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We investigate electron paring in a two-dimensional electron system mediated by vacuum fluctuations
inside a nanoplasmonic terahertz cavity. We show that the structured cavity vacuum can induce long-range
attractive interactions between current fluctuations which lead to pairing in generic materials with critical
temperatures in the low-kelvin regime for realistic parameters. The induced state is a pair-density wave
superconductor which can show a transition from a fully gapped to a partially gapped phase—akin to the
pseudogap phase in high-Tc superconductors. Our findings provide a promising tool for engineering
intrinsic electron interactions in two-dimensional materials.
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Pairing between fermionic quasiparticles in solids
through the exchange of virtual bosonic excitations is
one of the most studied phenomena in the solid state
because it can lead to remarkable emergent phases of matter
like superconductivity. This phenomenon has been exten-
sively investigated for the case of attractive interactions
induced by phonons [1], magnetic excitations [2], and
theoretically by longitudinal photons through the Kohn-
Luttinger effect [3,4]. Vacuum fluctuations of the transverse
electromagnetic field can also provide attractive inter-
actions, albeit with far lower efficiency. These current-
current interactions in the Fermi liquid have to date been
discussed in free space, where effects are restricted to very
low temperatures [5–9], or in strongly correlated materials,
where they could lead to the pairing of spinons [10,11].
However, interactions between current fluctuations and
vacuum excitations of the electromagnetic field can occur
within a cavity over mode volumes far below the free-space
diffraction limit λ3 (e.g., V ∼ 10−5λ3 in Ref. [12]). These
conditions are routinely created in nanoplasmonic cavities
in the terahertz regime [12–19], where the ultrastrong-
coupling regime between light and matter can be reached
even in bad cavities. This compression of the cavity field
increases the vacuum field strength (∼1=

ffiffiffiffi

V
p

), and thereby
enhances the induced interaction (∼1=V) to an experimen-
tally accessible regime.
Furthermore, the cavity structures the electromagnetic

vacuum by inducing a photonic band gap ℏω0 and creating
an effective photon mass ℏω0=c

2 (where c is the speed of
light in the cavity filling material) that reduces its group
velocity. The extremely low-temperature scale of the effect
in free space, which is attributed to the smallness of the
Fermi velocity with respect to the speed of light [8], should
thus be enhanced further. In contrast to polariton-mediated
superconductivity [20–22], where the glue for electron

pairing is provided by the exchange of hybridized exciton-
photon or phonon-polariton [23] quasiparticles in a cavity,
the direct interaction with a cavity does not require the
pumping of the cavity, and is also not affected by excitonic
interactions.
In this Letter, we show that the coupling of a terahertz

cavity field to intraband transitions of a two-dimensional
electron gas gives rise to a superconducting instability with
a critical temperature that can reach the low-kelvin regime
using realistic cavity and material parameters.
We consider a two-dimensional electron gas placed into

a cavity made of two mirrors [see Fig. 1(a)]. The electronic
Hamiltonian is given by H0 ¼

P

k⃗;σ
ϵ
k⃗
c†
k⃗σ
c
k⃗σ
, where c

k⃗σ

destroys an electron with quasimomentum k⃗ and polariza-
tion σ, and the electron dispersion ϵ

k⃗
is determined by

the lattice geometry. The cavity is described by the
Hamiltonian Hf ¼

P

q⃗;sℏωqa
†

q⃗;s
aq⃗;s, where aq⃗;s describes

the annihilation operator of a photon with in-plane
momentum q⃗ and polarization s, and with dispersion ωq ¼
ω0½1þ ðcjq⃗j=ω0Þ2(1=2 [24–26]. To leading order, the inter-
action between cavity and electron system is given by the
paramagnetic coupling of the form [27,28]

Hint ¼
X

k⃗;σ;q⃗;s

g
ðq⃗Þ
k⃗;s
ffiffiffiffi

N
p ðaq⃗;s þ a†

−q⃗;s
Þc†

k⃗þq⃗;σ
c
k⃗;σ
; ð1Þ

where g
ðq⃗Þ
k⃗;s

is a coupling parameter and N indicates the

number of sites. We model the cavity mode compression
below the diffraction limit by a compression factor A, such
that g ∝ 1=

ffiffiffiffi

A
p

[see Supplemental Material (SM) [29]].
Note that we have not invoked the commonly used dipole
approximation, nor the rotating wave approximation which

PHYSICAL REVIEW LETTERS 122, 133602 (2019)

