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R
esonant optical excitation of infrared-active phonon modes 
can drive the crystal lattice of solids nonlinearly1, excite other 
orders coherently2, switch lattice polarization3, drive insula-

tor-to-metal4 or magnetic transitions5, and even induce transient 
superconductivity above equilibrium Tc

6,7. In the potassium-doped 
fulleride K3C60, a superconductor with critical temperature Tc =  20 K, 
excitation of local molecular vibrations was shown to induce super-
conducting-like optical properties in the high-temperature metal 
(T >  Tc)

8. Key features of this state are a 12 meV wide gap in the 
frequency-dependent optical conductivity σ1(ω), twice as large as 
the equilibrium 6 meV wide superconducting gap, and a divergent 
low-frequency imaginary conductivity σ2(ω), indicative of high car-
rier mobility. This state was found to extend to at least 100 K, hence 
up to temperature scales far in excess of equilibrium Tc (20 K). For 
T >  100 K, a partially gapped state was reported. In this higher-tem-
perature regime, the light-induced state can be interpreted either as 
a high-mobility metal en route to a transient superconducting state, 
or as an incipient superconductor, which is only partially coherent.

Many theoretical mechanisms have been invoked to explain these 
observations, ranging from a dynamical reduction of the electronic 
bandwidth9 to the parametric amplification of the pairing instabil-
ity10 and to electron attraction11 in vibrationally excited molecular 
sites12,13. Recent experiments in bilayer graphene are consistent with 
some of these suggestions9,10, as the optical excitation of a vibra-
tional mode similar to that driven in K3C60 appears to increase the 
electron–phonon interaction14. Finally, recent theoretical work has 
raised the possibility that photostimulation may involve optical 
excitation and cooling of above-gap thermal quasiparticles into a 
superexcitonic state with high electronic heat capacity15.

The face-centred cubic structure of doped fullerides A3C60 is 
shown in Fig. 1a. Three electrons are donated by the alkali atoms to 
each C60 molecule, which then form three narrow, half-filled bands 
near the Fermi level. Figure 1c shows how the equilibrium supercon-
ducting transition appears in the steady-state optical properties of 
K3C60, measured above and below Tc =  20 K. When cooling metallic  

K3C60 (red curves) below Tc, one observes large changes in the opti-
cal properties: a saturation of the low-frequency reflectivity to R =  1, 
a 6 meV gap in the real part of the optical conductivity σ1(ω), and a 
1/ω divergence in the imaginary part σ2(ω)8,16 (blue curves).

As superconductivity in K3C60 emerges from a combination 
of Jahn–Teller intramolecular distortions and electronic correla-
tions17–19, it is natural to explore the response of the material to 
direct excitation of optically accessible vibrational modes. In Fig. 1d  
we report the optical properties of polycrystalline powders of 
K3C60, 1 ps after the excitation tuned to ‘on-ball’ infrared-active 
modes of T1u symmetry at 170 meV energy (7.3 μ m wavelength), 
whose atomic distortion is displayed in Fig. 1b. At this frequency, 
strongly correlated metallic carriers are also excited, as the radia-
tion is also resonant with a broad absorption peak extending 
from about 40 to 200 meV20, whose precise origin is still unclear15.  
A broadband probe pulse was used to detect the light-induced 
changes in the optical reflectivity and complex optical conductiv-
ity between 1.6 and 7 THz (6.5–29 meV) using THz time-domain 
spectroscopy. Starting from the unperturbed metallic state at 
100 K (red curves), we observed an increase in the reflectiv-
ity, which saturates to R =  1 for all probe photon energies below 
12 meV, a gapped σ1(ω) and a divergent σ2(ω). These data confirm 
the results of ref. 8, but were recorded with an improved apparatus, 
involving higher pump fluence and a broader probe bandwidth 
(see Supplementary Information S3).

