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We use coherent midinfrared optical pulses to resonantly excite

large-amplitude oscillations of the Si–C stretching mode in silicon

carbide. When probing the sample with a second pulse, we ob-

serve parametric optical gain at all wavelengths throughout the

reststrahlen band. This effect reflects the amplification of light by

phonon-mediated four-wave mixing and, by extension, of optical-

phonon fluctuations. Density functional theory calculations clarify

aspects of the microscopic mechanism for this phenomenon. The

high-frequency dielectric permittivity and the phonon oscillator

strength depend quadratically on the lattice coordinate; they os-

cillate at twice the frequency of the optical field and provide a

parametric drive for the lattice mode. Parametric gain in phononic

four-wave mixing is a generic mechanism that can be extended to

all polar modes of solids, as a means to control the kinetics of

phase transitions, to amplify many-body interactions or to control

phonon-polariton waves.
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Amplification of light through stimulated emission or non-
linear optical interactions has had a transformative impact

on modern science and technology. The amplification of other
bosonic excitations is likely to open up new remarkable physical
phenomena. In particular, the amplification of both acoustic and
optical phonons under intense laser and magnetic fields (1–4), as
well as through Cerenkov effects (5) has long been the subject of
theoretical studies. Acoustic phonon amplification has been
reported in optically excited ruby (6, 7) and semiconductor
superlattices driven by electrical currents (8–10), and is a stan-
dard working regime of cavity optomechanics (11). The ampli-
fication of optical phonons was so far observed only due to
drifting electrons in semiconductor nanostructures (12), where
the conditions for Cerenkov amplification are favored. Fur-
thermore, stimulated Brillouin and Raman scattering (13) ex-
periments could lead to the amplification of acoustic and optical
phonons, respectively. However, the literature so far focused on
the Brillouin and Raman amplification of light, for example in
silicon (14, 15).
Here, we explore the nonlinear response of resonantly driven

optical phonons in dielectrics; we discuss their amplification and
their coupling to electromagnetic radiation.
Fig. 1 depicts the nonlinear dependence of the polarization P

on the phonon displacement Q and on an external electric field E
in a chain of Si and C atoms. The response of this idealized chain
was computed by first-principle calculations. The polar optical
mode of this chain involves the relative displacement of the sil-
icon (red) and carbon (blue) sublattices (Fig. 1A), reminiscent of
the in-plane mode of hexagonal SiC (see below).
The first contribution to the nonlinear polarization, which we

will refer to as PL, bears on the effective dipolar charge Zp. Such
Born effective charge, defined as Zp

= ∂PL=∂Q, is approximated
by a constant in the linear response regime (PL =ZpQ) but de-
pends on Q for large lattice distortions (Fig. 1 B and C). For the
chain of Fig. 1A and, generally, for most dielectrics, the Born
effective charge depends quadratically on the lattice coordinate
Zp

=Zp

0 + αQ2 (Fig. 1C).

The second contribution to the nonlinear polarization emerges
from the dielectric screening of the electric field E by the elec-
trons, giving the term P∞ = e0χE= e0ð«∞ − 1ÞE. In contrast to the
Born effective charge, which is a pure ionic response, the per-
mittivity «∞ accounts for higher-energy excitations of the elec-
tronic band structure such as interband transitions. Similar to the
Born effective charge, the permittivity «∞ is a constant for small
lattice displacements but becomes dependent on Q when the
lattice is strongly distorted and hence the band structure
changes. This effect is captured by the calculations of Fig. 1D
for the Si–C chain, in which the slope χ = «∞ − 1 of the polari-
zation P∞ = e0χE is shown to change at large values of Q. This
second nonlinear term scales also quadratically with Q, as
«∞ = 1+ χ = 1+ ∂P∞=∂E= «∞,0 + βQ2 (Fig. 1E).
Summarizing, the nonlinear polarization of a strongly driven

optical mode in SiC (and a generic dielectric) includes two
nonlinear corrections, both quadratic in Q, one to the effective
dipolar charge Zp and one to the dielectric constant «∞. Let us
now consider the dynamical response of the lattice to an optical
field E=E0 sinðωtÞ, tuned at or near the resonance associated
with the transverse optical mode (Fig. 2).
For small field amplitudes, P=Zp

0Q+ e0ð«∞,0 − 1ÞE and the
time-dependent phonon coordinate Q(t) follows the familiar
equation of motion of a periodically driven damped oscillator
Q
::
+Γ _Q+Ω

