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Terahertz field control of interlayer transport modes in cuprate superconductors
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We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch
between stable transport modes in layered superconductors, modeled as stacks of Josephson junctions. We find
pulse shapes that deterministically switch the transport mode between superconducting, resistive, and solitonic
states. We develop a simple model that explains the switching mechanism as a destabilization of the center-of-mass
excitation of the Josephson phase, made possible by the highly nonlinear nature of the light-matter coupling.
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I. INTRODUCTION

Coherent control of the quantum dynamics in atomic or
molecular systems forms an important pillar of modern quan-
tum physics. Recent experimental progress in the generation
and detection of terahertz radiation [1] expands this field from
atomic ensembles to solid-state devices [2] and opens up
unprecedented possibilities for the control and manipulation
of macroscopic systems through light-matter interactions
[3,4]. For instance, the nonlinear driving of phonon modes
allows for the manipulation of electronic degrees of freedom
in solids [5–9]. This coupling gives rise to a plethora of
exciting effects, such as the melting of charge density waves
[10–12], the excitation of synthetic magnetic fields [13], the
possibility to drive metal-insulator transitions [14,15], control
of heterointerfaces [16–18], or even the controlled creation of
transient superconductivity [19–22].

A different type of nonlinearity arises in the c-axis elec-
trodynamics of layered superconductors [23–32], which are
well described by stacked, coupled Josephson junctions for
temperatures sufficiently far below the critical temperature
[33]. These systems exhibit a nonlinear coupling between
external currents and Josephson plasmons, which is routinely
employed for the creation of coherent terahertz radiation
[34–44]. The inverse process, the light control of electric
currents in layered superconductors, could offer exciting
prospects for future quantum technologies. For example,
optical driving could assist the flow of supercurrents in the
presence of strong magnetic fields above Hc1. Materials with
high critical temperature Tc like cuprates could then be used
for applications where strong, superconducting currents need
to be sustained to create high magnetic fields as, e.g., in
magnetic resonance imaging [45]. However, this possibility of
enhancing material properties by external driving has remained
largely unexplored to date.

In this paper we consider a layered superconductor (sc)
consisting of stacked two-dimensional sc layers as shown
in Fig. 1(a). The material is driven by light polarized along
the z axis (which is parallel to the crystallographic c axis),
and the whole stack carries a dc current along the z axis,
which is smaller than the critical Josephson current jJ . We
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consider a parameter regime in which the system can occupy
one of three states. The current can be transmitted either as a
supercurrent, in which Cooper pairs tunnel between adjacent
layers through the Josephson effect. It can also be transmitted
as a quasiparticle current of individual charge carriers, with the
corresponding voltage inducing plasma oscillations that can
emit coherent light [43,44]. Additionally, solitonic solutions
represent dynamical steady states in which quasiparticle and
supercurrents coexist in the system. In contrast to [26,27],
where stimulated emission due to external radiation was
discussed, this paper explores the response to light in a regime
where the pulse cannot be considered a perturbation of the
undriven steady state.

We show how strong terahertz pulses can induce transitions
between these three macroscopic quantum states. Since the
plasmon dispersion depends on the macroscopic state, each
state reacts differently to external driving, thus creating
parameter regimes in which only one transition responds
to the pulse, while other excitation paths remain “dark”.
Therefore, tailored pulses can act as deterministic switches
between pairs of states. Roughly speaking, low-frequency
driving destabilizes high-voltage states, while high-frequency
radiation can force the system into high-voltage states. We
explain this behavior by the light-induced destabilization of
plasma oscillations in the center-of-mass mode.

The paper is organized as follows: Our model and the
numerical approach are introduced in Sec. II. In Sec. III, we
present simulations of the light-induced switching between
macroscopic quantum states. These are put in a broader
context in Sec. IV, where we explore the influence of pulse
parameters and develop a simplified toy model to explain
the destabilization mechanism of an initial state. Finally, we
conclude with a discussion of the relevance of our results for
future experiments in Sec. V.

II. MODEL

Our model for the setup shown in Fig. 1(a) follows from a
description of the material in terms of the Josephson coupling
between sc layers and macroscopic electromagnetism. The
polarization of the pulses along the z direction reduces
the problem to dynamics along the x and z axis. The
electromagnetic field couples to the gauge-invariant phase dif-
ferences φn = ϕn − ϕn+1 − 2π

�0

∫ n+1
n

dz Az between adjacent
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FIG. 1. (a) A short, layered superconductor is driven by a short laser pulse and a dc current jext. (b) The interplay between the current, the
nonlinearity of the crystal, and the light field Eext allows for the switching between the superconducting state, where the current flows as a
supercurrent (red), the resistive state, where the current is supported by quasiparticles (gray), causing oscillatory supercurrents, and solitonic
states, where quasiparticle and supercurrents coexist. Numerical results of simulations of these transitions are shown in Figs. 2, 3, and 4,
respectively.

