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Optical excitation of Josephson plasma solitons in

a cuprate superconductor

A. Dienst1, E. Casandruc2, D. Fausti1,2, L. Zhang2, M. Eckstein2, M. Hoffmann2, V. Khanna1,2, N. Dean1,

M. Gensch3, S. Winnerl3, W. Seidel3, S. Pyon4, T. Takayama4, H. Takagi4,5 and A. Cavalleri1,2*

Josephson plasma waves are linear electromagnetic modes that propagate along the planes of cuprate superconductors,
sustained by interlayer tunnelling supercurrents. For strong electromagnetic fields, as the supercurrents approach the critical
value, the electrodynamics become highly nonlinear. Josephson plasma solitons (JPSs) are breather excitations predicted in
this regime, bound vortex–antivortex pairs that propagate coherently without dispersion. We experimentally demonstrate
the excitation of a JPS in La1.84Sr0.16CuO4, using intense narrowband radiation from an infrared free-electron laser tuned
to the 2-THz Josephson plasma resonance. The JPS becomes observable as it causes a transparency window in the opaque
spectral region immediately below the plasma resonance. Optical control of magnetic-flux-carrying solitons may lead to
new applications in terahertz-frequency plasmonics, in information storage and transport and in the manipulation of high-Tc

superconductivity.

T
erahertz-frequency nonlinear optics holds great potential for
device applications in data storage and manipulation at high
bit rates, as well as for applications in the coherent control

of matter. New tabletop and accelerator-based sources, which
generate electric fields at megavolt per centimetre strengths, are
opening up new opportunities in this area. Recent advances have
relied on direct control of selected vibrational resonances1–6 or
on the use of field enhancement in metamaterial structures7. In
cuprate superconductors, direct excitation of the order-parameter
phase has been shown to modulate the superfluid density on
the ultrafast timescale8, effectively demonstrating non-dissipative
routes to control themacroscopic state of the solid.

Here, the terahertz nonlinear optics of cuprate superconductors
is studied experimentally and theoretically in the general case
in which nonlinear propagation effects are combined with the
local response of ref. 8. The intrinsic nonlinearity of interlayer
tunnelling is shown to generate solitonic modes that concentrate
the electromagnetic energy in space and time, propagating without
distortion inside the material.

The terahertz-frequency electrodynamics of cuprate supercon-
ductors are, for fields polarized perpendicular to the planes, dom-
inated by superconducting tunnelling between layers9. Cuprates
are in fact stacks of extended Josephson junctions10,11, with dis-
tributed tunnelling inductance LJ(x, y, t ) between capacitively
coupled planes (x and y are the spatial coordinates in the
planes and t is time).

For low fields, LJ is independent of space and time and a single
Josephson plasma resonance (JPR) is found at ωJPR = 2π/

√
LJC

(C is the equivalent capacitance of the planes, which is assumed
to be constant in space and time). In most cuprates, ωJPR ranges
between gigahertz (refs 12,13) and terahertz (ref. 14) frequencies.
As characteristic for a plasmonic response, the superconductor is
transparent and frequency dispersive for ω > ωJPR and has unity
reflectivity for ω <ωJPR.
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For high fields, the electrodynamics of the JPR become
highly nonlinear15,16. As radiation at photon energies below the
average superconducting gap does not strongly perturb the order-
parameter amplitude (number of Cooper pairs) or the distribution
of incoherent quasi-particles, the electrodynamics are primarily
determined only by deformations of the space- and time-dependent
order-parameter phase. The phase difference between adjacent
layers (hereafter referred to only as phase ϕz) is the relevant
parameter. From the Josephson equations, the phase ϕz(x,y, t )
advances in time as ϕz(x,y,t )∝

∫

E(x,y,t ) dt and acts back onto
the inductive coupling as LJ(x,y,t )∝1/cos ϕz(x,y,t ). The resulting
electrodynamics is well captured by the sine–Gordon equation17,
which in one dimension and in the absence of dissipation reads

∂2ϕz(x,t )

∂x2
−

εr

c2
∂2ϕz(x,t )

∂t 2
=

1

λ
2
J

sin ϕz(x,t )

In this equation εr is the dielectric permittivity of the insulating
layers, c is the speed of light in vacuum and λJ is the Josephson
penetration depth. For small electric fields and thus small phase,
we have sin ϕz(x,t )∼ϕz(x,t ) and the sine–Gordon equation yields
a linear wave equation, leading to Josephson plasmawaves.