2
TOQ=ZpE0 sinðωtÞ, in which Γ and ΩTO denote

damping and phonon frequency, respectively. In this case one obtains
the familiar linear response expression Q=Q0 sinðωtÞexpð−ΓtÞ.
We first analyze the nonlinear response of PL alone, that is,

when the Born effective charge (but not «∞) depends on the
lattice displacement (α≠ 0, β= 0). The equation of motion is
Q
::
+Γ _Q+Ω

2
TOQ= ðZp

0 + 3αQ2ÞE0 sinðωtÞ. To leading order, the
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solution to this equation can be thought of as generating a set
of harmonics in the force term. For oscillations in Q at fre-
quency ω, the Born effective charge oscillates at 2ω, as
Zp

=Zp

0 + αQ2 ∼Zp

0 + αQ2
0ð1=2− 1=2cosð2ωtÞÞ (Fig. 2). As a con-

sequence, the driving force in the equation of motion in-
cludes also a 3ω component as 3αQ2E0sinðωtÞ∼3αQ

2
0ð1=2−

1=2cosð2ωtÞÞE0sinðωtÞ.
More important is the nonlinear response of P∞ = e0ð«∞,0+

βQ2−1ÞE to the driving field (α=0,β≠0). This term translates into
a +e0βQ

2E correction to the polarization and, thus, into a change
in the energy of the system ΔU=−PE∝ −βQ2E2. Hence, an
additional force emerges on the oscillator FQ= −∂U=∂Q∝+βE2Q.
The equation of motion can therefore be written as
Q
::
+Γ _Q+ΩðtÞ2TOQ=ZpE0sinðωtÞ, with a time-dependent pho-

non eigenfrequency ΩTO=ΩTO,0−βEðtÞ
2. Because ΩTO oscil-

lates at frequency 2ω, the equation of motion is that of a
forced parametric oscillator. Parametric amplification of
lattice fluctuations QðtÞ are then expected due to the non-
linearity of P∞. For a detailed derivation of the nonlinear
equations of motion we refer the reader to SI Appendix,
section S5.
In this work, we experimentally validate the prediction of

phonon amplification in bulk silicon carbide (polytype 4H, Fig.

3A). If the specific sample crystal structure and dielectric prop-
erties are taken into account, the considerations made for the
idealized chain of Si and C atoms reported above are still valid
(see SI Appendix, section S4 for more details). The eigenvector of
the phonon studied here is shown in Fig. 3B, which displays
motions of the Si and C atoms in opposite directions along one
of the in-plane crystallographic axes. The equilibrium linear
reflectivity is reproduced in Fig. 3C, displaying a 5-THz-wide
reststrahlen band, between ΩTO = 24 THz and ΩLO = 29 THz.
Large-amplitude oscillations of the lattice were driven with
midinfrared pulses, which were generated with two optical
parametric amplifiers (OPAs) and difference frequency genera-
tion (DFG), powered by a Ti:Sa femtosecond laser at 1-KHz
repetition rate. The pump pulses were tuned to ΩLO = 29 THz.
At these frequencies, the pump pulses were focused to obtain
∼9-MV/cm field strengths. A second independently tunable
OPAs and DFG setup was used to probe the spectral response of
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Fig. 1. (A) Chain of silicon (blue) and carbon (red) atoms. At equilibrium,

the positive ions are surrounded by negative electronic clouds, arranged in

space so that no polarization is present. If an ion is displaced, a polarization P

is created along the chain. The system can be described by effective positive

and negative ionic charges Z*, depicted as shaded areas around the ions. (B)

Lattice polarization along the chain and (C) effective charge Z* as a function

of Q, resulting from first-principle DFT calculations. For large displacements,

the polarization is not linear in Q anymore, and the effective charge is in-

creased. The first expansion of Z* in Q is parabolic (gray line). (D) Non-

resonant contribution to the polarization as a function of E for different

values of Q. (E) Dielectric constant «∞ as a function of Q, also parabolic,

resulting from first-principle DFT calculations.
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Fig. 2. Dynamical response of the diatomic chain to a large-amplitude pe-

riodic driving of the phonon. For an applied electric field E= Eo sinωt (black

line), the phonon coordinate Q oscillates as Q=Qo sinωt. Due to their qua-

dratic dependence on Q, the effective charge Z* and the dielectric constant

«∞(gray line) are oscillating at frequency 2ω.
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Fig. 3. (A) Crystal structure of SiC, polytype 4H (space group C4
6v-P63mc). Si