layers. Here, Az denotes the vector potential in z direction, ϕn

the order parameter phase in the nth layer, and �0 the magnetic
flux quantum. Its dynamics is coupled to the magnetic fields
in the y direction, since spatial changes of φn along the
x direction translate into a magnetic field perpendicular to
it. Throughout this manuscript, we use dimensionless units, in
which case the equations of motion may be written as [46,47]

∂2φn

∂τ 2
+ νc

∂φn

∂τ
+ sin φn − ∂hn

∂ξ
+ η(ξ,τ ) = jext, (1)

(
�2∇2

n − 1
)
hn + ∂φn

∂ξ
+ νab

∂

∂τ

(
∂φn

∂ξ
− hn

)
= 0. (2)

Here, hn denotes the dimensionless magnetic field, the damp-
ing constants νc and νab are proportional to the quasiparticle
conductivity along the c axis and the xy plane, respectively,
and � describes the strength of their magnetic coupling.
Their expression in terms of physical quantities is given
in Appendix A. The discrete z derivative is defined as
∇2

nhn ≡ hn+1 + hn−1 − 2hn. The term sin φn accounts for
the Josephson coupling between the layers. In addition, we
include the random driving term η(ξ,τ ), emulating thermal
phase fluctuations to ensure that our results are stable with
respect to these fluctuations. In this paper, we focus on the
low-temperature regime where these fluctuations are small. In
particular, this means that they do not drive phase slips, nor do
they excite thermal solitons. Any change in the macroscopic
state is due to the external driving. Their impact on reflectance
measurements is discussed in Appendix C. We approximate
the boundary conditions for the layered structure [36,48] by
simple nonradiative conditions,

hn(τ )|ξ=0 = hext(τ ) (3)

and

hn(τ )|ξ=L = 0, (4)

where hext denotes the external pulse. These conditions rep-
resent excellent approximations, since the boundary electric
field is suppressed by a large impedance mismatch to the

vacuum [38]. We write the pulse as

hext(τ ) = Ae−(τ−τ0)2/(2σ 2) sin(ωdrτ + γ ), (5)

where ωdr denotes the driving frequency, σ the pulse duration,
τ0 the pulse delay, γ its carrier envelope phase (CEP), and
A its amplitude. Our parametrization is chosen such that A

denotes the maximal phase difference φ created by the pulse
at the boundary at a given time. In order to chose realistic field
strengths, we estimate [32] for LSCCO, according to which
a phase difference φ ≈ 1 corresponds to a pulse with peak
field intensity of 20 kV/cm, with 100 kV/cm being within
ouperimental reach. Thus we remain in the parameter regime
where the of validity of the mean-field model has been tested
experimentally [25]. The effects of light-induced pair breaking
as well as microscopic materials details should be negligible.
Furthermore, for the short pulses employed, heating effects do
not play a role.

We consider a system which is sufficiently large along
the z axis, such that we can neglect finite-size effects due to
coupling to connecting electrodes. As pointed out in Ref. [36],
this is the case when the number of junctions N exceeds the
magnetic coupling length, i.e., N � �. The external driving can
then synchronize the dynamics in the junction, i.e., φn → φ

and hn → h. This approximation was shown to yield excellent
results in the simulation of the optical response of LSCCO in
Ref. [32] and will also be used throughout this work. To check
this assumption further, we have run simulations with up to 20
junctions and found that interlayer coupling does not alter the
switching from superconductive to the resistive state.

Within our model, the value of � becomes irrelevant in
this limit and is set to � = 0 in Eq. (2). We numerically
solve Eqs. (1) and (2) using the method of lines (discretizing
the spatial dimension on a grid with 250 points) and solving
the resulting coupled ordinary equations with the IDA package
[49] in MATHEMATICA. Furthermore, we limit our studies to
the case where the interlayer voltage drop of two solitons
would exceed the voltage drop of the resistive state. In this
limit, only the three states shown in Fig. 1(b) exist. Increasing
the length L or the external current jext to go beyond this
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FIG. 2. Linear response and light-induced switching between sc and resistive state. (a) Electric field evolution (red) at the left boundary
after excitation by a weak pulse (gray, dashed) at the plasma resonance, i.e., ωdr = 1. The residual signal at large times stems from thermal
fluctuations. (b) Excitation from an initial sc state by a strong pulse with ωdr = 2 and amplitude A = 1.8 that drives the system into the resistive
state, signified by a constant electric field, i.e., the emergence of a voltage drop across the junctions. (c) Destabilization of the resistive state
by another strong pulse (with ωdr = 0.5), which disturbs the voltage drop and thus stops the quasiparticle current. (d) Supercurrent evolution
sin (φ(ξ,τ )) in the junction during the excitation process shown in panel (b). (e) Supercurrent evolution sin (φ(ξ,τ )) during the destabilization
process shown in panel (c). We fix the values νc = νab = 0.1 and jext = 0.25, L = 3.3, as well as the pulse parameters τ0 = 60 and γ = 0 in
the simulations.

limit would allow states with several solitons (but not add
qualitatively new physics within our model).