This equation also encapsulates most key phenomena observed
in long or short Josephson junctions. If a static magnetic field
is applied and the time dependence is neglected, for small fields
the equation reduces to λ

2
J (∂

2ϕz/∂x
2) = ϕ, and thus predicts the

Meissner effect ϕz(x)=ϕz(0)exp(−x/λJ). For static magnetic fields
that are large enough to prevent the small-phase approximation
λ
2
J (∂

2ϕ/∂x2) = sin ϕ, which predicts a static Josephson vortex
lattice with the phase advancing in steps of 2π with a periodicity
of the Josephson penetration depth. Finally, if the junction
is assumed to be short (≪λJ) and the spatial derivative is
disregarded,−λ

2
J (εr/c

2)(∂2ϕ/∂t 2)= sin ϕ and the equation predicts
the conventional Josephson effect.
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Figure 1 | Calculated space- and time-dependent interlayer phase for ϕz(x,t) for two pump wavelengths above resonance. a, ωFEL = 1.1ωJPR.

b, ωFEL = 1.05ωJPR. In the plots on the left, the pump spectrum is shown in red superimposed on the calculated broadband linear reflectivity of the cuprate.

The phase ϕz(x,t) is shown in the colour plots on the left for peak field strengths of E=9V cm−1 (linear excitation). The strong-field response for

E= 39 kV cm−1 is plotted on the right in the colour plots and in the one-dimensional lineouts at 40 ps and 50 ps time delays for ωFEL = 1.1ωJPR and

ωFEL = 1.05ωJPR respectively. The linear response is plotted in red.
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Figure 2 | Calculated space- and time-dependent interlayer phase for ϕz(x,t) for ωFEL =0.97ωJPR and four pump intensities: 9V cm−1, 38 kV cm−1,

39 kV cm−1, 42 kV cm−1. In the plot on the left, the pump spectrum is shown in red superimposed on the calculated broadband linear reflectivity of the

cuprate. The linear response in the colour plot on the left is for a peak field strength of E=9V cm−1. In the lower left graph a strong-field response is

depicted for E= 38 kV cm−1, where a modified evanescent wave is excited but no propagating mode ensues. Two strong-field responses are plotted on the

right in the one-dimensional lineouts for E= 39 kV cm−1 and E=42 kV cm−1.

Here, the nonlinear optical properties of the optimally doped
single-layer compound La1.84Sr0.16CuO4 (Tc = 38K) are investi-
gated theoretically and experimentally. We focus on the response
near the 2-THz JPR,where the strongest nonlinearities are found.

We first present numerical solutions of the sine–Gordon
equation, which will be shown to correctly predict the results of
the experiments. The evolution of the space- and time-dependent
order-parameter phase ϕz(x,τ ) was calculated in this work by
assuming that narrowband terahertz pulses impinged at normal
incidence onto the superconducting cuprate, with electric fields
polarized perpendicular to the planes. Details of these numerical
simulations are discussed in theMethods.

In the colour plots of Fig. 1a,b, we show the calculated phase
ϕz(x,τ ) for excitation at two frequencies in the transparent re-
gion above the plasma resonance. We report results in the linear
and nonlinear regime, that is, for 9 V cm−1 and 39 kV cm−1 peak
fields. For excitation at ωFEL = 1.1ωJPR (Fig. 1a), a propagating
mode is found with a group velocity vg = ∂ω/∂k = 2.5×107 ms−1,
with little variation at higher field strength. Thus, for excita-
tion frequencies far enough above ωJPR the nonlinear response
was found to be small.