atoms in blue, C atoms in red. (B) Eigenvectors of the infrared active mode

excited by the pump pulse (Eu symmetry). (C) Reflectivity at equilibrium as-

sociated to the driven mode [data from literature (24)].
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the same pumped resonance in reflection geometry. The time-
resolved reflectivity was recorded with broadband probe pulses
centered at 26.5 THz, with spectral weight covering the whole
reststrahlen band. As the probe pulses exhibited a stabilized
carrier-envelope phase, the time-dependent optical properties
could be measured with sensitivity to both amplitude and phase
by electrooptic sampling. To sample at this frequency, we com-
pressed the pulses from the titanium:sapphire laser using a near-
infrared noncollinear OPA, which generated pulses with ∼20-fs
pulse duration (see SI Appendix, section S1 for details). The
results of our pump–probe experiments are reported in Fig. 4, in
which we plot the wavelength-dependent reflectivity after exci-
tation with pump pulses.
For pump electric fields E0 > 4 MV/cm, the reflectivity in the

reststrahlen band was observed to become larger than R = 1,
reaching the values of R ∼ 1.15 and evidencing amplification.
This feature, emphasized in red in Fig. 4 A–D, developed at the
earliest time delays and at the center of the reststrahlen band,
broadening in frequency and persisting for longer time delays as
the pump field was increased toward 9 MV/cm. As depicted in
Fig. 4E, the reflectivity increases throughout the reststrahlen
band, scaling quadratically with the pump electric field, as shown
in Fig. 4F. These observations suggest that for large coherent
excitations of the phonon, the probe electric field is amplified
and, by extension, the lattice coordinate Q.
Numerical simulations of the optical response under the

conditions of the experiment were used to analyze the results
above and to validate amplification of both E and Q. Starting
from Maxwell’s equations, we considered the interaction of
electromagnetic transients of arbitrary shape and amplitude with
the SiC crystal. In these calculations, which are discussed in SI
Appendix, section S5, we considered both pump (strong) and
probe (weak) pulses and included the quadratic dependence of

both the Born effective charge Zp and dielectric constant «∞ on
the phonon coordinate Q, as obtained from density functional
theory (DFT) analysis of the Si–C lattice.
The calculated α- and β-coefficients were adjusted to fit the

experimental data. These simulations reproduced well the main
features of the time-delay-dependent and frequency-dependent
reflectivity response measured experimentally, as reported in
Fig. 5 A–D. For pump fields in excess of 4 MV/cm, the simula-
tions predict R > 1. Precisely as observed in the experiments, the
frequency-dependent profile of the amplification (R > 1)
emerges from the center of the reststrahlen band and expands
both in frequency and time as the pump field increases (Fig. 5E).
The calculated maximum reflectivity also scales quadratically
with the pump peak electric field (Fig. 5F), in agreement with
the experiments. The simulations further confirm that not only
the probe electric field (Fig. 6A), but also the oscillations in the
phonon coordinate Q (Fig. 6B) are amplified. In particular, Fig.
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Fig. 4. (A–D) Time-delay-dependent and frequency-dependent measured

reflectivity Rðt,ωÞ for driving peak electric fields of (A) 3.73, (B) 4.87, (C) 5.90,
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where the reflectivity is greater than one. The horizontal dashed lines in-
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maximum of the pump–probe response for different driving peak electric
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pendence of the maximum measured reflectivity. In this plot, two additional
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6B displays the time-dependent QðtÞ with (red) and without
(black) excitation, highlighting phonon amplification.
The idea that lattice fluctuations can be amplified para-

metrically through the nonlinear response of the lattice is rele-
vant in more than one area. For example, in the context of light-
enhanced superconductivity in cuprates (16–18) and in the
doped fullerites (19), a recent theory has suggested that para-
metric amplification of pairs of squeezed phonons may enhance
the superconducting instability (20, 21). Integral to these conjec-
tures is the ability to parametrically amplify phonons by four-wave
vibrational mixing. The mechanism discussed here naturally extends
to these conditions.
The present results are also connected to previous studies in

charge-density wave systems, in which parametric amplification of

the order-parameter phase mode, driven by large-amplitude co-
herent excitations of the amplitude mode, has been discussed (22).
Finally, the physics of phonon amplification discussed here

could be immediately extended to the manipulation of phonon-
polariton waves, which are of interest to information transport
on subwavelength length scales (23). The ability to control the
properties and amplitude of phonon-polaritons may for example
lead to tunable metalenses for the phonon field, or to many other
extensions of optoelectronic manipulation to “polaritonics.”
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