III. LIGHT-INDUCED DYNAMICS

In this section we numerically study the light-induced
transitions between sc, resistive, and solitonic states shown
in Fig. 1(b). We first discuss the linear response to weak
pulses when the system is initialized in the sc state, given
by φsc = arcsin jext and h = 0. The optical signature of the
coherent Josephson coupling in this state consists of a sharp
edge in the reflectivity spectrum. Weak pulses near this plasma
edge excite plasma oscillations as shown in Fig. 2(a), where we
depict the external field hext(τ ) (gray) and the internal electric
field dφ/dτ . The field oscillation follows the driving pulse
with phase difference π , indicating the absorption of energy
from the external field. The Fourier transform of the reflected
field with respect to τ shows that the plasma resonance
peak is located at (1 − j 2

ext)
1/2 [50]. We present simulations

of reflectivity signals of such weak pulses in Appendix C.
In Fig. 9, the plasma edge is seen as a sharp reduction of
the reflected signal frequency component. Thus, the system
absorbs energy very efficiently at this frequency. Far from
the plasma edge, ωdr � 1 or ωdr � 1, weak waves cannot
penetrate the system [28]. As we shall see in the following,
this changes dramatically for stronger pulses when the linear
response no longer applies. The system cannot be treated as
an effective medium that is not affected by the light, and
strong plasma oscillations can actively influence the state of
the superconductor.

A. Switching between superconducting and resistive transport

We first focus on the transition between the sc and the
resistive state. Figure 2(b) shows the interaction of a strong
pulse with the system in the sc state. The strong pulse excites
plasma oscillations which no longer disperse but instead build
up in magnitude and stabilize uniform plasma oscillations.
This can be seen in Fig. 2(d), where we depict the supercurrent
evolution ∝ sin φ(ξ,τ ) across the entire junction, and where
traveling waves can be distinguished at short times from
the stable uniform oscillations after the interaction with the
pulse. A finite-voltage drop is stabilized, the constant offset
of the electric field in Fig. 2(b) when averaged over the weak
oscillations, satisfying the Ohmic relation dφ/dτ = jext/νc

[51]. The macroscopic state is now given approximately by
the McCumber state [52],

φres(τ ) = ω0τ + �
{

eiω0τ

ω2
0 − iω0νc

}
, (6)

where ω0 = jext/νc. The weak oscillations on top of the offset
in Fig. 2(b) stem from Cooper pair tunneling induced by the
ac Josephson relation and are described by the second term in
Eq. (6). The pulse has thus switched the system from the sc to
the resistive state.

Strong laser pulses may also be employed to destabilize the
quasiparticle current by disturbing the voltage drop across the
junction and thereby switching the system to the sc state. An
example is given in Figs. 2(c) and 2(e), where a pulse drives
the system initialized in the resistive state (6). In contrast to the
sc state, the resistive state does not show a plasma edge (see
Appendix B) and low-frequency waves (ω < 1) can penetrate
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FIG. 3. Light-induced switching between sc and solitonic state. (a) Electric field evolution (red) at the left boundary during the excitation
by a pulse with A = 2 and ωdr = 1 that drives the system from the sc into the solitonic state. (b) The inverse transition from the solitonic to
the sc state is induced by a pulse with amplitude A = 1.5 and frequency ωdr = 0.4. (c) Supercurrent evolution during the optical excitation of
a traveling soliton by the same pulse as in panel (a). (d) Supercurrent evolution during the destruction of the soliton by the same pulse as in
panel (b). The remaining parameters are identical to Fig. 2.

the system. The driving frequency is too small to directly
couple to the resistive state plasma oscillations with ω0 =
jext/νc 	 2.5. However, as can be seen in Fig. 2(c), when the
electric field becomes negative, it locally cancels the voltage
drop and thereby stops the quasiparticle current. This in turn
destabilizes the oscillations and eventually destroys them. As
one can see in panel 2(e), the first weaker oscillation of the
incoming pulse at τ 	 50 [compare with Fig. 2(b)] shifts the
phase of the resistive state’s uniform oscillations. The second,
stronger oscillation at τ 	 60 disturbs the voltage such that the
fast plasma oscillations collapse and finally decay on a time
scale ∼ν−1

c . Thus, this pulse has switched the system back into
the sc state.

B. Switching between superconducting and solitonic transport

Figure 3 shows the driving of the sc state by a strong pulse
which excites the solitonic state. Here, after a longer transient
evolution which we skip in Fig. 3(c), the nonlinearity induces
a traveling soliton. This soliton represents a different kind
of stable dynamical state in which the currents are carried
by both quasiparticle and supercurrent contributions. Moving
Josephson solitons are quantum vortices of the condensate
surrounded by supercurrents which carry one magnetic flux
quantum with them. In a spatially infinite medium, in the
absence of external currents and dissipation, their wave
function is given by [52]

φsoliton(ξ,τ ) = 4 tan−1

[
exp

(
± ξ − uτ√

1 − u2

)]
, (7)

with the velocity |u| � 1. The solitonic wave, Eq. (7),
describes a traveling steplike increase of the phase by 2π and
thereby drives the supercurrent sin φ(ξ,τ ) through a full cycle,
see Fig. 3(a). It can be shown that, in a first approximation,

external current and dissipation do not significantly alter this
shape but merely affect the velocity by supplying or draining
kinetic energy, respectively [52]. At equilibrium, such an
analysis yields the so-called power-balance velocities, u∞ =
±1/(1 + [4νc/(πjext)]2)1/2, which in turn allow us to compute
the fundamental frequency of the kink motion, ω∞ 	 2π u∞

L
.