The calculated response becomes strongly field dependent closer
to resonance, for ωFEL = 1.05ωJPR (Fig. 1b). In the linear regime
(9V cm−1), light propagates at vg =∂ω/∂k=2×107 ms−1, a slightly
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Figure 3 | Pictorial representation of a JPS as it propagates at four time

delays. A bound kink–antikink pair (blue), with associated oppositely

phased magnetic fields By , oriented along the y axis (red) oscillates as it

propagates. The time spanned between τ1 and τ4 is half of a Josephson

plasma period, corresponding to approximately 250 fs (not visible in Fig. 2).

The equivalent representation in terms of an oscillating vortex–antivortex

pair is included in the inset.

lower group velocity than for ωFEL = 1.1ωJPR. In the strong-field
regime, the phase profile is significantly perturbed, with sharpened
and increased phase oscillation developing as the wave penetrates
into thematerial, andwith the pulse shape breaking up in a train.

The dynamics immediately below ωJPR, shown in Fig. 2, is
where the most interesting effects were obtained. For weak
fields (E = 9V cm−1) the evanescent mode characteristic of linear
excitation below a plasma resonance is observed, with screening
occurring over a distance 1/α = 18 µm. Strong deformation of
the evanescent wave is obtained for E = 38 kV cm−1. Remarkably,
when the electric field exceeds a threshold of 39 kV cm−1 a
propagating mode emerges. A spatial lineout of the phase for 60 ps
time delay (upper right of the figure) shows a single solitonic
pulse of amplitude ϕpeak

z (x, τ ) ≈ π/4, which evolves from the
exponentially evanescent wave at early times. These JPSs, excited
for near-threshold electromagnetic field strengths, propagate at
a small fraction of the speed of light (vg = 8 × 105 ms−1, or
∼2.5 × 10−3 c0). As the field strength is further increased to
42 kV cm−1 the pulse contracts further and speeds up, with a
peak phase of ϕpeak

z (x,τ )≈ π/2. At even higher fields (not shown
here, see Supplementary Information), more than one soliton is
launched during the pulse.

Figure 3 presents a caricature of a JPS, in which two self-
localized18–20 Josephson vortices propagate along the planes,
oscillating against one another at a frequency determined by
the strength of the binding. As a consequence, the peak of the
phase pulse oscillates between positive and negative values. These
excitations are also often referred to as breathers21,22. From the
sine–Gordon equation, we estimate that the oscillation between
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Figure 4 | Equilibrium optical properties of La1.84Sr0.16CuO4. a, Reflected

terahertz transients above (red) and below (black) Tc = 36K. b, Intensity

reflectivity |r(ω)|2 (black) in the frequency domain as extracted at 6 K from

the time-resolved transients after normalization to the incident field. As the

reflectivity relied on various calibrated parameters, it was known with only

a few per cent accuracy, fluctuating around 1 for ω <ωFEL. c, Real and

imaginary part of the complex frequency-dependent permittivity

ε = ε1+ iε2 measured at 6 K. d, Normalized loss function at equilibrium

f(ω)/f(ωJ), with f(ω)= −Im(1/ε(ω)), determined at 6 K.

positive and negative peak values occurs at a frequency νOSC ∼ νJPR,
thus with a period of only a few hundred femtoseconds (not visible
in Fig. 2). We stress that size, peak value, propagation velocity and
breathing frequency depend extremely sensitively on the excitation
conditions. This field dependence is especially strong close to the
39 kV cm−1 threshold.We next turn to the experimental data, which
validate the simulations discussed above.