In this paper, we study how the features reported in Fig. 1d 
change with the application of hydrostatic pressure. At equilibrium, 
the application of pressure reduces the superconducting transition 
temperature Tc, because of the increase in the electronic bandwidth 
when the intermolecular spacing is reduced21,22. As shown in Fig. 2,  
the size of the optical gap (2Δ0) and the critical temperature23,24 
decay linearly even at relatively modest pressures. Due to the low 
bulk modulus (28 GPa; ref. 24), a pressure of 3 GPa reduces the 
superconducting gap to less than half of the ambient-pressure value, 
as the electronic bandwidth increases by about 25% (ref. 25).
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Figure 3 displays snapshots of the measured optical reflectivity  
R(ω) at the sample–diamond interface, along with complex con-
ductivity spectra, σ1(ω) and σ2(ω), for different values of static 
pressure. The exact pressure was measured with calibrated ruby 
fluorescence (see Supplementary Information S3). In each panel, 
the red and blue curves trace the optical properties of the equilib-
rium metal and those of the non-equilibrium state induced by pho-
toexcitation, respectively. For pressures up to 0.17 GPa (Fig. 3a-c) 
the transient optical response of K3C60 is similar to that observed 
at ambient pressure, with a reflectivity approaching R =  1, a gapped 
σ1(ω) and a divergent σ2(ω) toward low frequencies. However, some 
spectral weight is also found in σ1(ω) at low energies, indicative of  
reduced coherence.

As the applied pressure increases, a stronger suppression of 
the light-induced changes in both the reflectivity and complex 
optical conductivity is observed (Fig. 3d,e). Above 0.3 GPa the 
enhancement in the reflectivity is clearly less pronounced, and 
a progressively broader Drude peak appears at low frequency in  
the σ1(ω) spectrum.

The reduction in light-induced coherence observed as a function 
of pressure is clearly not compatible with the behaviour expected for 
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Fig. 1 | Structure, equilibrium phase transition, and transient light-induced phase of K3C60. a, The fcc crystal structure of K3C60 (ref. 28). The C60 molecules 

are represented by the green bonds connecting all the C atoms. The grey spheres are the K atoms, acting as spacers between neighbouring buckyballs. The 

equilibrium lattice constant is 14.26 Å at room temperature. b, C60 molecular distortion (blue) along the T1u(4) vibrational mode coordinates.  

The equilibrium structure is shown in red. c, Reflectivity (sample–diamond interface) and real and imaginary optical conductivity—R(ω), σ1(ω) and 

σ2(ω)—across the equilibrium superconducting transition in K3C60. The red curves are measured at 25 K, in the metallic phase. The blue curves refer to 

the equilibrium superconductor (10 K). d, Reflectivity (sample–diamond interface) and real and imaginary optical conductivity—R(ω), σ1(ω) and σ2(ω)—of 

K3C60 at equilibrium (red) and 1 ps after photoexcitation (blue) at T =  100 K. The light-blue curves show the data reported in ref. 8, measured with a fluence 

of 1 mJ cm−2, while those in dark blue were measured with a broader probe spectrum and a higher pump fluence (3 mJ cm−2).
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Fig. 2 | Equilibrium pressure dependence of superconducting K3C60.  

a, Schematic representation of a diamond anvil cell on the K3C60 crystal 

structure. By applying external pressure, the intermolecular distances are 

reduced. b, Superconducting transition temperature and calculated optical 

gap (2Δ0/kBT =  3.52; ref. 23), plotted as a function of lattice parameter and 

external pressure. Data adapted from refs 24,29.

NATURE PHYSICS | VOL 14 | AUGUST 2018 | 837–841 | www.nature.com/naturephysics838



ARTICLESNATURE PHYSICS

a light-induced metallic state, as a lattice compression in a metal is 
typically associated with larger electronic bandwidth, smaller effec-
tive mass and higher mobility. This is for example evident when 
analysing the equilibrium metallic properties in the red curves of 
Fig. 3 (see also Supplementary Information S2), where we observe 
higher plasma frequencies ωp with increasing pressure.