Whenever a soliton hits the boundary, it is reflected as an
antisoliton (which also increases the phase while moving in
the opposite direction), emitting a burst of radiation [43] and
thus providing a direct experimental fingerprint for its creation
by the driving pulse. Averaged over one oscillation period, it
amounts to a voltage drop of V/ωp = h̄ω∞/(2e), which is
smaller than the voltage drop for the resistive state h̄ω0/(2e).

The soliton may also be destroyed by optical means. This
is exemplified in Fig. 3(b), where a pulse disturbs the soliton
such that it disperses into plasma wave packets which quickly
decay. Similar to the resistive state, we find the soliton to be
unstable against driving below the plasma edge.

C. Switching between solitonic and resistive states

In Fig. 4, we show the switching between solitonic and
resistive states. Figures 4(a) and 4(c) depict the interaction of
a junction in the solitonic state with a strong pulse that switches
the sc to the resistive state. The solitonic state is signified by
bursts of radiation that are emitted whenever the soliton hits
the junction boundary. As can be seen in Fig. 4(a), these bursts
are stopped by the pulse and a constant voltage drop [with
small oscillations on top, see Eq. (6)] is stabilized instead. In
the supercurrent plot of panel 4(c), this change is reflected in
the destruction of the traveling phase slip and the emergence
of uniform plasma oscillations across the entire junction.

Conversely, a pulse with the same driving frequency that
excited a soliton from the sc state can disrupt the voltage and
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FIG. 4. (a) Electric field evolution (red) at the left boundary after excitation by a pulse with A = 2 and ωdr = 2 (i.e., with the same
parameters as the pulse in Fig. 2 that switches the sc to the resistive state) that drives the system from the solitonic into the resistive state,
signified by a constant electric field, i.e., the emergence of a voltage drop across the junctions. (b) The inverse transition from the resistive to
the solitonic state is induced by a pulse with amplitude A = 1.5 and frequency ωdr = 1 (like a pulse that creates a soliton from the sc state).
(c) Supercurrent evolution sin (φ(ξ,τ )) in the junction during the excitation process shown in panel (a). (d) Supercurrent evolution sin (φ(ξ,τ ))
during the destabilization shown in panel (b). The remaining parameters are identical to Fig. 2.

switch the system from the resistive into the solitonic state [see
Figs. 4(b) and 4(d)].

IV. PARAMETER DEPENDENCE OF THE FINAL STATES
AND SWITCHING MECHANISM

We now investigate systematically the parameter space
spanned by the driving frequency ωdr and the amplitude A in
Eq. (5). This will allow us to explain the mechanism underlying
the switching between different states. We first discuss the
destabilization of the sc state, then of the resistive state, and
finally of the soliton.

A. Destabilization of the sc state

Figure 5(a) shows the final state of the system after driving
the sc state by a pulse with amplitude A and frequency ωdr .
We identify three resonances that destabilize the sc state at
low driving strengths and define two distinct regions: For
ωdr � 1.5, solitonic states are excited predominantly, with tiny
islands of resistive and sc states in between. In contrast, in the
region ωdr � 1.8 the pulses excite solely resistive states (as
exemplified in Fig. 2, which falls into this region of parameter
space). While the boundary between the latter region and the
sc region appears regular, the former region is fairly irregular,
with closely intertwined sc and solitonic solutions. Despite
these irregularities, Fig. 5 demonstrates that wide regions in
parameter space exist in which solitonic or resistive states can
be excited deterministically.

Next we establish a simple model for the explanation of the
results shown in Fig. 5(a). We derive the analytic solution of
the linearized equation of motion for the phase in Appendix B
and find that it exhibits pronounced peaks at the eigenmodes
kn = nπ/L of the undriven system. Therefore, to gain a better

understanding of the structure in Fig. 5(a), we make the ansatz

φ(ξ,τ ) = φsc +
∑

n

fn(τ ) cos

(
nπξ

L

)
, (8)

where we recall the sc state φsc = arcsin(jext) and expand the
Josephson coupling to leading nonlinear order, sin(φsc + δ) 	
sin(φsc) + cos(φsc)δ − sin(φsc)δ2/2. The linear order cos(φsc)δ
merely yields decoupled wave equations for the k modes
with the potential [(1 − j 2

ext)
1/2 + k2

n]f 2
n /2. The next order,
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FIG. 5. (a) Final macroscopic quantum state after excitation by
a pulse with inverse bandwidth σ = 10, amplitude A, and carrier
frequency ωdr . The system is initialized in the sc state. The parameters
of Figs. 2 and 3 are indicated by red diamonds. Blue regions indicate
parameters in which the system remains in the sc state, and the pulse
merely induces transient plasma waves. Dark (bright) ochre regions
indicate parameters in which traveling solitons (resistive states) are
excited. (b) Destabilization of the COM mode according to Eq. (9).
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sin(φsc)δ2/2, has two effects: First, it couples the various
eigenmodes’ equations of motion such that the resonant
excitation of a specific mode can influence the system at
all frequencies. Second, it also changes the potential of the
center-of-mass (COM) mode n = 0 to a cubic one, (1 −
j 2