First, we show the static, linear optical properties of unexcited
bulk La1.84Sr0.16CuO4 as measured in reflection at a 6 K base
temperature by an ultrashort probe pulse with the electric field
polarized perpendicular to the superconducting planes. These
measurements are shown in Fig. 4. Single-cycle, broadband probe
pulses, polarized along the c axis of the superconductor23 were
generated by a photoconductive antenna illuminated with a
femtosecond laser24. The reflected pulses were measured by
electro-optic sampling in ZnTe. In the superconducting state
(T <Tc = 38K), long-lived near-2-THz oscillations appeared on
the trailing edge of the pulse (Fig. 4a, black trace). The frequency-
dependent complex reflection coefficient was derived by Fourier
transformation as r(ω) = Erefl(ω)/Einc(ω). The incident electric
field Einc(ω) was independently calibrated by using reflection at
temperatures above Tc, where the reflectivity was featureless in
this spectral range. The intensity reflectivity |r(ω)|2 is shown
in Fig. 4b, and reproduces that found in numerous frequency-
domain studies25,26. In Fig. 4c we report the complex permittivity
ε(ω) = ε1(ω)+ ıε2(ω) extracted from the reflectivity data27. The
real part ε1 is negative for frequencies below the plasma resonance,
where the reflectivity nears 1. For ω > ωJPR, ε1 is positive and
electromagnetic radiation can propagate inside the sample. The
imaginary part ε2 is small but finite over the whole frequency
range, indicating weak dissipation by non-superconducting quasi-
particles. In Fig. 4d, the loss function is shown, defined as
f (ω) = −Im[1/ε(ω)]. This function quantifies the amount of
electromagnetic energy coupled into the Josephson plasma; it
peaks at ωJPR and exhibits Lorentzian line shape. The width is
determined by damping. From the peak of the loss function we
determine ωJPR = 2.05 THz.

NATUREMATERIALS | VOL 12 | JUNE 2013 | www.nature.com/naturematerials 537

© 2013 Macmillan Publishers Limited. All rights reserved



ARTICLES NATUREMATERIALS DOI: 10.1038/NMAT3580

1.6 2.0 2.4

1.0

0.5

0.0

R
e

fl
e

c
ti

v
it

y

1.6 2.0 2.4

Frequency

1.0

0.5

0.0

R
e

fl
e

c
ti

v
it

y

a b c

D
e

la
y

 (
p

s)

∆r/r

0.1

¬0.1

0.0

P
u

m
p

 sp
e

c
tru

m

1.6 2.0 2.4

Frequency

1.6 2.0 2.4

Frequency

1.0

0.5

0.0

R
e

fl
e

c
ti

v
it

y

1.6 2.0 2.4

Frequency

FrequencyFrequency

1.6 2.0 2.4

150

100

50

0

Figure 5 | Time-dependent optical properties of La1.84Sr0.16CuO4 for three excitation frequencies. a–c, Top, the linear reflectivity of the sample over the

whole broad bandwidth (black line). The pump spectrum is shown in red for the three conditions studied here ωFEL = 1.1ωJPR, ωFEL = 1.05ωJPR and

ωFEL = ωJPR. The time-dependent differential field reflectance 1r(ω,τ )/r0(ω) is reported in the lower plots.

Figure 5 reports the pump–probe results. These experiments
were uniquely made possible by the use of a terahertz free-electron
laser (FEL), which emitted intense, narrowband (1ω/ω ∼ 1%)
pulses of 25-ps duration, and could be tuned around the 2-THz
JPR. The excitations of the superconductor were then probed in the
time domain using the same laser-generated, single-cycle terahertz
pulses used to measure the static properties of Fig. 4. The laser
oscillator was electronically synchronized to the FEL, and pump–
probe time delays were scanned by offsetting the synchronization
phase-locked loop and by an optical delay line for finer delays.
The excitation by the FEL was tuned around the plasma resonance,
at ωFEL = 1.1ωJPR (5a), ωFEL = 1.05ωJPR (5b) and ωFEL ∼ ωJPR (5c).
The FEL wavelength was measured by using a grating spectrometer,
which allowed for a precision better than 1%. Both pump and
probe fields were polarized along the c axis, perpendicular to
the superconducting planes. The pulse energy from the FEL was
adjusted to 100 nJ and focused into spots of approximately 1mm2,
resulting in peak fields of 10 kV cm−1 with a repetition rate of
13MHz. Minimal heating resulted at this irradiation level, and
the frequency of the JPR did not shift significantly on average. As
the response of the system was probed at 78MHz, only one pulse
in six probed the light-induced dynamics. The data presented in
the figure are derived from the experimental data with a factor
of six linear scaling.