0031-9007=19=122(13)=133602(6) 133602-1 © 2019 American Physical Society



can fail in the strong-coupling regime [30]. While our
calculations are based on a specific model for the cavity
geometry shown in Fig. 1(a) (details are given in SM [29]),
we expect the main results of our Letter to be independent
of the specific details of the cavity mode.
Integrating out the cavity degrees of freedom, which are

in their ground state, and using that ℏωq ≫ jϵ
k⃗
− ϵ

k⃗
0 j, the

interaction Hamiltonian Eq. (1) yields the cavity-mediated
electron interaction

Veff ¼ −
1

N

X

k⃗;σ;k⃗
0
;σ0

X

q⃗;s

g
ðq⃗Þ
k⃗;s
g
ð−q⃗Þ
k⃗
0
;s

ℏωq

c†
k⃗þq⃗;σ

c
k⃗;σ
c†
k⃗
0
−q⃗;σ0

c
k⃗
0
;σ0 : ð2Þ

Equation (2) describes the interaction between current
fluctuations mediated by the structured electromagnetic
vacuum. Because of the symmetry of the electromagnetic
field, this interaction is attractive for electrons propagating
in the same direction. This “Amperean” pairing instability
can give rise to superconductivity with the Cooper pairs
residing on the same side of the Fermi surface (FS), and
having a large center-of-mass momentum ∼2kf, where kf
is the Fermi wave vector [10,11]. The resulting pair-density
superconductor has been discussed in the pseudogap phase
of cuprate superconductors [31] and in topological insula-
tors [32], yet it has never been identified unambiguously to
the best of our knowledge.

Amperean pairing can lead to the condensation
of electron pairs in the vicinity of a nesting vector Q⃗
on the Fermi surface [10]. Relabeling the indices,

k⃗ ¼ Q⃗þ p⃗0, k⃗
0 ¼ Q⃗ − p⃗0, and q⃗ ¼ p⃗ − p⃗0, the cavity-

mediated electron interaction Eq. (2) reads Veff ¼
ð1=2NÞ

P

⃗ Q;⃗ p;⃗ p0
P

σ;σ0 V
ð⃗ QÞ

⃗ p;⃗ p0c
†

⃗ Qþ⃗p;σ
c†
⃗ Q−⃗p;σ0

c⃗
Q−⃗p0;σ0 c⃗Qþ⃗p0;σ,

with V
ðQ⃗Þ
p⃗p⃗0 ¼ −2

P

sg
ðp⃗−p⃗0Þ
Q⃗þp⃗0;s

g
ðp⃗0

−p⃗Þ
Q⃗−p⃗0;s

=ℏωjp⃗−p⃗0j. In the follow-

ing, we will investigate this attractive interaction on
a simple rectangular lattice with nearest-neighbor
hopping t, for which the electron dispersion reads ϵ

k⃗
¼

−2t½cosðkxaÞ þ cosðkyaÞ( − μ, where a denotes the lattice
constant, and where we also added the chemical potential μ.
We find (see SM [29])

V
ðQ⃗Þ
p⃗;p⃗0 ¼ −

V0

2

P

i¼x;yfcos½ðpi þ p0
iÞa( − cos½2Qia(g

ðω0a=cÞ2 þ ½ðp⃗ − p⃗0Þa(2 ; ð3Þ

where we defined the overall interaction strength V0 ¼
2g2

0
ðaω0=cÞ2=ℏω0, and g0 denotes the coupling strength

which contains the cavity compression. The interaction
Eq. (3) is attractive, as long as cos½ðpi þ p0

iÞa( >
cos½2Qia(. The current operator conserves the electron
spin, and as such, it can facilitate electron pairing in both
the singlet and the triplet channel.

(a)

(c)

(d)(b1)

(b2)

FIG. 1. (a) A 2D electron gas depicted by yellow sites interacts with a cavity, whose electric field distribution is indicated in red. The
electronic hopping amplitude t is also sketched. (b) The exchange of virtual photons between electric intraband transitions creates an
effective electron interaction. This is decomposed into two contributions as described in the main text: panel (b1) displays the effect of
the lattice geometry on the cavity-mediated interaction across the first Brillouin zone as a function of the nesting vector Q⃗ and panel (b2)
shows the interaction Eq. (4) in arbitrary units (arb. units). (c) Leading eigenvalues νi according to Eq. (5). (d) The eigenfunctions
corresponding to eigenvalues ν1 and ν2 pertaining to a nesting vector Q⃗ ¼ k0ð1; 1Þ are shown along the positive quadrant of the Fermi
surface, and positive and negative sectors of the wave functions are indicated. The color code is given on the right-hand side. ν1
corresponds to a singlet and ν2 to triplet symmetry. We used parameters appropriate for a 2D electron gas in GaAs: relative permittivity
ϵ ¼ 13, electron band mass m, ¼ 0.069me, chemical potential μ ¼ −3.98t, lattice constant a ¼ 5.6 Å, and a cavity frequency
ω0 ¼ 2π × 5 THz.
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The potential VðQ⃗Þ
p⃗;p⃗0 peaks sharply around p⃗ ¼ p⃗0, such