ext)
1/2f 2

0 /2 − jextf
3
0 /3, which features a stable equilibrium

point at f ∗
0 = 0, as before, but further adds an unstable one

at f ∗∗
0 = (1 − j 2

ext)
1/2/jext. When the excitation exceeds this

point, the dynamics would become unbounded to leading non-
linear order. This light-induced destabilization of fluctuations
around the steady state signifies the possible switching to a
different macroscopic quantum state. The COM equation of
motion then reads

f ′′
0 (τ ) + νcf

′
0(τ ) +

√
1 − j 2

extf0(τ ) − jext

2
f 2

0 (τ ) = fdr (τ ),

(9)

where fdr (τ ) describes the driving of the COM mode. As dis-
cussed above, the driving fdr consists of two contributions—
the direct excitation by the light pulse as well as the indirect
excitation through the nonlinear coupling to other modes [see
Eqs. (B15)–(B17) for details]. We model the external driving
as identical to the external pulse, A sin(ωdrτ ) exp[−τ 2/(2σ 2)].
This does not capture details of the pulse propagation in
the system and deviations must be expected, in particular at
large driving amplitudes, where the full system is expected
to saturate. Nevertheless, is sufficient to understand the main
physical properties of the full model, as shown below.

As shown in Fig. 5(b), the simple model Eq. (9) is
able to reproduce the different parameter regimes shown in
panel (a) very well. While it cannot reproduce the irregular
specklelike patterns below ωdr < 0.5 of the full model, it
does correctly reproduce the three resonances. The deviation at
low frequencies originates from the simplified model allowing
excitations at low frequencies while the full model predicts
almost complete reflection, with excitations only being per-
mitted above the nonlinear supratransmission threshold [53].
The simplified model further allows associating the resonances
with the resonant excitation of the k modes: The lowest-energy
resonance stems predominantly from the direct excitation of
the n = 0 (COM) mode. The other two resonances originate
from indirect excitation via the quadratic coupling to the n = 1
mode and to the n = 2 mode, respectively.

The good agreement between Figs. 5(a) and 5(b) demon-
strates that the switching between macroscopic states may be
understood as the light-induced destabilization of the COM
mode. Our simple model gives rise to correct predictions not
only for the excitation of the uniform resistive state, but also for
the highly localized moving soliton state where intuition could
suggest a close connection to high-k modes. However, our
explanation is insufficient to predict the final state following
the destabilization.

B. Destabilization of the resistive state

The parameter space for the destabilization of the resistive
state is shown in Fig. 6(a). It demonstrates that the resistive
state can be destabilized by low-frequency irradiation with
driving frequency ωdr � 1.5, while it remains stable against
high-frequency pulses. We again compare these simulations
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FIG. 6. (a) Final macroscopic quantum state after excitation by
a pulse with inverse bandwidth σ = 10, amplitude A, and carrier
frequency ωdr . The system is initialized in the resistive state.
(b) Destabilization of the COM mode according to Eqs. (B19)–(B21).

with results from a simplified model, which we derive in
Eqs. (B19)–(B21), shown in panel (b). Just like in the case
of the sc state, it overestimates the instability at very low
frequencies, ωdr � 0.5, and further predicts instabilities above
ωdr � 1.5. The latter can be explained by an overestimation
of the maximal Josephson current at large driving: Since we
introduce the driving directly into the equations of motion, the
excitation increases linearly with the amplitude A. Due to the
nonlinear Josephson coupling, this is not the case in the full dy-
namics, and the simplified model thus overestimates the insta-
bility. Yet it correctly predicts the transition frequency ωdr ≈
1.5, as well as the comparatively large amplitude needed
to destabilize the resistive state for ωdr � 0.5. Like for the
sc state, it is the destabilization of the center-of-mass mode that
is responsible for the switching between macroscopic states.

Although the destabilization mechanism is the same, the
resulting final state structures in the parameter space are vastly
different compared to the sc state in Fig. 5. This is due to
the different dispersion relations, which are linear, ω = |k|,
in the resistive state, and in contrast feature a band gap, ω2 =√

1 − j 2
ext + k2, in the sc state. Hence, the all-important center-

of-mass mode shifts to zero frequency, rendering the resistive
state susceptible to low-frequency driving and stable against
high-frequency perturbations.

Furthermore, we remark that both the results from the
simulations and those from the simplified model are highly
sensitive on the driving frequency ωdr . A small change in the
driving frequency can result in a different final state (or change
the dynamics from stable to unstable in the simplified model),
whereas small changes of the driving amplitude seldom change
the dynamics. As we will discuss next in the context of
the destabilization of the soliton, whose parameter space
shows similar features, the use of single- or few-cycle pulses
creates more regular structures, since their larger bandwidth
effectively averages over a frequency interval, resulting in
larger intervals with a unique final state.