The colour plots in Fig. 5 show 1r exp(ω,τ )/r0(ω), relative
changes in reflectance that are dependent on the frequency and
the pump–probe time delay. For ωFEL = 1.1ωJPR (Fig. 5a) only
small changes in the reflectivity were detected. For ωFEL = 1.05ωJPR

(Fig. 5b) a decrease of reflectivity for ω >ωFEL and an increase over
a narrow spectral window for ω < ωFEL was measured, indicative
of a redshift of the edge. At ωFEL ∼ ωJPR, the reflectivity data
(Fig. 5c) show a drop in reflection at all frequencies, with a complex
rearrangement in the optical properties.

Experiment and theory are compared in Fig. 6 for strong-field
excitation. We discuss the results in terms of the time- and
frequency- dependent loss function f exp(ω,τ )=−Im(1/εexp(ω,τ )),
already introduced in Fig. 4d for the optical properties of the
unperturbed superconductor. The experimental loss function was
determined at each time delay by extracting the frequency-
dependent dielectric constant εexp(ω, τ ) from the reflectance

r exp(ω,τ )= r0(ω)+1r exp(ω,τ )of Fig. 5. The reflectivity r exp(ω,τ )
was fitted with a model that considered a surface layer (with
thickness fixed to the pump wavelength penetration depth)
of unknown properties over an unperturbed semi-infinite su-
perconductor with the properties of Fig. 4. The frequency-
dependent penetration depth of the probe pulses was included
in this calculation.

The simulated strong-field phase profiles ϕz(x,τ ) summarized
in Figs 1 and 2 were used to calculate the expected time-dependent
optical reflectivity r calc(ω,τ ) (see Methods). The reflectivity was
transformed into εcalc(ω,τ ) by fitting it with the same model used
for the experimental data.

Excellent agreement is found in Fig. 6 between theoretical
and experimental loss functions for all of the above-resonance
excitation wavelengths. The theory predicts a shift to the red
of the loss function during the pump pulse and immediately
thereafter, when the probed volume is being traversed by the
nonlinear propagating plasma wave. No significant effect appears
after the pump wave has propagated beyond the probe penetration
depth. The effect is stronger as the pump wavelength is tuned
closer to resonance. In the experiment, the resolution is not as
sharp as in the simulations, and the redshift is clearly visible
only for ωFEL = 1.05ωJPR. This shift of the loss function is well
understood from qualitative considerations. As the Josephson
phase oscillates with large amplitude, the average inductance
increases and, consequently, ωJPR = 2π/

√
LC decreases. These

observations are an experimental confirmation for the self-induced
transparency theoretically predicted in the literature for these
experimental conditions28.

Figure 6c compares the experimental and theoretical loss
functions at ωFEL ∼ ωJPR. During the pump pulse (τ < 50 ps), as
the soliton is formed, the loss function is observed to broaden
to the red. Owing to the extreme nonlinearity of this process,
the reshaping of the loss function can be only qualitatively
reproduced in the simulations.

At time delays after the excitation (τ > 50 ps), a long-lived dip
is observed in both experiments and simulations. Lineouts for
80 ps time delay are compared in the uppermost plots of Fig. 6c.
The split line shape with a dip is well understood by considering
the optical properties of the solid in the presence of the JPS. As
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c, ωFEL ∼ ωJPR. The experimental loss function, extracted from the

reflectivity data in Fig. 5c, is shown on the left. The theoretical loss

functions, extracted from the calculated high-field phase profiles of Fig. 2,

that is, for a field strength of 39 kV cm−1, are shown on the right. At time

delays larger than 50 ps both lineouts exhibit a splitting of the loss function.

