2(x)
2

f4(x)
. (B42)

We again formally equate this to 1/2− J 2w/(16T 2eff) and obtain

the effective temperature

Teff

T
=

1
√
1+ 2f2(x)/[3f4(x)]

. (B43)

This expression is shown in Fig. 11. We see that the two

asymptotic values derived above are indeed visible, for x = 0

and x → ∞, and that Teff/T assumes a minimum in between,

near ≈0.25. Here, Teff/T is ≈0.91.

APPENDIX C: IN-PLANE BEHAVIOR

In Eq. (18) we defined the in-plane current correlation

functionG(r,t) to quantify the behaviorwe have seen in Figs. 6

and 7. The full time evolution for A0 = 50 K is shown in

Fig. 13. The driving is turned on at t = 0 ps. After a short

transient phase, the system settles into a steady state. We

note that the long-range limit of G(r,t) is Vw(t). We take the

time averages of G(r,t) in the steady state and depict them in

Fig. 8.
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