C. Destabilization of the soliton

Figure 7 presents the final state after the interaction with a
pulse with constant pulse duration σ = 10 (i.e., as before). It
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FIG. 7. Final macroscopic quantum state after excitation by a
pulse with inverse bandwidth σ = 10, amplitude A, and carrier
frequency ωdr . The system is initialized in the soliton state.

demonstrates that it is in fact possible to destroy the soliton and
reset the system to the sc state (blue regions) or the resistive
state (bright yellow regions). The soliton is mostly vulnerable
against low-frequency driving, with ωdr � 0.6, but also against
very-high-frequency excitation, with ωdr � 1.8. Yet, the struc-
ture appears irregular and shows the same vertical structure
along the vertical axis we observed in Fig. 6, where small
changes of ωdr can change the final state. With the exception
of driving at very high frequencies, one cannot identify large
regions where the soliton can be destroyed with confidence.

As the soliton is a strongly localized wave, its interaction
with short pulses differs from the previous two cases in that the
CEP γ in Eq. (5) may become important. Thus, if we instead
simulate the interaction with single-cycle pulses of duration

σ = 2/ωdr , we obtain the results shown in Fig. 8. In these plots,
we also pick τ0 = 10/ωdr to assure that pulses with different
driving frequencies have the same shape, which is shown on
the right side of the panels. The oscillation frequency of the
soliton ω∞ is considerably larger than the driving frequency
ωdr , such that the value of τ0 is not central to the results. We
find that the larger bandwidth at lower frequencies averages
out the irregular structure of Fig. 7. This creates regions in
which the switching can be accomplished with confidence.
In contrast to the earlier results in Fig. 7, the final state after
excitation by these short pulses strongly depends on the phase.
In our simulation, the phase γ = 0 in panel (a) favors the
excitation of the resistive state. While at intermediate values
in panel (b) it can only seldom destroy the soliton, at larger
values in panel (c) it favors the excitation of the sc state.

This behavior can be understood qualitatively through the
analysis of the pulse form, which is shown for each case on
the left of the panels. Note that for each set of parameters
{ωdr,A}, this pulse is stretched or compressed in both time
and amplitude, but it always retains this shape. At γ = 0,
negative values of the field amplitude dominate the pulse form.
A negative magnetic field at the left boundary implies that
∂h/∂ξ > 0, as long as no other magnetic fields are present.
In Eq. (1), this lowers the value of the left-hand side of the
equation. Thus, the quasiparticle current term νc∂φ/∂τ has to
rise such that the sum of the terms equals the external current.
Conversely, at γ = π , positive values dominate in the pulse,
thus reducing the instantaneous voltage and thereby favoring
the excitation of the sc state.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have proposed to manipulate the
macroscopic quantum state of a current-carrying layered
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FIG. 8. Final macroscopic quantum state after excitation by a single cycle pulse with bandwidth σ = 2/ωdr and CEP (a) γ = 0, (b) π/2,
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superconductor using terahertz pulses. By focusing on the
interaction with strong, few-cycle pulses, we investigated
their use as ultrafast switches that can reset the system
from the zero-voltage sc state to a finite-voltage state (either
solitonic or resistive) and vice versa. We showed that this
manipulation is enabled by the strong nonlinearity of the
light-matter interaction in the system by means of a simple
toy model. Here, the nonlinearity results in a driving term
for the center-of-mass mode of the plasma oscillations, whose
destabilization indicates the switching between macroscopic
states. We have pointed out possible applications of these
findings.

Driving the system below the plasma resonance does not
affect the sc state below the supratransmission threshold [53],
but it can destabilize the resistive or solitonic state. For
instance, both pulses shown in Figs. 2(c) and 3(b) do not
destabilize the sc state, yet they can destabilize the resistive
state and thereby prohibit phase fluctuations from destroying
the coherence between junctions. Our work thus points towards
an unusual, yet feasible approach to the ongoing effort to laser
cool superconducting fluctuations [54–56]. Similarly, it will
be interesting to explore other parameter regimes supporting
different macroscopic states and investigate, for instance,
whether driving can destroy or stabilize vortex lattices in the
presence of external magnetic fields. This will be pursued in
future work.
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APPENDIX A: PHYSICAL UNITS

The c-axis electrodynamics of layered superconductors is
determined by the dielectric constant ε and three characteristic
length scales: the penetration depths λc along its c axis, and
λab along the ab planes, as well as the interlayer spacing s.
From these we can construct the Josephson plasma frequency

ωp = c√
ελc

, (A1)

the number of magnetically coupled junctions

� = λab

s
, (A2)

and the anisotropy parameter γ = λab/λc. All currents in this
paper are normalized to the critical Josephson current, which
is given by jJ = c�0/(8π2sλc) [47]. Time is measured in
units of the plasma frequency, i.e., τ = ωp × t , and the spatial
coordinate in units of the c-axis penetration length ξ = x/λc.
Furthermore, the quasiparticle conductivities along the c axis
σc and the ab plane σab are converted into dimensionless

damping rates by the relations

νc = 4πσc

εωp

, (A3)

νab = 4πσab

εωpγ 2
. (A4)

The dimensionless magnetic field hn is measured in units of
B0 = �0/(2πλcs). The electric field is given by [47]

Ez = �0

2πcs

∂φn

∂t
(A5)

= B0√
ε

∂φn

∂τ
. (A6)

Gaussian units are employed.