The lineouts shown in the uppermost part of the figure report the

unperturbed loss function (black dotted line), the perturbed loss function

at 80 ps time delay (red curve) and a Gaussian fit to the pump spectrum

(black, shaded). The best fit is obtained for simulations at ωFEL ∼0.97ωJPR

(see text).

the probe interrogates the superconductor, the optical response
becomes determined by the superposition of regions in which the
JPS is present (ϕz(x, t ) ≫ 0) and regions for which ϕz(x, t ) ∼ 0.
Interference occurs throughout the spectrum. One useful analogy
for the split line shape is with the effect of anharmonically

coupled plasmon excitations in metallic micro-structures29, where
the optical response of a linear plasma mode is reshaped in a
similar manner. One can also draw a parallel with physical systems
in which continuum excitations are anharmonically coupled to
discrete ones, such as in the Fano effect30 or in electromagnetically
induced transparency31,32.

We note that the line shape observed in the experiment here
could not be explained by incoherent quasi-particle excitations.
This is well understood by considering that in the sine–Gordon
equation quasi-particle damping is accounted for by the term
γ (∂ϕz(x,t )/∂t ), where γ is the scattering time between the phase
and quasi-particles. Quasi-particle excitations then act only to
broaden the linewidth.

In the simulated plots, the dip decays on a timescale thatmatches
the escape time of the soliton from the probe volume (5–20 µm
depending on the wavelength). The calculated decay time of the
dip for E = 39 kV cm−1 is 40 ps, as opposed to the measured
value of 150 ps. This indicates that our simulations overestimate
the velocity of the breather by a factor of 3–4. We recall that
the simulations consider only a single junction without disorder.
The discrepancy in velocity may be qualitatively explained by the
fact that disorder may cause the soliton to slow down further
from the ideal case.

Two further quantitative differences are to be found between
theory and experiment. First, the calculations predict the formation
of a slow soliton (thus causing a long-lived dip) when the
excitation field is approximately 40 kV cm−1, a factor of 3 or 4
above the experimentally determined value of 10 kV cm−1. Various
effects may lead to more efficient coupling of the light in the
experiment, including the physics of a stack of junctions (not
considered in the simulations), whichmay amplify the nonlinearity.
Furthermore, our experiments are nominally performed at pump
frequencies of ωFEL ∼ ωJPR, but are best described by calculations
performed at ωFEL = 0.97ωJPR. We note that the confidence level
on the relative calibration of the pump wavelength and the
probe is approximately 1% (the pump wavelength is measured
with a grating spectrometer as opposed to time-delay terahertz
detection for the probe pulses). This difference seems then to
be significant. However, as the experimental linewidth is broader
than the one obtained in the simulations, it is quite possible
that inhomogeneous (caused by disorder) broadening may be at
play in the experiment. A more complex spectral reshaping is in
fact observed, including broadening to the red of the perturbed
experimental loss function.

We reported a theoretical and experimental study of tera-
hertz nonlinear optics of Josephson plasma excitations in super-
conducting cuprates. For excitation above the plasma resonance
our experiments confirm the optical effects predicted in previous
theoretical work1,2, causing transparency through a light-induced
shift of the resonance. For excitation at the plasma resonance, a
slowly propagating mode is excited, which our simulations identify
as a JPS. As a result, a transparency window caused by inter-
ference is created, reminiscent of effects observed in plasmonic
metamaterials27. Various applications to plasmonics33, as well as
new strategies for optical control of superconductivity, can be
predicted from our work.We recall that the control of flux-carrying
phase kinks has been considered in conventional Josephson junc-
tions for information transport and storage34,35, for which currents
were used as a means to control a fluxon shift register. Here, we
demonstrate how such flux carriers can be driven and detected
by light. Combining these ideas with terahertz coherent control
techniques36 may open up many new opportunities. Light could be
here used to generate, stop, accelerate or slow down flux-carrying
JPSs. Further, the control of JPS may be used for sensing of static
vortices, or even to pin, de-pin, anneal or move vortices in the
presence of static magnetic fields.
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Methods

Simulation of the nonlinear optical properties from the sine–Gordon equation.
We consider a stack of Josephson junctions with semi-infinite layers stacked along
the z direction. A free surface at x = 0 is considered, where optical pump and probe
pulses, with the electrical field vector along z , impinge at normal incidence and
propagate along x . We assume translational invariance in the y direction, and the
propagation of the Josephson phase difference across each layer of the cuprate is
described by a one-dimensional sine–Gordon equation