In Fig. 4 we report the fractional spectral weight loss for frequen-
cies inside the gapped region of the spectrum, obtained by integrat-
ing σ1(ω) between 6.5 and 12.9 meV for different pressures and 
base temperatures of 100 K, 200 K and 300 K (see Supplementary 
Information S9 for full data sets at 200 and 300 K). Shaded blue 
areas indicate the pressure–temperature ranges where the light-
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Fig. 3 | Pressure dependence of the transient optical properties of K3C60 at T = 100 K. Reflectivity (sample–diamond interface) and complex optical 

conductivity of K3C60 measured at equilibrium and 1 ps after photoexcitation at T =  100 K, for different external hydrostatic pressures. All data were taken 

with the same pump fluence of 3 mJ cm−2.
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induced state is gapped. Overall, the light-induced gap fills even 
at moderate pressure values, becoming even smaller for increasing 
temperature. For P ≳  0.3 GPa, the pressure dependence of the light-
induced effects is strongly reduced.

Fits to the optical properties of Fig. 3 make the qualitative 
analysis above quantitatively significant (see Supplementary 
Information S10). By fitting the transient optical response of K3C60, 
we extrapolated the value of the low-frequency optical conductivity 
σ0 =  σ ω

ω→

lim ( )
0

1 . To compare both superconducting-like and metallic-

like states in a consistent fashion, we used a Drude–Lorentz fit for 
the entire pressure range, in which σ0 was allowed to float from 
finite (metal) to infinite values (perfect conductor), and a single 
lorentzian was used to capture the mid-infrared absorption band 
extending from 40 to 200 meV.

The results of this analysis are summarized in Fig. 5, where 
we report the pressure dependence of σ0 for three temperatures 
(100 K, 200 K, and 300 K). The red squares refer to the equilib-
rium metal, while the blue diamonds to the photoexcited state. 
As shown in these plots, the equilibrium metallic conductivity 
increases with applied pressure. In contrast, two pressure regimes 
are found for the light-induced state, one in which σ0 decreases 
for small pressures (dσ0/dP <  0, blue shaded area) and one where 
it eventually increases slightly for higher pressures (dσ0/dP >  0, 
yellow shaded area). Several indications can be extracted from 
these data.

First, as mentioned above, from the optical properties alone 
reported in ref. 8, one could not uniquely differentiate a supercon-
ductor from a perfect conductor, as optics only identifies the density 
of charge carriers and the scattering rate. The hydrostatic pressure 
dependence reported here adds crucial information. At low pres-
sures, the photoexcited state has clear superconducting-like pres-
sure dependence (dσ0/dP < 0), whereas for higher pressures the 
response is clearly metal-like (dσ0/dP >  0). Furthermore, at high 
pressures the σ0 of the photoexcited state follows the same slope as 
that of the equilibrium metal.

In this context the results reported for high temperatures 
(T =  200 K and T =  300 K) are surprising. In this temperature range, 
a high-mobility metallic state was proposed to interpret the data of 
ref. 8. However, this interpretation was also not unique, as a super-
conducting-like state with progressively lower coherence could also 
have explained the data. Figure 5 suggests that in the low-pressure 
regime the dσ0/dP <  0 behaviour is retained all the way to 300 K, 
suggesting that some incipient features of transient superconductiv-
ity may already be present up to room temperature.

These observations also provide guidance for a microscopic 
explanation of our results. Indeed, as summarized in Fig. 6, we find 
a very strong dependence of the light-induced optical conductiv-
ity on pressure, and for the higher-pressure ranges (smaller lattice 
constants) the metallic phase (yellow) is stabilized. Our data set 
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an important benchmark for theories of photoinduced supercon-
ductivity9–11,15,26,27, which should reproduce the observed pressure 
dependence. Figure 6 also indicates a clear path for future research 
in the broader context of A3C60 superconductivity, showing on the 
right-hand side the region of the phase diagram still to be accessed 
(b), with the interesting perspective of optimizing light-induced 
superconductivity further, for even larger lattice spacing.

Data availability. The data sets generated and analysed during the 
current study are available from the corresponding author on rea-
sonable request.
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