that it can affect only a very narrow band around the Fermi
energy. The width of this peak is determined by the cavity
properties encoded in the denominator, which only depends
on jp⃗ − p⃗0j. In the corresponding coordinate space r, the
potential is proportional to the zeroth-order Bessel function
of the second kind,

VðrÞ ∼ −K0

$

ω0r

c

%

; ð4Þ

shown in Fig. 1(b2). It shows a logarithmic divergence at the
origin, and tails decaying as ∼ expð−ω0r=cÞ=ðω0r=cÞ1=2.
The exponential decay is a consequence of the off-resonant
coupling. At larger distances, the virtual photons take on a
real character [33], and the interaction is suppressed by
energy conservation. However, the length scale of this decay
c=ω0 is∼μm for terahertz cavities, and thus up to 4 orders of
magnitude larger than typical lattice constants a ∼ 10 Å. For
all practical purposes, the cavity-mediated interaction can
therefore be considered a long-range interaction.

The numerator of VðQ⃗Þ
p⃗;p⃗0 depends solely on ðp⃗þ p⃗0Þ and

the nesting vector Q⃗. For small p⃗ and p⃗0, it reduces to
∼ sin2ðQxaÞ þ sin2ðQyaÞ, which is plotted in Fig. 1(b1).
Clearly, the interaction is strongest along the (anti)diago-
nals Qy ¼ -Qx. So in the following, we will investigate

pairing in the vicinity of the points Q⃗ ¼ k0ð-1;-1Þ, where
k0 is chosen such that Q⃗ lies on the Fermi surface.
We decouple the electron interactions with the mean

fields ΔðQ⃗Þ
σσ0 ðp⃗Þ¼N−1

P

p⃗0V
ðQ⃗Þ
p⃗;p⃗0hcQ⃗−p⃗0;σ0

c
Q⃗þp⃗0;σ

i. Since VðQ⃗Þ
p⃗;p⃗0

is attractive only in the vicinity of Q⃗, we can evaluate
pairing around the different nesting vectors separately, and
each of these turns into an identical calculation. To identify
the dominating gap symmetry, we follow the approach in
Refs. [34,35] adopted for the pair-density wave state (see
SM [29]): We linearize the gap equation near the critical
temperature Tc, and determine the largest eigenvalues ν of
the equation

−
1

2

Z

Q⃗þp⃗0
∈FS

dp⃗0

ð2πÞ2
1

jv⃗ðp⃗0ÞjV
ðQ⃗Þ
p⃗;p⃗0Δ

ðQ⃗Þðp⃗0Þ¼νΔðQ⃗Þðp⃗Þ; ð5Þ

where the line integral runs over vectors p⃗, such that
Q⃗þ p⃗ is on the Fermi surface, and v⃗ðp⃗Þ ¼
ð∇

Q⃗þp⃗
ϵ
Q⃗þp⃗

þ∇
Q⃗−p⃗

ϵ
Q⃗−p⃗

Þ=2. We discretize the quadrant

of the FS containing Q⃗, and solve the matrix equation
iteratively with the Arnoldi algorithm implementation in
Mathematica. The critical temperature is then given by
kBTc ¼ 1.13ℏωce

−1=ν [36], where ωc denotes the cutoff
frequency, which we set equal to the basic cavity frequency
ω0. In the following, we use values appropriate for a two-
dimensional electron gas in GaAs heterostructures, keeping

in mind that the critical temperature will also be affected by
details of the cavity field (see SM [29]). The GaAs system
is well described by an effective mass description of the
single electrons [37], and phonon scattering is negligible
below 1 K [38]. Using a cavity compression A ¼ 2 × 10−5

(i.e., V ∼ 2 × 10−5(λ=ð2 ffiffiffi

ε
p Þ)3) in Fig. 1(c), we obtain

dimensionless coupling strengths ν ∼ 0.16. This translates
into possible critical temperatures reaching into the low-
kelvin regime (see also SM for discussion [29]). We have
thus established that cavity-mediated electron interactions
in electron gases could readily be detected with existing
terahertz cavity technology. Since cavity mode volumes as
small as 10−7ðλ= ffiffiffi