∂2ϕ

∂x2
−

ε

c2
∂2ϕ

∂t 2
=

1

λ
2
J

sin ϕ (1)

Tangential components of both the electric and magnetic fields are made
continuous at the boundary between the vacuum and the superconductor. The
following boundary conditions for the phase are used

[Ei (t )+Er (t )]x=−0 = Ec (x,t )|x=+0 = H0

1

ωJPR

√
ε

∂ϕ(x,t )

∂t

∣

∣

∣

∣

x=+0

(2)

[Hi (t )+Hr (t )]x=−0 =Hc (x,t )|x=+0 = −H0λJ

∂ϕ(x,t )

∂x

∣

∣

∣

∣

x=+0

(3)

The subscripts i, r and c stand for fields impinging, reflected and propagating inside
the cuprate. In this expression, H0 =Φ0/2πDλJ, where Φ0 is the flux quantum and
D is the distance between adjacent superconducting layers. For these equations, the
value of the plasma resonance is chosen to be ωJPR = 2.05 THz. The damping time
was extracted from a fit to the data reported in Fig. 1.

For fields in vacuum (x <0), Maxwell’s equations imply

Ei −Er =
ωµ

ck
(Hi +Hr) =Hi +Hr (4)

Combining equation (4) with equations (2) and (3), we can calculate the
propagation of the Josephson phase by solving the sine–Gordon equation with
one boundary condition

2
√

ε

H0

Ei (t )|x=−0 =
∂ϕ(x,t )

ωJPR∂t

∣

∣

∣

∣

x=+0

−
√

ε
∂ϕ(x,t )

∂x/λJ

∣

∣

∣

∣

x=+0

(5)

and then obtain the reflected field from equation (2). The static reflectivity of the
cuprate is obtained by computing the ratio between the Fourier transforms of the
reflected field and a weak input field

r static (ω) = E static
r (ω)/Ei(ω) (6)

Permittivity, conductivity and loss can be calculated from r static(ω). In the
simulation, we renormalize the input field as E ′

i (t )= 2
√

εEi(t )/H0. E
′
i = 1

corresponds to Ei ≈ 30 kV cm−1.
For the pump–probe configuration, the input field is the sum of the pump field

and the probe field (note that theremay be a delay between them)

Ei(t )= Epump(t )+Eprobe(t ) (7)

Correspondingly, the Josephson phase can be decomposed as

ϕ = ϕpump +ϕprobe (8)

Substituting this equation into the sine–Gordon equation equation (1) and using
the relation sin(ϕpump +ϕprobe) = sinϕpump cosϕprobe + cosϕpump sinϕprobe , we
obtain two coupled equations

∂2ϕpump

∂x2
−

ε

c2
∂2ϕpump

∂t 2
=

1

λ
2
J

sinϕpump cosϕprobe (9)

∂2ϕprobe

∂x2
−

ε

c2
∂2ϕprobe

∂t 2
=

1

λ
2
J

sinϕprobe cosϕpump (10)

For a weak probe (ϕ ≪ 1), cosϕprobe ≈ 1 and the effect of ϕprobe on ϕpump can be
neglected in equation (9). The simulation can then be performed in two steps:
solve equations (9) and (5) with the driving field Ei = Epump to get ϕpump(x,t )
(the spatial-temporal propagation of breathers); substitute ϕpump(x,t ) into
equation (10) and solve this equation together with equation (5) with the driving
field Ei = Eprobe, which will give us ϕprobe(x,t ) and the reflected probe field Eperturb

r .
The perturbed reflectivity is given by

rperturb(ω)= Eperturb
r (ω)/Ei(ω) (11)

Once rperturb is calculated, it is compared with the experimental results by fitting
with a model that considers a surface layer (with a depth fixed to the pump

wavelength penetration depth) over an unperturbed semi-infinite superconductor
with the optical properties calculated from equation (4).
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