APPENDIX B: CENTER-OF-MASS MODE DYNAMICS

Here we derive the simplified equations of motion of
eigenmode fluctuations around a given steady state of the
system φ0. To this end, we write the full wave function as
a sum,

φ(ξ,τ ) = φ0 + φε(ξ,τ ), (B1)

where φ0 denotes a dynamical steady-state solution of the full
mode, which could be either the sc state φsc, the resistive state
(6), or the soliton (7), and |φε | � |φ0|. Inserting this ansatz
into the sine-Gordon equation, we obtain to second order

∂2φε

∂τ 2
+ νc

∂φε

∂τ
+ cos(φ0)φε − ∂2φε

∂ξ 2
= 1

2
sin(φ0)φ2

ε . (B2)

The left-hand side of Eq. (B2) describes the propagation of
linear waves with the system in the stated state φ0. The right-
hand side yields corrections to this wave behavior at larger
amplitudes.

1. Linear waves

a. sc state

In the sc state, we have cos(φsc) = (1 − j 2
ext)

1/2 and
sin(φsc) = jext. In this case, the left-hand side of Eq. (B2)
represents a linear wave equation which we can solve straight-
forwardly by Fourier transform. We seek a solution of the
linearized sine-Gordon equation,

∂2φε

∂τ 2
+ νc

∂φε

∂τ
+

√
1 − j 2

extφε − ∂2φε

∂ξ 2
= 0, (B3)

subject to the boundary conditions

∂φε

∂ξ

∣∣∣∣
ξ=0

= hext(τ ), (B4)

∂φε

∂ξ

∣∣∣∣
ξ=L

= 0, (B5)

with hext given by Eq. (5). Writing the wave function as

φε(ξ,τ ) =
∫

dω �eiωτφω(ξ ) (B6)
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with

φω(ξ ) = A cos kωξ + B sin kωξ, (B7)

we obtain from Eq. (B3) the dispersion relation

ω2 − iνcω =
√

1 − j 2
ext + k2

ω, (B8)

and from the boundary conditions (B4) and (B5),

B = hext(ω)

2πkω

, (B9)

A = B tan−1 kωL. (B10)

Thus, we arrive at

φε(ξ,τ )

=
∫
dω �eiωτ hext(ω)

2πkω

[tan−1(kωL) cos(kωξ ) + sin(kωξ )].

(B11)

Clearly, this solution is strongly peaked whenever kω = nπ/L,
i.e., when the driving excites a cavity resonance in the junction.

b. Resistive state

We approximate the resistive state (6) by its dominant term
φresistive 	 ω0τ to obtain the Mathieu equation

∂2φε

∂τ 2
+ νc

∂φε

∂τ
+ cos(ωoτ )φε − ∂2φε

∂ξ 2
= 0. (B12)

With the parameters employed in this manuscript, we have
ω0 = 2.5; hence it is much larger than frequencies around
and below the plasma resonance with ω � 1.0 that we
are most interested in. Therefore there will be very little
mixing between these widely disparate frequencies, and in
a first approximation, we replace the highly oscillatory term
cos(ω0τ ) by its time-averaged value = 0. This creates a
free-space-like wave equation with linear dispersion:

ω2 − iνcω = k2
ω. (B13)

Whereas Eq. (B8) only supports (approximately) real wave
vectors above the plasma edge, when ω > (1 − j 2

ext)
1/2 there

is no forbidden spectral region in the resistive state and low-
frequency waves can penetrate the system.

c. Solitonic state

In an infinitely long junction, a soliton breaks the time-
transversal symmetry. This creates a Goldstone mode at zero
frequency, while the remaining dispersion relation is not af-
fected by the presence of the soliton [57]. Hence, the existence
of the zero-frequency mode can explain the susceptibility of
the soliton state against low-frequency driving.

2. Destabilization of the sc state

The linear wave dispersion (B8) motivates us to reduce our
description to only the first few eigenmodes with n = 0, 1, 2
in the investigation of the nonlinear corrections to the solution
(B11). [This is also supported by the reflectivity spectrum in

Fig. 9(a).] We write

φε(ξ,τ ) =
2∑

n=0

fn(τ ) cos

(
nπξ

L

)
, (B14)

multiply Eq. (B2) by cos(nπx/L), and integrate over space.
This approach results in the coupled equations of motion of
the eigenmodes:

f ′′
0 (τ ) + νcf

′
0(τ ) +

√
1 − j 2

extf0(τ ) − jext

2
f 2

0 (τ )

= jext

4

[
f 2

1 (τ ) + f 2
2 (τ )

] + f0dr (τ ), (B15)

f ′′
1 (τ ) + νcf

′
1(τ ) +

[√
1 − j 2

ext +
(

π

L

)2]
f1(τ )