ε
p Þ3 have been reported recently [19]

(although at subterahertz frequencies), higher critical tem-
peratures are conceivable. A strong-coupling extension of
our theory will be required in this case, since the eigen-
values of Eq. (5) could then reach values close to unity. In
the remainder of this Letter, we shall be concerned with the
unusual properties and consequences of the fact that the
electron pairing here is controlled externally by properties
of the cavity.
The dependence of the pairing strength on the electron

density ne is investigated in Fig. 2(a), where we plot the
leading eigenvalue ν1 vs ne for a fixed cavity compression
factor A ¼ 10−5 over a large range of densities. An increase
of the electron density by a factor 10 translates into a
similar change of ν1. Hence, the cavity compression factor
can always outweigh a change of the electron density, and
pairing should be observable even in a low-filling regime
with ne ≲ 1011 cm−2

—given a sufficiently strong cavity
compression to push the leading eigenvalue to ∼0.1. In the
following, we fix the largest eigenvalue at a value corre-
sponding to a zero-temperature mean field value Δ0, and
investigate the gap structure at different electron densities.
The Amperean pairing around a nesting vector Q⃗ gives rise
to a spatial modulation of the superconducting order
parameter in real space, Δðr⃗Þ ∼ cosðQ⃗ · r⃗Þ (assuming equal
pairing amplitude on opposite sides of the Fermi surface,
i.e., for Q⃗ and −Q⃗). The electron density determines Q⃗, and
hence should strongly influence the emerging gap structure.
In Fig. 2(b), the quasiparticle dispersion curves Eðk⃗Þ

(see SM [29]) of the two highest-energy states are plotted
vs kx along two cuts, ky ¼ 0 and ky ¼ kf, respectively.
Evidently, the dispersion is not symmetric with respect to
the Fermi energy, as the particle-hole symmetry is broken
in the pair-density wave state, and the hole dispersion is
split into two maxima at -Qx=2. Still, at this low electron
density, the quasiparticle spectrum is gapped along the
whole Fermi surface. At larger electron densities, as shown
in In Fig. 2(c), the nesting vector Q⃗ increases with the
Fermi energy, and so does the split in the hole dispersion.
As a consequence, the gap is closed along parts of the
Fermi surface (e.g., at ky ¼ kf). This can be understood by
reference to Fig. 1(b1): At higher electron densities, the
coupling strength becomes more anisotropic. Hence, the
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condensate is created in the close vicinity of the nesting
vectors. Conversely, at low densities, the coupling becomes
isotropic. The eigenfunction in Fig. 1(d) broadens, and the
entire Fermi surface is gapped.
In cuprate superconductors, this pair-density wave state

is considered a possible candidate for the pseudogap phase
[31], where parts of the Fermi surface remain gapped, while
others are not—giving rise to the Fermi arc in angle-
resolved photoemission spectroscopy measurements [39].
Cavity-mediated Amperean pairing in GaAs heterostruc-
tures shows the same phenomenology in a much cleaner
system. By varying the electron density, it is possible to
induce a change between a fully gapped low-density and a
partially gapped high-density state.
So far, we have only considered the dominating eigen-

value obtained from Eq. (5). Yet the eigenvalue spectrum
shown in Fig. 1(c) shows a succession of eigenvalues with
decreasing amplitude which are separated by less than 1%
of their absolute values. The eigenfunctions corresponding
to the two leading eigenvalues are shown in Fig. 1(d),

and correspond to a singlet order, with Δ
ðQ⃗Þ
−p⃗

¼ Δ
ðQ⃗Þ
p⃗

, and a

triplet order, with Δ
ðQ⃗Þ
−p⃗

¼ −Δ
ðQ⃗Þ
p⃗

, respectively. Since the
cavity-mediated pairing potential of two electrons is long-
range compared to electronic length scales, a node (as in
triplet pairing) in the two-electron wave function only
results in a small energy penalty, thus pushing the different
orders towards degeneracy. Up to now, we neglected the
screened Coulomb repulsion. Yet in a real material, the
interaction potential between two electrons will look rather
like the sketches inset in Fig. 3(b): the long-range cavity-
mediated interaction dominates at large distances, but at
short distances, other intrinsic interactions of the electron
gas affect the pairing potential. The singlet wave function
peaks at zero distance, and should be influenced strongly
by local repulsive interactions. On the other hand, the triplet
state vanishes at the origin, and should thus be affected
less strongly. In the current situation, where different