= jext

[
f0(τ )f1(τ ) + 1

2
f1(τ )f2(τ )

]
+ f1dr (τ ), (B16)

f ′′
2 (τ ) + νcf

′
2(τ ) +

[√
1 − j 2

ext +
(

2π

L

)2]
f2(τ )

= jext

[
f0(τ )f2(τ ) + 1

4
f 2

1 (τ )

]
+ f2dr (τ ). (B17)

We have neglected the coupling to higher-n modes and added
phenomenological driving terms which we simply write as

2f0dr (τ ) = f1dr (τ ) = f2dr (τ ) = A sin(ωdrτ )e−(τ−τ0)2/(2σ 2),

(B18)

i.e., we assume that they have the same shape as the external
driving (5). The additional factor 2 ahead of f0dr stems from
the spatial integration, since

∫
dξ 1 = L and

∫
dx cos2(knx) =

L/2, thus giving greater weight to the finite-k modes. We
stress that this approach neglects the details of the wave-packet
propagation inside the Josephson junctions, as these details are
not essential for the understanding of the switching process.

3. Destabilization of the resistive state

As in Eq. (B12), we approximate the resistive state (6) by
its dominant term φresistive 	 ω0τ . Inserting the approximation
into Eq. (B2), the same approach as above yields

f ′′
0 (τ ) + νcf

′
0(τ ) + cos(φres(τ ))f0(τ ) − sin (φres(τ ))

2
f 2

0 (τ )

= sin (φres(τ ))
4

[
f 2

1 (τ ) + f 2
2 (τ )

] + f0dr (τ ), (B19)

f ′′
1 (τ ) + νcf

′
1(τ ) +

[
cos (φres(τ )) +

(
π

L

)2]
f1(τ )

= sin (φres(τ ))
[
f0(τ )f1(τ ) + 1

2
f1(τ )f2(τ )

]
+ f1dr (τ ),

(B20)

f ′′
2 (τ ) + νcf

′
2(τ ) +

[
cos (φres(τ )) +

(
2π

L

)2]
f2(τ )

= sin(φres(τ ))

[
f0(τ )f2(τ ) + 1

4
f 2

1 (τ )

]
+ f2dr (τ ). (B21)
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FIG. 9. Optical signals and noise. (a) Time evolution (left) and reflectance |r(ω)|2 (right) of a weak excitation in a short junction without
noise. The blue, dashed line in the reflectance plot shows the theoretical expectation for the bulk system according to Eq. (C3). (b) The same
including the noise level used in the paper. (c) Time evolution and reflectance in a long junction. The simulations and theoretical expectation
coincide and cannot be distinguished.

We write the driving fields as

4f0dr (τ ) = 2f1dr (τ ) = 2f2dr (τ ) = A sin(ωdrτ )e−(τ−τ0)2/(2σ 2),

(B22)

where the factor 2 is inserted to roughly match the simulations
of the full model.

APPENDIX C: FLUCTUATIONS

In the absence of external currents, the only ground state
is the sc state. We therefore expand the random driving in
eigenmodes of the sc states,

η(ξ,τ ) =
∑

n

εn(τ ) cos(knξ ). (C1)

Following the fluctuation-dissipation theorem, we assume the
power spectrum of the form

〈εn(τ )εn′(τ ′)〉 = αkBT

ωn

δnn′δ(τ − τ ′), (C2)

with the frequencies ωn = [(1 − j 2
ext)

1/2 + k2
n]1/2 and a pro-

portionality factor α. This corresponds to so-called pink noise,
where high-frequency fluctuations are suppressed [58,59].

In our simulations, we create a single realization of random
functions {εn(t)}, which we interpolate from random values

drawn from a Gaussian distribution with zero mean and
variance αkBT /ωn with a temporal step size �τ set to 1,
and αkBT = 0.005. The summation in Eq. (C1) is terminated
at n = 10, corresponding to a frequency cutoff ω10 ≈ 9.5 for
our parameters. This function is then fed into the equation of
motion (1) where it acts as a random scattering potential. Its
effect is shown in Fig. 9, where we calculate the reflectance
|r(ω)|2 from the propagation of a plasma wave.

Panel (a) shows the signal from a short junction with length
L = 3.3 without noise. The left plot shows the time evolution
of the external field Eext (gray) and the reflected field Er

(red). This is used to obtain the reflectance |r(ω)|2, with r =
Er/(Er − 2Eext). The reflectance features clear resonances at
the eigenmodes of the junction with wave vectors kn = nπ/L

with n = 0, 1, 2.
Panel (b) shows the same simulations with finite fluctua-

tions. The reflectance still has the same features; the noise
merely adds random fluctuations on top of the signal.

Finally, in panel (c) we present the simulations without
noise in a long junction with L = 100. The eigenmodes
now overlap entirely, and the reflectance perfectly coincides
with the theoretical expectation, which we obtain from the
frequency-dependent dielectric constant [60]:

ε(ω) = ε0

(√
1 − j 2

ext − 1

ω2
+ i

νc

ω

)
. (C3)
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