eigenvalues are separated by only a few percent, these
local interactions could decide the realized state. We will
examine the simplest possible local interaction in the
following: a constant Hubbard-U describing a local repul-
sive electron interaction. We replace the original interaction

in Eq. (5) with V
ðQ⃗Þ
p⃗;p⃗0 þ U and investigate the leading

eigenvalues of the resulting effective interaction.
Figure 3(a) shows the largest positive eigenvalue of the

matrix eigenvalue equation (5) as a function of the cavity
enhancement A−1, thus modulating the interaction strength.
The eigenvalue grows linearly with A−1, and shows no
discernible structure. In Fig. 3(b), we show the normalized

(a)

(b)

FIG. 3. (a) The leading positive eigenvalue of Eq. (5) is plotted
as a function of the cavity enhancement A−1, for μ ¼ −3.99t.
(b) Absolute value of the difference between the leading ν1 and
subleading eigenvalue ν2, normalized to the leading eigenvalue at
A ¼ 10−5. At low enhancements, ν1 is negative (and the s wave
repulsive), resulting in large differences. The inset on the left
sketches the effective interaction potential in this region in gray.
The green wave function sketches the s-wave function which is
strongly affected by the local repulsion, and thus suppressed
energetically. Hence, the p wave (red) is energetically favorable,
and pairing occurs in the triplet channel. On the right, the
repulsion is too weak to suppress the s wave.

(a) (b) (c)

FIG. 2. (a) The leading eigenvalue of Eq. (5) is plotted as a function of the electron density ne, corresponding to chemical potentials
μ ∈ ½−3.999;−3.98(t, and a cavity compression factor A ¼ 10−5. (b) Electron dispersion EðkxÞ along kx, with ky ¼ 0 (left) and ky ¼ kf
(right) for low electron density ne ≃ 0.3 × 1011 cm−2, and Δ0 ¼ 10−3t. The axes Eð0Þ and kx ¼ 0 are indicated for orientation. The
system is fully gapped everywhere along the Fermi surface. (c) Same as (b) with larger electron density ne ≃ 2 × 1012 cm−2, and
Δ0 ¼ 10−3t. It is gapped only along certain directions in reciprocal space.
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difference between the two dominating eigenvalues of the
matrix eigenvalue equation (5), revealing a structural
change with A−1. At very low enhancements, the difference
is rather large. In this regime, the singlet state is negative
(repulsive), and the system is dominated by triplet pairing.
Then, at A−1

≃ 103, the singlet state becomes attractive; the
difference to the triplet state shrinks, and decreases until
the cavity compression reaches A−1

≃ 2 × 103, where the
singlet order becomes larger than the triplet component.
Thus, with increasing coupling strength, the system
switches from a low-temperature triplet regime to a singlet
regime at strong couplings. In GaAs heterostructures,
however, this transition takes place at very low temper-
atures, and it appears difficult to observe the triplet phase in
this system. It could possibly be observed in complex oxide
interfaces [37] with smaller electron mobilities and larger
electron densities ∼1015 cm−2.
Our results open a new route towards the optical

manipulation of superconductivity. The cavity-induced
modification of the electronic ground state—similar to
experiments in molecular systems [40–43], and related
theoretical proposals to employ cavities to change molecu-
lar dynamics [44–51] and ground states [52,53]—could
prove to be a very powerful tool to enhance or design
coherent electronic states in two-dimensional materials.
Furthermore, we have not considered possible external
driving of the cavity. Driving the cavity into a nonlinear
intensity regime would certainly influence the cavity-
mediated interactions, and might possibly be able to
stabilize electron pairing at higher temperatures, analogous
to the enhancement observed when materials are driven
with strong coherent fields at terahertz frequencies [54–56].
To conclude, we have investigated electron interactions

mediated by a terahertz cavity strongly coupled to a two-
dimensional electron system. These long-range interactions
arise—very much like van der Waals or Casimir-Polder
forces between macroscopic bodies [57]—from the
exchange of virtual photons between spontaneous current
fluctuations. Since the critical temperature scales approx-
imately linearly with the cavity frequency, we suggest that
Ref. [13], for instance, conducted their measurements
above Tc, and thus did not observe the effects we have
predicted here. We discuss the impact of very weak
disorder in the SM [29], yet stronger disorder could further
reduce Tc. The counterrotating terms in the electron-photon
coupling, which the present theory relies upon, were
recently reported in Ref. [30], demonstrating the feasibility
of observing cavity-mediated interactions.
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